小学奥数求阴影面积

合集下载

小学六年级奥数--面积计算(二)

小学六年级奥数--面积计算(二)

二、精讲精练
练习3: 3.如图所示,AB=BC=8厘米,求阴影部分的面积。
二、精讲精练
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。 【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还 原成长方形后(如图所示)。
I和II的面积相等。 因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的 两组三角形面积分别相等,所以
二、精讲精练
练习5: 4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
谢谢观看
二、精讲精练 练习1: 1.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习1: 2.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习3: 3.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练
【例题2】求图中阴影部分的面积(单位:厘米)。 【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形 (如图所示)。
二、精讲精练
练习2: 3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
二、精讲精练
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影 部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相 等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于 长方形面积的一半(如图19-10右图所示)。所以 3.14×12×1/4×2=1.57(平方厘米)
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积 的一半。
3.14×-4×4÷2÷2=8.56(平方厘米) 答:阴影部分的面积是8.56平方厘米。
二、精讲精练

小学六年级奥数- 面积计算

小学六年级奥数- 面积计算

二、精讲精练
【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。
【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的 半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的 关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以 看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这 样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。 3.14×(30×2)×1/4-30=17.1(平方厘米) 答:阴影部分的面积是17.1平方厘米。
二、精讲精练
【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。 【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白 部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如 图所示。 3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米) 解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、 小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即 长方形的面积。
小学奥数 举一反三
(六年级)
第20讲 面积计算 一、知识要点 对于一些比较复杂的组合图形,有时直接分解有一定 的困难,这时,可以通过把其中的部分图形进行平移、翻 折或旋转,化难为易。有些图形可以根据“容斥问题“的 原理来解答。在圆的半径r用小学知识无法求出时,可以把 “r2”整体地代入面积公式求面积。
二、精讲精练
练习4: 1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形 中阴影部分的面积。
二、精讲精练
练习4: 2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形 中阴影部分的面积。

求阴影部分的面积六年级奥数

求阴影部分的面积六年级奥数

求阴影部分的面积(六年级奥数)前言在六年级的奥数课上,我们经常需要解答各种与几何形状相关的问题。

其中一个常见的问题是求阴影部分的面积。

通过理解并掌握一些几何知识和计算方法,我们可以轻松地应对这类问题。

本文将介绍一些常用的方法和注意事项,帮助大家解决求阴影部分面积的问题。

问题背景在解答求阴影部分面积的问题前,我们先了解一下这类问题的背景。

一般来说,这类问题会给出一个或多个几何形状,并告诉我们某个或某些部分的面积。

我们需要通过这些已知的信息,计算出未知部分的面积。

方法一:几何分析法几何分析法是求解阴影部分面积问题的常用方法之一。

它的基本思路是将问题拆分成多个几何图形,计算每个图形的面积,然后将这些面积累加起来。

下面是一个例子,以帮助我们更好地理解几何分析法:问题:如图所示,在正方形ABCD内有一圆O,圆O的半径为2cm。

求阴影部分的面积。

O -----------------| || ----------- || | | || | O | || | | || ----------- || |-------------------解题步骤:1.首先,我们计算正方形ABCD的面积。

由于ABCD是一个正方形,所以它的边长与圆O的直径相等(2cm的直径即为4cm的边长)。

所以,正方形ABCD的面积为4cm * 4cm = 16cm²。

2.接下来,我们计算圆O的面积。

圆O的半径为2cm,所以它的面积为πr² = 3.14 * 2 * 2 = 12.56cm²。

3.最后,我们计算阴影部分的面积。

由于阴影部分是正方形ABCD减去圆O后剩下的部分,所以阴影部分的面积为16cm² - 12.56cm² = 3.44cm²。

通过这个例子,我们可以体会到几何分析法在求解阴影部分面积问题时的应用。

方法二:代数法除了几何分析法,代数法也是一种常用的求解阴影部分面积问题的方法。

三年级奥数题,求阴影部分面积的题

三年级奥数题,求阴影部分面积的题

题目:三年级奥数题,求阴影部分面积1.题目描述:一个三角形的三条边分别为3cm,4cm和5cm。

在这个三角形的底边上截取一个4cm的线段,使得这个线段成为这个三角形的底边。

将截取的线段向三角形的内部平移,使得这个线段的一端与这个三角形的斜边垂直相交,另一端与斜边上的一个点相交,这个点的到三角形的顶点的距离为3cm。

求平移后的线段与三角形的相交部分的面积。

2.解题思路:利用三角形的三条边和切线定理可得出这个三角形的高,然后根据相似三角形性质可得出截取线段后的两个小三角形的相似关系。

最后利用相似三角形的面积性质求得所需的阴影部分面积。

3.具体步骤:步骤一:计算三角形的面积三角形的三条边分别为3cm,4cm和5cm,根据切线定理可得这个三角形的高h。

令a=3,b=4,c=5,p=(a+b+c)/2,则三角形的面积S=√[p(p-a)(p-b)(p-c)]步骤二:求平移后的线段与三角形的相交部分的面积设截取的线段为AB,平移后的线段为CD,D是在斜边上的一个点,CD的长度为x。

根据相似三角形性质可得出AB与CD的相似关系,即AB/CD=BC/AC=3/x。

设BD=y,则CD=3-y,根据勾股定理可得出AC的长度为√(16-y^2)。

则平移后的线段与三角形的相交部分的面积为阴影部分的面积等于1/2*3*(3-y)4.具体计算过程:步骤一的计算过程略步骤二:由AB/CD=BC/AC=3/x可得出CD=4x/3。

由BD=y,CD=3-y可得出y+3-y=4x/3,即x=3/4。

则阴影部分的面积为1/2*3*(3-3/4)=9/8 cm²。

5.答案确认:平移后的线段与三角形的相交部分的面积为9/8 cm²。

6.总结:通过计算可得出,平移后的线段与三角形的相交部分的面积为9/8平方厘米。

通过以上步骤的详细计算,我们可以得到平移后的线段与三角形的相交部分的面积为9/8平方厘米。

这道题目考察的是对基本几何知识和面积计算方法的理解与应用,在解题过程中需要注意细节,化繁为简,深入浅出,灵活运用所学知识,才能得出正确的结果。

小学奥数求阴影部分面积

小学奥数求阴影部分面积

小学奥数求阴影部分面积一、复习旧知计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

二、新课讲解重难点:例1、求下面各个图形中阴影部分的面积(单位:厘米)。

考点:例2、计算下面图形中阴影部分的面积(单位:厘米)。

易混点:例3、如图所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。

O的面积。

求长方形ABO1例4、如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分①的面积与阴影部分②的面积相等,求平行四边形ABCD的面积。

例5、如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

◆【巩固练习】1、如图所示,AB=BC=8厘米,求阴影部分的面积。

◆【典型例题】例6、如图所示,求阴影部分的面积(单位:厘米)。

例7、图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。

例8、如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。

例9、如图所示,求阴影部分的面积(单位:厘米。

得数保留两位小数)。

例10、如图所示,求图中阴影部分的面积。

例11、如图所示,求阴影部分的面积(单位:厘米)例12、如图所示,求图中阴影部分的面积(单位:厘米)。

例13、如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。

例14、如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。

以AC、BC 为直径画半圆,两个半圆的交点在AB边上。

求图中阴影部分的面积。

请计算六年级奥数阴影形状的面积。

请计算六年级奥数阴影形状的面积。

请计算六年级奥数阴影形状的面积。

请计算六年级奥数阴影形状的面积介绍本文档将介绍如何计算六年级奥数题目中给定阴影形状的面积。

我们将使用简单的几何形状,并提供详细的步骤和计算公式。

计算步骤1. 确定阴影形状的几何形状类型。

常见的几何形状包括矩形、三角形和圆形。

2. 根据形状类型,选择相应的计算方法。

矩形的面积计算1. 矩形的面积计算公式为:面积 = 长 ×宽。

2. 如果题目已经给出了矩形的长度和宽度,则直接将两个数值相乘即可得到面积。

三角形的面积计算1. 三角形的面积计算公式为:面积 = 底 ×高 ÷ 2。

2. 如果题目已经给出了三角形的底和高,则将底和高相乘后再除以2即可得到面积。

圆形的面积计算1. 圆形的面积计算公式为:面积= π × 半径²,其中π 的近似值为3.14。

2. 如果题目已经给出了圆形的半径,则将半径的平方乘以π 即可得到面积。

示例题目题目一阴影部分是一个边长为5 cm的正方形,请计算该阴影形状的面积。

解答1. 根据题目描述,该阴影形状是一个正方形,边长为5 cm。

2. 使用矩形的面积计算公式,将边长相乘:面积 = 5 cm × 5 cm = 25 cm²。

3. 所以,该阴影形状的面积为25 cm²。

题目二阴影部分是一个底边长为10 cm、高为8 cm的三角形,请计算该阴影形状的面积。

解答1. 根据题目描述,该阴影形状是一个三角形,底边长为10 cm,高为8 cm。

2. 使用三角形的面积计算公式,将底和高相乘后再除以2:面积 = 10 cm × 8 cm ÷ 2 = 40 cm²。

3. 所以,该阴影形状的面积为40 cm²。

题目三阴影部分是一个半径为6 cm的圆形,请计算该阴影形状的面积。

解答1. 根据题目描述,该阴影形状是一个圆形,半径为6 cm。

2. 使用圆形的面积计算公式,将半径的平方乘以π:面积 =3.14 × 6 cm × 6 cm = 113.04 cm²。

(完整版)六年级奥数-阴影部分面积

(完整版)六年级奥数-阴影部分面积

1.下图是两个一样的直角三角形重迭在一起,按图标数字,阴影部分面积是______.
第1题第2题第3题
2.如图,梯形的面积是18平方厘米,下底长5厘米,曲线均为圆弧,求阴影部分的面积。

3.图中空白部分占正方形面积的______分之______.
4.如图30-8,ABCD是平行四边形,面积为72平方厘米,E,F分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?
5.如图,一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?
6.已知图中三角形ABC的面积为1998平方厘米,是平行四边形DEFC面积的3倍。

那么,图中阴影部分的面积是多少?
7.如图,ABCD是长方形,其中AB=8,AE=6,ED=3.并且F是线段BE的中点,G是线段FC的中点.求三角形DFG(阴影部分)的面积.
8. 如图,ABCD是直角梯形.其中AD=12厘米,AB=8厘米,BC=15厘米,且∆、四边形DEBF、CDF
∆(阴影部分)的面积是多少ADE
∆的面积相等.EDF
平方厘米?
9.如图,已知四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为10厘米,那么图中阴影三角形BFD的面积为多少平方厘米?
10.在边长为1的正方形ABCD中,AC与BD相交于O,以A、B、C、D分别为圆心,以对角线长的一半为半径画圆弧与正方形的边相交,如图,则图中阴影部分的面积为______.。

小学数学奥数辅导,求阴影部分面积,家长们都不会做

小学数学奥数辅导,求阴影部分面积,家长们都不会做

小学数学奥数辅导,求阴影部分面积,家长们都不会

1、求阴影部分面积的基础概念:
- 总面积:总面积是指一个图形所覆盖的区域的面积,它是由每个小图形的面积相加而成的。

- 阴影面积:阴影面积指的是一个阴影部分覆盖的面积,它可以由总面积减去非阴影部分的面积而计算出来。

- 比例:求阴影部分面积需要用面积的比例来计算,即将图形分成多个部分,给每个部分设置占比,然后再乘以总面积。

2、如何计算求阴影部分面积:
- 第一步:先计算出总面积,即把所有的图形的面积加起来,也可以用公式计算加速。

- 第二步:计算出非阴影部分的面积,也可以用公式计算加速。

- 第三步:减去非阴影部分的面积,得到阴影部分面积。

- 第四步:根据比例来计算,把普通面积转换成比例面积。

3、求阴影部分面积的应用实例:
- 已知圆的外接矩形的面积,求圆的阴影部分的面积。

- 从原形找阴影面积:首先要确定原形的总面积,然后利用把原形分成不同部分,每个部分占比计算出非阴影部分的面积,再减去非阴影部分的面积,就可以得到阴影部分的面积。

- 求矩形内某个多边形的阴影面积:以多边形把矩形分成两个部分,把一个部分占比换成普通面积,减去这个部分的普通面积,就可以得到多边形的阴影面积。

4、总结:
在家长们求阴影部分面积的过程中,应该首先明确概念,要注意比例的计算,如多边形的比例要把其他部分的面积换算成普通面积,得出的结果才是最终的结果。

家长们可以根据自己的孩子的情况,选择合适的方法来练习,以帮助孩子更好的掌握奥数中求阴影部分面积的知识点。

六年级奥数圆与阴影部分面积

六年级奥数圆与阴影部分面积

研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块一 平移、旋转、割补、对称在曲线型面积中的应用【例 1】 下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?例题精讲圆与扇形【解析】割补法.如右图,格线部分的面积是36平方厘米.【巩固】下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?【解析】割补法.如右图,格线部分的面积是36平方厘米.【例 2】如图,在18⨯8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【解析】我们数出阴影部分中完整的小正方形有8+15+15+16=54个,其中部分有6+6+8=20个,部分有6+6+8=20(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+20=74(个)完整小正方形,而整个方格纸包含8⨯18=144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的74144,即3772.【巩固】在4×7的方格纸板上面有如阴影所示的”6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?【解析】矩形纸板共28个小正方格,其中弧线都是14圆周,非阴影部分有3个完整的小正方形,其余部分可拼成6个小正方格.因此阴影部分共28-6-3=19个小正方格.所以,阴影面积占纸板面积的19 28.【例 3】(2007年西城实验考题)在一个边长为2厘米的正方形内,分别以它的三条边为直径向内作三个半圆,则图中阴影部分的面积为平方厘米.是1厘米,那么阴影部分的总面积是多少平方厘米?【解析】如下图所示:可以将每个圆内的阴影部分拼成一个正方形,每个正方形的面积为11240.542⨯÷⨯=⨯=()(平方厘米),所以阴影部分的总面积为248⨯=(平方厘米).【巩固】如图所示,四个全等的圆每个半径均为2m ,阴影部分的面积是 .【解析】 将原图割补成如图,阴影部分正好是一个半圆,面积为255 3.14239.25(cm )⨯⨯÷=【巩固】如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【解析】法一:为了求得阴影部分的面积,可以从下图的整体面积中扣掉一个圆的面积,就是要求的面积了.=-要扣掉圆的面积,如果按照下图把圆切成两半后,从两端去扣掉也是一样.如此一来,就会出现一个长方形的面积.半圆半圆103-=因此,所求的面积为210330cm⨯=().法二:由于原来的月牙形很难直接计算,我们可以尝试构造下面的辅助图形:如左上图所示,我们也可以这样来思考,让图形往右侧平移3cm就会得到右上图中的组合图形,而这个组合图形中右端的月牙形正是我们要求的面积.显然图中右侧延伸出了多少面积,左侧就会缩进多少面积.因此,所求的面积是210330cm⨯=().【例 10】求图中阴影部分的面积.1212DCBA1212DCBA【解析】如图,连接BD,可知阴影部分的面积与三角形BCD的面积相等,即为1112123622⨯⨯⨯=.【例 11】求如图中阴影部分的面积.(圆周率取3.14)44【解析】可将左下橄榄型的阴影部分剖开,两部分分别顺逆时针90︒,则阴影部分转化为四分之一圆减去一个等腰直角三角形,所以阴影部分的面积为211π444 4.5642⨯⨯-⨯⨯=.【巩固】如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率π取近似值227.【解析】原题图中的左边部分可以割补至如右上图位置,这样只用先求出四分之一大圆的面积,再减去其内的等腰直角三角形面积即为所求.因为四分之一大圆的半径为7,所以其面积为:2211227π738.5447⨯⨯≈⨯⨯=.四分之一大圆内的等腰直角三角形ABC的面积为17724.52⨯⨯=,所以阴影部分的面积为38.524.514-=.【例 12】求下列各图中阴影部分的面积.(1)1010(2)ba【解析】在图(1)中,阴影部分经过切割平移变成了一个底为10,高为5的三角形,利用三角形面积公式可以求得110102522S=⨯⨯=阴影;在图(2)中,阴影部分经过切割平移变成了一个长为b,宽为a的长方形,利用长方形面积公式可以求得S a b ab=⨯=阴影.【巩固】求下列各图中阴影部分的面积(图中长度单位为cm,圆周率按3计算):⑴3⑵4⑶111⑷2方法二:先看总的面积为14的圆,加上一个正方形,加上一个等腰直角三角形,在则阴影面积为总面积扣除一个等腰直角三角形,一个14圆,一个45︒的扇形.那么最终效果等于一个正方形扣除一个45︒的扇形.面积为215113188⨯-⨯⨯=.【巩固】求图中阴影部分的面积(单位:cm ).2【解析】 从图中可以看出,两部分阴影的面积之和恰好是梯形的面积,所以阴影部分面积为21(24)39cm 2⨯+⨯=.2【解析】 如右上图所示,④的面积与Ⅰ的面积相等,①的面积等于②与Ⅱ的面积之和.可见甲比乙多拿的部分为中间的长方形,所以甲比乙多拿的面积为:2537.522 5.511cm -⨯-=⨯=()()(),而原本应是两人平分,所以甲应付给乙:11100055002⨯=(元).【例 16】求右图中阴影部分的面积.(π取3)45︒45︒20cm【解析】看到这道题,一下就会知道解决方法就是求出空白部分的面积,再通过作差来求出阴影部分面积,因为阴影部分非常不规则,无法入手.这样,平移和旋转就成了我们首选的方法.(法1)我们只用将两个半径为10厘米的四分之一圆减去空白的①、②部分面积之和即可,其中①、②面积相等.易知①、②部分均是等腰直角三角形,但是①部分的直角边AB的长度未知.单独求①部分面积不易,于是我们将①、②部分平移至一起,如右下图所示,则①、②部分变为一个以AC 为直角边的等腰直角三角形,而AC为四分之一圆的半径,所以有AC=10.两个四分之一圆的面积和为150,而①、②部分的面积和为11010502⨯⨯=,所以阴影部分的面积为15050100-=(平方厘米).(法2)欲求图①中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图②的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.所以阴影部分面积为21110101010022π⨯⨯-⨯⨯=(平方厘米).45︒45︒DCBAACB【例 17】(第四届走美决赛试题)如图,边长为3的两个正方形BDKE、正方形DCFK并排放置,以BC 为边向内侧作等边三角形,分别以B、C为圆心,BK、CK为半径画弧.求阴影部分面积.(π 3.14=)【解析】 167212ABC S =⨯⨯=△,三角形ABC 内两扇形面积和为21174-=,根据扇形面积公式两扇形面积和为2π24360B C∠+∠⨯⨯=°,所以120B C∠+∠=°,60A∠=°.【例 20】如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?【解析】小圆的面积为2π525π⨯=,则大小圆相交部分面积为325π15π5⨯=,那么大圆的面积为422515ππ154÷=,而2251515422=⨯,所以大圆半径为7.5厘米.【例 21】有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)CBA【解析】由右图知,绳长等于6个线段AB与6个BC弧长之和.将图中与BC弧相似的6个弧所对的圆心角平移拼补,可得到6个角的和是360︒,所以BC弧所对的圆心角是60︒,6个BC弧合起来等于直径5厘米的圆的周长.而线段AB等于塑料管的直径,由此知绳长为:565π45⨯+=(厘米).【例 22】如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14=)【解析】如图,点C是在以B为中心的扇形上,所以AB CB=,同理CB AC=,则ABC∆是正三角形,同理,有CDE∆是正三角形.有60ACB ECD∠=∠=o,正五边形的一个内角是1803605108-÷=o o o,因此60210812ECA∠=⨯-=o o o,也就是说圆弧AE的长度是半径为12厘米的圆周的一部分,这样相同的圆弧有5个,所以中间阴影部分的周长是()122 3.1412512.56cm360⨯⨯⨯⨯=oo.【例 23】如图是一个对称图形.比较黑色部分面积与灰色部分面积的大小,得:黑色部分面积________灰色部分面积.【解析】图中四个小圆的半径为大圆半径的一半,所以每个小圆的面积等于大圆面积的14,则4个小圆的面边角料面积36288=-=(平方厘米).【例 26】如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【解析】由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于16大圆面积减去一个小圆面积,再加上120︒的小扇形面积(即13小圆面积),所以相当于16大圆面积减去23小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的239=倍,那么阴影部分面积为21259π1π 2.5636⎛⎫⨯-⨯⨯== ⎪⎝⎭.【例 27】 如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)本题中由于C 、D 是半圆的两个三等分点,M 是CD的中点,H 是弦CD 的中点,可见这个图形是对称的,由对称性可知CD 与AB 平行.由此可得CHN ∆的面积与CHO ∆的面积相等,所以阴影部分面积等于扇形COD 面积的一半,而扇形COD 的面积又等于半圆面积的13,所以阴影部分面积等于半圆面积的16,为11226⨯=平方厘米.【巩固】如图,C 、D 是以AB 为直径的半圆的三等分点,O 是圆心,且半径为6.求图中阴影部分的面积.【解析】 如图,连接OC 、OD 、CD .由于C 、D 是半圆的三等分点,所以AOC ∆和COD ∆都是正三角形,那么CD 与AO 是平行的.所以ACD ∆的面积与OCD ∆的面积相等,那么阴影部分的面积等于扇形OCD 的面积,为此阴影部分面积为:3.1412124113.04⨯⨯÷=.方法二:连接AC 、DF ,设AF 与CD 的交点为M ,由于四边形ACDF 是梯形,根据梯形蝴蝶定理有ADM CMF S S =△△,所以DCF S S =阴影扇形 3.1412124113.04=⨯⨯÷=【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.【解析】 连接小正方形AC ,有图可见ACD ABC S S S S =+-△△阴影扇形∵211144222AC ⨯=⨯⨯ ∴232AC =同理272CE =,∴48AC CE ⨯=∴148242ACD S =⨯=△290π412.56360S =⨯=扇形,14482ABC S =⨯⨯=△∴2412.56828.56S =+-=阴影【例 33】 如图,图形中的曲线是用半径长度的比为2:1.5:0.5的6条半圆曲线连成的.问:涂有阴影的部分的面积与未涂有阴影的部分的面积的比是多少?【解析】 假设最小圆的半径为r ,则三种半圆曲线的半径分别为4r ,3r 和r .阴影部分的面积为:()()22222111π4π3ππ5π222r r r r r -++=,空白部分的面积为:()222π45π11πr r r -=,则阴影部分面积与空白部分面积的比为5:11.【例 34】 (2008年西城实验考题)奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π 3.14=)【解析】 ⑴每个圆环的面积为:22π4π37π21.98⨯-⨯==(平方厘米);⑵五个圆环的面积和为:21.985109.9⨯=(平方厘米); ⑶八个阴影的面积为:109.977.132.8-=(平方厘米); ⑷每个阴影的面积为:32.88 4.1÷=(平方厘米).【例 35】 已知正方形ABCD 的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连擎起来得右图.那么,图中阴影部分的总面积等于______方厘米.(π 3.14=)【解析】 39.25【例 36】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)D CBAaDCBA a【解析】 从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形ABC 的面积之差,所以阴影部分的面积为:2214121ππ42 2.5π4 3.8522222⎛⎫⎛⎫⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2cm ).【例 38】 (奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片.它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和 是平方厘米.则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【巩固】求图中阴影部分的面积.【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=.【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)【巩固】图中阴影部分的面积是 .(π取3.14)33【解析】如右上图,虚线将阴影部分分成两部分,分别计算这两部分的面积,再相加即可得到阴影部分的面方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为222311⨯-⨯=【例 43】已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B【解析】由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算.从图中可以看出,阴影部分的面积是一个45°的扇形与一个等腰直角三角形的面积差.2【解析】因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了.因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7.半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC=2⨯150÷20=15.【巩固】三角形ABC是直角三角形,阴影I的面积比阴影II的面积小225cm,8cmAB=,求BC的长度.I IAB CI【解析】由于阴影I的面积比阴影II的面积小225cm,根据差不变原理,直角三角形ABC面积减去半圆面积为225cm,则直角三角形ABC面积为218π258π2522⎛⎫⨯+=+⎪⎝⎭(2cm),BC的长度为()8π25282π 6.2512.53+⨯÷=+=(cm).【巩固】如图,三角形ABC是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB长40厘米.求BC的长度?(π取3.14)【解析】图中半圆的直径为AB,所以其面积为2120π200 3.146282⨯⨯≈⨯=.有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC的面积为12AB BC⨯⨯=1406562BC⨯⨯=.所以32.8BC=厘米.【例 46】(2009年十三分入学测试题)图中的长方形的长与宽的比为8:3,求阴影部分的面积.204【解析】如下图,设半圆的圆心为O,连接OC.从图中可以看出,20OC=,20416OB=-=,根据勾股定理可得12BC=.阴影部分面积等于半圆的面积减去长方形的面积,为:21π20(162)12200π3842442⨯⨯-⨯⨯=-=.CD【例 47】如图,求阴影部分的面积.(π取3)【解析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是2250R r-=平方厘米,那么环形的面积为:2222πππ()π50=157R r R r-=-=⨯(平方厘米).【巩固】图中阴影部分的面积是225cm,求圆环的面积.2所以,大圆的面积与小圆的面积之比为:222222π:π()::2:12424a a a ar r===,即大圆的面积是小圆面积的2倍,大圆的面积为30260⨯=(平方厘米).【巩固】(2008年四中考题)图中大正方形边长为a,小正方形的面积是.【解析】 设图中小正方形的边长为b ,由于圆的直径等于大正方形的边长,所以圆的直径为a ,而从图中可以看出,圆的直径等于小正方形的对角线长,所以22222a b b b =+=,故2212b a =,即小正方形的面360三角形在滚动过程中扫过的图形的为两个120︒的扇形加上一个与其相等的正三角形,面积为:2120π621524π15360⨯⨯⨯+=+平方厘米.【巩固】直角三角形ABC 放在一条直线上,斜边AC 长20厘米,直角边BC 长10厘米.如下图所示,三角形由位置Ⅰ绕A 点转动,到达位置Ⅱ,此时B ,C 点分别到达1B ,1C 点;再绕1B 点转动,到达位置Ⅲ,此时A ,1C 点分别到达2A ,2C 点.求C 点经1C 到2C 走过的路径的长.60︒30︒B 1C 1C 2A 2CB AⅢⅡⅠ【解析】 由于BC 为AC 的一半,所以30CAB ∠=︒,则弧¼1CC 为大圆周长的180********︒-︒=︒,弧¼12C C 为小圆周长的1,而¼¼112CC C C +即为C 点经1C 到2C 的路径,所以C 点经1C 到2C 走过的路径的长为【解析】 如图所示,羊活动的范围可以分为A ,B ,C 三部分,其中A 是半径30米的34个圆,B ,C 分别是半径为20米和10米的14个圆. 所以羊活动的范围是222311π30π20π10444⨯⨯+⨯⨯+⨯⨯222311π302010444⎛⎫=⨯⨯+⨯+⨯ ⎪⎝⎭=.2512【巩固】一只狗被拴在底座为边长3m的等边三角形建筑物的墙角上(如图),绳长是4m,求狗所能到的地方的总面积.(圆周率按3.14计算)如图所示,将图形⑴移补到图形⑵的位置,因为60∠=︒,ABE∠=︒,那么120EBD则阴影部分为一圆环的13.所以阴影部分面积为()221π753AB BC ⨯⨯-=(平方厘米).【巩固】如右图,以OA 为斜边的直角三角形的面积是24平方厘米,斜边长10厘米,将它以O 点为中心旋转90︒,问:三角形扫过的面积是多少?(π取3)【解析】 如图,顺时针旋转后,A 点沿弧'AA 转到'A 点,B 点沿弧'BB 转到'B 点,D 点沿弧'DD 转到'D 点.因为CD 是C 点到AB 的最短线段,所以AB 扫过的面积就是图中的弧'A AB 与''BDD A 之间的阴影图形.S S S =-阴影半圆空白'111122ABC BDC AD C S S S =+=⨯⨯=△△△(平方米),2'12ABC ADCD S S CD ===△正方形(平方米),所以,2'ππ1π4428DCD S CD =⨯=⨯=扇形(平方米),我们推知2''π(2BDC ACD DCD S BC S S S =⨯--+△△阴影扇形)币自身转动的圈数最多,最多转动了多少圈?【解析】 对于同样是12个硬币,所转动的圆心轨迹其实分为两部分,一是在”角”上的转动,一是在”边”上的滚动.抓住关键方法:圆心轨迹长度2π÷=自身转动圈数.结论:一样多;都是6圈.。

《小学奥数》专题:求阴影部分面积的技巧

《小学奥数》专题:求阴影部分面积的技巧

割补法
学而优教育 求阴影面积方法之六
例题6:如图,已知正方形的 边长为3,求图形的阴影部分 面积。
3
3
3
3
割补法
解:S阴
1 2
33
9. 2
学而优教育 求阴影面积方法之六
例题6:如图,已知正方形的 边长为3,求图形的阴影部分 面积。
3
3
割补法
学而优教育 求阴影面积方法之六
例题6:如图,已知正方形的 边长为3,求图形的阴影部分 面积。
2
2
学而优质教mn 育 难 例题8:如图,已知直角三角 分 形的直角边长为2,求图形的 析 阴影部分面积。
2
2
学而优质教mn 育 难 例题8:如图,已知直角三角 分 形的直角边长为2,求图形的 析 阴影部分面积。
4
重新组合法 4
解:S阴 S正 S圆 42 22 16 4.
学而优教育
求阴影面积方法之四
mn
例题4: 如图,已知正方形的
边长为4,求图形的阴影部分
面积。
4
重新组
4
合法
解:S阴 S圆 S正 42 22 16 4.
学而优教育 求阴影面积方法之五
例题5: 如图,已知大正方形 的边长为4,小正方形的边长 为2,求图形的阴影部分面积。
2 4
2
解:S阴
1 2
2
4
4.
学而优教育
求阴影面积方法之四
例题4: 如图,已知正方形的 边长为4,求图形的阴影部分 面积。
4
学而优教育
求阴影面积方法之四
例题4: 如图,已知正方形的边长为4, 求图形的阴影部分面积。
4
重新组合法
4

请计算六年级奥数阴影区域的面积。

请计算六年级奥数阴影区域的面积。

请计算六年级奥数阴影区域的面积。

请计算六年级奥数阴影区域的面积
根据题目要求,我们需要计算六年级奥数题中的阴影区域的面积。

下面是计算的步骤和方法。

1. 确定图形:首先,我们需要明确题目给出的图形以及阴影区域的位置。

请仔细阅读题目,并将图形和阴影区域标注出来。

2. 分解图形:为了计算阴影区域的面积,我们可以将图形分解为简单的几何形状。

例如,如果阴影区域是由一个矩形和一个三角形组成,我们可以将其分解为两个形状的面积之和。

3. 计算面积:根据分解出来的几何形状,我们可以使用相应的公式计算每个形状的面积。

例如,矩形的面积可以通过长度乘以宽度来计算,而三角形的面积可以通过底边长度乘以高度再除以2来计算。

4. 求和:将每个形状的面积加起来,即可得到阴影区域的总面积。

确保每个形状的面积单位相同,如果需要,进行单位换算。

5. 检查答案:计算完阴影区域的面积后,务必检查一遍计算过程和结果,确保没有错误。

请您按照上述步骤进行计算,如果有任何具体的阴影图形和额外要求,请提供更多细节,以便我可以为您提供更准确的帮助。

小学数学奥数六年级阴影面积

小学数学奥数六年级阴影面积

阴影面积(一)例1、如图,△ABC是直角三角形,AB是圆的直径,并且AB=20厘米。

如果阴影部分甲的面积比阴影部分乙的面积大7平方厘米,那么BC的长度是多少厘米?练习1、图中大圆面积为7平方厘米,小圆面积为4平方厘米。

阴影部分为两圆相互重叠部分,那么两圆空白部分的面积差是多少平方厘米?例2、如图是圆心为0,半径是10厘米的圆。

以C为圆心,CA为半径画一圆弧。

求阴影部分的面积。

练习2、如图,三角形是等腰直角三角形,求阴影部分的面积(单位:厘米)。

例3、如图,三角形AOB是直角三角形,AO=B0=4厘米,求阴影部分的面积。

练习3、如图,求阴影部分的面积(单位:厘米)。

例4、如图,求阴影部分的面积(单位:厘米)。

练习4、如图,一个面积为3. 14平方分米的钟面被分成几部分,求阴影部分的面积。

思考题1、如图,己知三个圆的半径都是4厘米,O1、O2、O3分别为圆心,求阴影部分的面积?2、如图,在半径为4厘米的圆中有两条互相垂直的线段AB、CD,把圆分成甲、乙、丙、丁四部分,圆心0到线段AB的距离是1厘米,到线段CD的距离是2厘米。

那么甲、丁的面积之和与乙、丙的面积之和相比,谁大些?大多少平方厘米?过手练习1、如图所示,两个半圆的半径分别是3厘米和2厘米,求阴影部分的周长。

2、如图中的等边三角形的边长是10厘米,求阴影部分的周长是多少厘米?5、长方形ABCD的长AD是10厘米,E为BC的中点,求阴影部分的面积。

6、图中圆的周长是16.4厘米,圆的面积与长方形面积正好相等,图中阴影部分的周长是多少厘米?7、如图所示,圆环中最长的线段AB长20厘米,求圆环的面积。

8、如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米。

阴影部分是夹在两圆及直线之间的部分。

如果要在阴影部分内部放入一个尽可能大的圆,这个圆的面积是多少?9、如图,在长方形ABCD中,AD=DE=3厘米,AE=AB。

求阴影部分的面积。

六年级奥数 阴影部分的面积

六年级奥数   阴影部分的面积

第七讲【2 】暗影部分的面积例1求图中暗影部分的面积.(单位:厘米)(图3)解:最根本的办法之一.用四个圆构成一个圆,用正方形的面积减去圆的面积,所以暗影部分的面积:2×2-π=0.86平方厘米.例2求暗影部分的面积.(单位:厘米)(图5)解:这是一个用最常用的办法解最常见的题,为便利起见,我们把暗影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米例3求暗影部分的面积.(单位:厘米)(图9)解:把右面的正方形平移至左边的正方形部分,则暗影部分合成一个长方形, 所以暗影部分面积为:2×3=6平方厘米例4求暗影部分的面积(单位:厘米)(图13)解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以暗影部分面积为:8×8÷2=32平方厘米例5图中圆的半径是5厘米,求暗影部分的面积.(单位:厘米)(图17)解:上面的暗影部分以AB为轴翻转后,全部暗影部分成为梯形减去直角三角形,或两个小直角三角形AED.BCD面积和.所以暗影部分面积为:5×5÷2+5×10÷2=37.5平方厘米例6如图,三角形ABC 是直角三角形,暗影部分甲比暗影部分乙面积大28平方厘米,AB=40厘米.求BC的长度.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例8.求暗影部分的面积.(单位:厘米)解:右面正方形上部暗影部分的面积,等于左面正方形下部空白部分面积,割补今后为圆,所以暗影部分面积为:π()=3.14平方厘米巩固演习:1求暗影部分的面积.(单位:厘米)(图7)2.大正方形的边长为6厘米,小正方形的边长为4厘米.求暗影部分的面积.(图32)3.求暗影部分的面积.(单位:厘米)4.已知直角三角形面积是12平方厘米,求暗影部分的面积.(如图15)5.正方形ABCD的面积是36平方厘米,求暗影部分的面积.(如图)。

(完整word版)小学奥数练习题

(完整word版)小学奥数练习题

图形的面积(一)第一组例题讲学例1 已知平行四边形的面积是28平方厘米, 求阴影部分的面积。

【思路点拨】4厘米既是平行四边形的高, 也是阴影三角形的高, 平行四边形的面积是28平方厘米, 它的底为28÷4=7(厘米), 平行四边形的底减去5厘米就是三角形的底, 7-5=2(厘米)。

根据三角形的面积公式直接求出阴影部分的面积。

求阴影部分的面积最直接的方法是利用计算公式直接求阴影面积;还可以用总面积减去空白面积求得阴影部分面积。

这两种是最常用最简便的方法。

同步精练1.下面的梯形中, 阴影部分的面积是150平方厘米, 求梯形的面积。

2. 已知平行四边形的面积是48平方厘米3. 如果用铁丝围成如图一样的平行四边形,需要用铁丝多少厘米? /答案解:(厘米)(厘米)答:需要用铁丝40厘米.解析先依据平行四边形的面积公式计算出它的面积,进而利用这个公式即可求出12厘米的邻边,再根据长方形的周长公式即可求解.此题主要考查平行四边形的面积公式,以及长方形的周长公式的灵活应用.图形的面积(一)第二组例题讲学例2 下图中甲和乙都是正方形, 求三角形ABC部分的面积。

(单位: 厘米)【思路点拨】图中三角形ABC的三条边的长都不知道, 三条边上的高也不知道。

所以, 无法用公式计算出它的面积。

仔细观察本题的图, 我们可以发现, 如果延长GA和FC, 它们会相交(设交点为H), 这样就得到长方形GBFH(如下图), 它的面积很容易求, 而长方形GBFH中除阴影部分之外的其他三部分(△AGB、△BFC及△AHC)的面积都能直接求出。

同步精练1.求右图中阴影部分的面积。

(单位: 厘米)2.求右图中阴影部分的面积。

(单位: 厘米)图形的面积(一)HC46B E FAG乙甲第三组例题讲学例3 如图所示: , 甲三角形的面积比乙三角形的面积大6平方厘米, 求CE 的长度。

【思路点拨】 题目中告诉我们, 甲三角形的面积比乙三角形的面积大6平方厘米, 即甲-乙=6(平方厘米), 而甲和乙分别加上四边形ABCF 后相减的结果还是6平方厘米, 即: 甲-乙=6(平方厘米) (甲+四边形ABCF )-(乙+四边形ABCF )=6(平方厘米)即: 正方形ABCD - △ABE=6(平方厘米)这就是说正方形ABCD 的面积比三角形ABE 的面积大6平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档