最创新的近红外二区荧光-生物发光双模式光学成像技术
LI-COROdyssey红外荧光扫描成像
6.强有力的软件支持,结果分析如确定分子量和定量及图象处理编辑很容易7.系统操作和维护简单
Odyssey的应用
应用领域:蛋白质研究,核酸研究
具体包括:Western分析,In-Gel Western分析,蛋白质定量分析,双色磷酸化分析,考马司亮兰胶的扫描,蛋白双向电泳, 双色 EMSA,双色微孔
板分析,BD PowerBlot Analysis,Northern Blot,Southern Blot
主要特点
1.高灵敏度,效果同于或者好于化学发光法,但不需信号放大步骤,信噪比高。2.直接检测,无需曝光和显色底物,不需要 X光片,不需要暗房,没有放射性废料产生。
3.双色检测,可以在一次杂交中同时检测两种目的分子,直观,省时。
4.宽广的线性范围,可用于高准确性定量。
5.背景低,图像清晰,激光强度可调,不会丢失弱的信号
荧光检测Western操作流程(以硝酸纤维素膜为例): 1.吸去培养液,用预冷的PBS洗细胞两次 2.加入细胞裂解液,4℃放置20min 3.用细胞铲刮下细胞,转移到1.5ml离心管,13000rpm,4℃,20min 4.取上清 5.取20-100µg蛋白进行电泳 6.电泳:聚丙烯酰胺凝胶电泳(PAGE)按分子克隆实验手册操作 7.硝酸纤维素膜于转移缓冲液(PBS)中平衡20min。(如果使用PVDF膜,请先 用甲醇浸湿,再用去离子水冲洗后转移到转移缓冲液中平衡20min。) 8.电泳胶置转移缓冲液中平衡20min。 9.裁两张与胶同样大小的滤纸,置转移缓冲液中平衡。 10.转膜顺序:负极-专用滤纸-电泳胶-PVDF膜-专用滤纸-正极。15V,电 转30min。 11.电转后,封闭液中封闭1~3hour。 注:封闭液可以用5%的进口脱脂奶粉(用PBS溶解),因为Tween-20和BSA会对Odyssey造成高背景,所以在封闭完成前尽 量不要让膜接触到这两种物质,所以麻 烦您确定封闭液中没有Tween-20和BSA成分。 12.封闭液稀释一抗(建议比例为1:1000-1:5000),膜在一抗中室温至少1hour 或者4℃过夜。 注:抗体的稀释倍数与抗体质量和实验中的蛋白样本相关,麻烦您根据经验选择合适稀释倍数。同时,不同的抗体可能需要在 抗体稀释液中含有0.1-0.2%的Tween-20来降低背景,您可以根据您要检测的蛋白以及平时操作经验来选择需否在一抗稀释液 中添加0.1-0.2%的Tween-20。 13.之后用PBST于摇床洗膜4×5mins。 14.封闭液稀释二抗(建议比例为1:3000~10000),膜在二抗中室温于摇床1hour (避光)。 注:如果一抗稀释液中含有0.1-0.2%的Tween-20,则二抗稀释液也添加相同的Tween-20。 如果使用Tween-20的同时添加0.01-0.02%的SDS于二抗稀释液中可以比较好的降低背景 15.洗膜同13(避光) 16.用PBS洗去膜上残留的Tween-20,接下来可直接进行扫描。 实验的详细的操作流程、注意事项、问题解决请参见附件以及《分子克隆实验指南》。
近红外荧光成像技术——定量Western Blot的新标准
— +EGF
— +EGF
800 nm channel
ERK
700 nm channel
phospho ERK
700 and 800 nm
Results Overlaid
EGF刺激后A431细胞,ERK1 and ERK2 (p44/42 MAP kinases) 磷酸化情况, 一抗分别是兔抗ERK抗体和小鼠 抗磷酸化ERK抗体,二抗用抗兔的IRDye800 标记的抗体 (green),和抗鼠的 Alexa680 标记的抗体 (red)。叠加后 为黄色,黄色的深浅即代表了磷酸化水平的高低,并且可以通过软件进行准确的量化分析。
Pearl活体成像流程简单
EGF-IRDye 800CW probe
Custom labeling
HA
2dGlucose IRDye 800CW probe
IRDye800CW
RGD-IRDye 800CW
PEG-IRDye 800CW probe
BoneTag-IRDye 800CW
CellVue NIR815 cell stain
11/10/2012
红外荧光-直接检测
Infrared dye (IRD800, Alexa680)
膜上抗原
一抗结合
不需要底物 不需要底片/暗室 信号持久
红外标记的二抗
Odyssey直接扫描
Odyssey—双色同时检测
• 两套独立激发检测系统 • 700通道:680nm激发 720nm检测 • 800通道:780nm激发 820nm检测
近红外荧光法
• 近红外荧光法能检测到0.6pg的蛋白(灵敏度高) • 近红外荧光成像呈现一个很好的线性(定量准确)
小动物活体成像用的近红外一区荧光染料
小动物活体成像用的近红外一区荧光染料在小动物活体成像的领域里,近红外一区荧光染料就像是个“魔法师”,它们能帮助我们看清动物体内发生的种种神秘事件。
这些染料可不是普通的颜料哦,而是经过精心设计的,能够在特定波长下发光。
想象一下,科学家们就像小侦探一样,借助这些染料深入动物的身体,观察各种生理活动。
嘿,听起来是不是有点酷?这种技术让我们能够在不伤害小动物的情况下,了解它们的健康状况,真是让人觉得妙不可言。
说到近红外一区荧光染料,它们的特点简直是独一无二。
这些染料能穿透生物组织,不像其他可见光染料那样容易被吸收或散射,仿佛给动物穿上了一件隐形斗篷,让我们在不打扰它们的情况下,轻松探查里面的秘密。
真是“隔墙有耳”,不过我们可不是想偷听八卦,而是想了解它们的生理状态。
通过成像技术,科学家们能看到肿瘤、炎症甚至是血管的动态变化。
想想看,身处实验室的科研人员就像是在操控一台“透视仪”,轻松掌握小动物的健康状况。
找到合适的染料可不是一件简单的事。
就像找对象一样,得挑挑捡捡。
每种染料都有自己的特点,得看它的发光强度、稳定性、以及与生物组织的相容性。
比如,有些染料在小动物体内会因为环境的变化而失去荧光,这就像约会时突如其来的冷场,尴尬得不得了。
所以,科学家们需要做大量的实验,才能找到最合适的荧光染料,真是“千辛万苦”。
染料的使用不止于此,真是“一石二鸟”。
这些荧光染料不仅能帮助我们进行成像,还能用来追踪细胞的动态变化。
想象一下,在某个小动物体内注入了荧光染料,然后通过成像技术观察到细胞是如何迁移、增殖甚至是死亡的。
那种实时监测的感觉,真是让人兴奋不已!就像看一场现场的舞蹈表演,细胞在舞台上尽情展现自己的风采。
说实话,这种技术让我们对生物学的理解更加深入,就像打开了一扇窗,阳光洒进来,照亮了我们曾经看不见的地方。
使用这些染料也有一些挑战。
要保证小动物的安全,染料的毒性必须控制得当。
就像喝水,量多了会撑,量少了又渴。
科学家们必须找到一个平衡点,让染料在体内工作时不产生副作用。
生物光学成像技术在组织穿透性方面的研究进展
第43 卷第 1 期2024 年1 月Vol.43 No.119~31分析测试学报FENXI CESHI XUEBAO(Journal of Instrumental Analysis)生物光学成像技术在组织穿透性方面的研究进展张玉敏,王富,林俐*,叶坚*(上海交通大学生物医学工程学院,上海200030)摘要:光学成像因灵敏度高、特异性强、无电离辐射、低成本、丰富的候选探针、可获取细胞/分子水平信息和可实时检测等优势,在临床前的基础研究和临床诊断与治疗领域具有巨大的应用价值。
但由于生物组织对光子的高散射与高吸收特性,光学成像的组织穿透深度通常非常有限,很大程度上限制了其在深部病变活体生物医学检测方面的应用,研究者们对此做了大量的努力。
随着科学技术的发展,光学技术的组织检测深度已覆盖微米到厘米甚至分米以上的范围,在生物检测、成像、诊断、术中导航等领域展现出了广阔的应用前景。
该文从常见的光学成像技术入手,对荧光成像、生物/化学发光成像、光声成像以及拉曼成像在组织穿透性方面的研究进展进行了总结与讨论,并对这些光学成像技术未来在组织穿透方面的主要研究方向进行了展望。
关键词:生物光学成像;组织穿透性;深穿透拉曼光谱中图分类号:O657.3;R318文献标识码:A 文章编号:1004-4957(2024)01-0019-13Advances in Tissue Penetration by Optical Imaging TechniquesZHANG Yu-min,WANG Fu,LIN Li*,YE Jian*(School of Biomedical Engineering,Shanghai Jiao Tong University,Shanghai 200030,China)Abstract:Optical imaging has great potential for application in the field of preclinical basic research and clinical diagnostics and therapeutics,due to its advantages of high sensitivity and specificity,non-ionizing radiation,simplicity of equipment,low cost,rich nanoprobe candidates,ability to ob⁃tain cellular/molecular level information and real-time acquisition capability.However,due to the nature of high scattering and absorption of photons in biological tissues,optical imaging is usually limited by the shallow tissue penetration depth,which largely limits its usage for in vivo biomedical detection of deep-seated lesions. A lot of efforts have been done by researchers to overcome this is⁃sue.This paper summarizes and discusses the progress of various common optical imaging tech⁃niques,such as fluorescence imaging,bioluminescence/chemiluminescence imaging,photoacous⁃tic imaging,and Raman imaging,in terms of their research progress in tissue penetration. With the development of science and technology,the tissue detection depths of optical modalities have cov⁃ered a range from microns to centimeters or even to decimeters,and have shown broad application prospects in the fields of biological detection,imaging,diagnosis,intraoperative navigation,and so on. Finally,the main directions of future research of these optical imaging techniques in tissue penetration are prospected.Key words:optical imaging;tissue penetration;deep Raman spectroscopy近一个世纪以来,光在生物组织中的传播与分布,以及光与生物组织的相互作用引起了科学家们的广泛关注,引发了光学方法在生物医学检测与成像领域的研究热潮。
生物医学光学中NADH荧光检测技术的发展
生物医学光学中NADH荧光检测技术的发展张瑞;黄玉广;裴应玫;党昱东;张知;张建保;张镇西【摘要】As NADH(reduced nicotinamide adenine dinucleotide) has been discovered over five decades since 1962,the using of NADH and its technique for medical diagnosis and medical testing methods emerge in an endless stream,the field is also expanding.From the current research results,NADH has played an important role in the field of modern medical diagnosis and detection because of its unique nature.Especially in the area of non-destructively monitoring brain activity in real-time,recognizing different kinds of brain tissue clearly and effectively,resisting cells radiation damage,resisting the apoptosis induced by radiation,regulating many balances in the human body and regulating human body biological clock.This paper will focus on the important areas of the breakthrough in NADH researches and adhibitions.%NADH(还原型烟酰胺腺嘌呤二核苷酸)自1962年被发现至今已有五十多年了,在此期间,运用NADH及其相关技术进行医疗诊断与医学检测的方式不断发展,领域也不断扩大.从当前的研究成果来看,NADH 因为其独有的性质在现代医学诊断与检测领域发挥了极大的作用,如实时、无损地监测脑部的活动;清晰、有效地识别不同种类的脑组织;抗细胞辐射损伤;抗辐射诱导的细胞凋亡;进行人体内的诸多平衡调节及人体生物钟调节等.本文将重点介绍在重要领域中的NADH研究和应用的突破.【期刊名称】《激光生物学报》【年(卷),期】2016(025)006【总页数】10页(P481-490)【关键词】NADH;荧光检测;生物医学;医疗仪器【作者】张瑞;黄玉广;裴应玫;党昱东;张知;张建保;张镇西【作者单位】西安交通大学生命科学与技术学院综合实践训练第十小组陕西西安710049;西安交通大学生命科学与技术学院综合实践训练第十小组陕西西安710049;西安交通大学生命科学与技术学院综合实践训练第十小组陕西西安710049;西安交通大学生命科学与技术学院综合实践训练第十小组陕西西安710049;西安交通大学生命科学与技术学院陕西西安710049;西安交通大学生命科学与技术学院陕西西安710049;西安交通大学生物医学信息工程教育部重点实验室、生物医学分析技术与仪器研究所陕西西安710049【正文语种】中文【中图分类】R318.51现代医学诊断主要依赖于化验项目和各种医疗仪器对病灶进行精准定位与判断,以及对组织病理生理状态的实时多参数评价。
近红外二区稀土纳米晶生物应用
近红外二区稀土纳米晶生物应用全文共四篇示例,供读者参考第一篇示例:近红外二区指的是750-900nm的光波范围,这一波段的光穿透度较高,透过生物组织的情况比较好,同时又能够有效激发纳米晶的荧光特性。
稀土元素具有较高的荧光量子产率和较长的寿命,因此将稀土元素引入纳米晶中,不仅可以增强纳米晶的荧光性能,还可以提高其稳定性和生物相容性,从而使其在生物成像、药物传递、治疗和生物传感等领域展现出巨大的潜力。
在生物成像领域,近红外二区稀土纳米晶可以作为荧光探针,用于活细胞成像和组织成像。
由于近红外波段的光穿透性好,可以用于深层次的组织成像,同时稀土元素的独特荧光性质可以提供高对比度、高灵敏度的成像效果。
研究人员已经利用近红外二区稀土纳米晶成功实现了肿瘤标记、细胞追踪和神经元成像等多种生物成像应用。
除了生物成像,近红外二区稀土纳米晶还广泛应用于药物传递和治疗方面。
通过将药物包裹在纳米晶表面或内部,可以实现药物的靶向输送和缓释释放,提高药物的生物利用率和疗效。
利用纳米晶本身的光热性质或光动力学特性,还可以将其用于热疗、光疗等治疗方法,实现对肿瘤等疾病的精准治疗。
近红外二区稀土纳米晶在生物传感领域也有着广泛的应用前景。
通过改变纳米晶的表面功能化基团,可以使其对特定生物分子或生物信号具有高度特异性识别能力,从而实现对生物分子的检测和分析。
利用其优越的荧光性质,还可以实现对微生物、细胞等生物体的检测和成像,为生物医学研究和临床诊断提供了新的手段和工具。
第二篇示例:近红外二区稀土纳米晶是一种新型的生物荧光探针,具有很高的生物应用潜力。
随着生物医学领域的不断发展和科技的进步,人们对于生物标记物的研究需求越来越迫切,而近红外二区稀土纳米晶正是满足这一需求的理想选择。
一、近红外二区稀土纳米晶的特点近红外二区稀土纳米晶是一种新型的荧光探针材料,主要由稀土离子掺杂的纳米晶颗粒组成。
这种纳米晶具有较窄的发射光谱,可实现高灵敏度的检测和成像。
小动物近红外二区荧光活体影像系统
仪器名称:小动物近红外二区荧光活体影像系统百购生物网为您提供型号:Series II 900/1700简介:针对传统活体荧光成像技术面临的低组织穿透深度(<3毫米)和低空间分辨率(~毫米)、高自发荧光背景等瓶颈,苏州影睿光学科技有限公司的研究团队历经多年潜心研究,于2012年推出了第一款基于近红外二区荧光(NIR-II,900-1700nm)的小动物活体影像商业化系统(Series II 900/1700),实现了高组织穿透深度(>1.5cm)、高时间分辨率(50ms)和高空间分辨率(25μm)的活体荧光成像。
Series II 900/1700可针对不同的研究体系,在小动物活体水平进行实时、无创、动态、定性和定量的影像研究,包括肿瘤早期检测、肿瘤发展、转移和治疗过程、药物筛选、靶向药物和靶向治疗、干细胞活体示踪及其再生医学研究等。
影睿光学拥有世界领先的量子点制备和应用专利技术、活体荧光影像设备,以及强大的数据处理和分析功能,为用户提供完整的科研产品及解决方案。
目前,影睿光学Series II 900/1700系统已成功销往美国埃默里大学,并与美国哈弗大学医学院、美国康奈尔大学、美国埃默里大学、北京大学、复旦大学附属华山医院、南京大学附属鼓楼医院、中国科学院北京动物研究所、中国科学院上海药物研究所等数十家国内外优秀研究机构建立了良好的商业伙伴及合作关系。
技术优势:荧光活体成像解决方案:近红外二区荧光成像活体组织对近红外二区荧光(1000-1700nm)具有更低的吸收和散射效应,以及可以忽略的自发荧光背景,因此,在活体荧光成像中,与传统荧光(400-900nm)相比,近红外二区荧光具有更高的穿透深度、更高的时间和空间分辨率,以及更高的信噪比。
近红外二区荧光探针解决方案: Ag2S 量子点国际领先的近红外二区荧光量子点技术,量子效率大于15%;具有良好的生物相容性(Ag2S 量子点对主要器官肝脏、脾脏和肾脏等没有毒副作用)。
基于间接波前整形的近红外二区荧光共聚焦成像研究
文章编号 2097-1842(2024)01-0150-10基于间接波前整形的近红外二区荧光共聚焦成像研究谭 天1,2,史天悦2,吴长锋2,彭洪尚1 *(1. 中央民族大学 理学院 光子系统工程软件教育部工程研究中心, 北京 100081;2. 南方科技大学 生物医学工程系, 广东 深圳 518055)摘要:生物组织散射引起的光学像差限制了光学系统的成像性能。
本文研究了基于间接波前整形的近红外二区荧光共聚焦成像技术。
首先,制备了高效率近红外二区荧光探针,降低该波段生物组织的散射有助于实现高对比度的活体组织成像。
其次,研究了基于间接波前测量的自适应光学方法,将间接波前整形技术应用于激光扫描共聚焦显微系统中,以实现对生物组织引起的光学像差的测量与补偿,获得生物组织的高信噪比成像。
最后,对基于间接波前整形的近红外二区荧光共聚焦成像系统开展了相关实验。
实验结果表明,本系统对空气平板、散射介质和小鼠颅骨等产生的像差具有良好的补偿效果,最终信号强度较初始值分别提升了1.47、1.95和2.85倍,显著提升了最终的成像质量。
关 键 词:间接波前整形;近红外二区成像;共聚焦成像;活体实验中图分类号:O439 文献标志码:A doi :10.37188/CO.2023-0070NIR-II fluorescence confocal imaging based onindirect wavefront shapingTAN Tian 1,2,SHI Tian-yue 2,WU Chang-feng 2,PENG Hong-shang 1 *(1. Engineering Research Center of Photonic Design Software Ministry of Education , College of Science ,Minzu University of China , Beijing 100081, China ;2. Department of Biomedical Engineering , Southern University of Science and Technology ,Shenzhen 518055, China )* Corresponding author ,E-mail : ****************.cnAbstract : Optical aberrations caused by the scattering of biological tissues limit the imaging performance of optical systems. A near-infrared II fluorescence confocal imaging technique based on indirect wavefront shaping was investigated. First, we synthesized a highly efficient near-infrared II range fluorescent probe,收稿日期:2023-04-18;修订日期:2023-05-10基金项目:国家自然科学基金(No. 62175266, No. 62235007, No. 22204070);深圳市科技计划项目(No. KQTD20170810111314625, No. JCYJ20210324115807021, No. SGDX20211123114002003);深圳湾实验室开放课题(No.SZBL2021080601002);广东省先进生物材料重点实验室(No. 2022B1212010003)Supported by the National Natural Science Foundation of China (No. 62175266, No. 62235007, No.22204070); the Shenzhen Science and Technology Program (No. KQTD20170810111314625, No. JCYJ20210324115807021, No. SGDX20211123114002003); the Shenzhen Bay Laboratory (No. SZBL2021080601002);Guangdong Provincial Key Laboratory of Advanced Biomaterials (No. 2022B1212010003)第 17 卷 第 1 期中国光学(中英文)Vol. 17 No. 12024年1月Chinese OpticsJan. 2024where reducing the scattering of biological tissue can realize biopsy imaging with high-contrast. Second, we investigated the adaptive optical method based on indirect wavefront measurement. The indirect wavefront shaping technology was applied to the laser scanning confocal system, enabling the measurement and com-pensation of optical aberrations caused by biological tissues, and obtaining imaging of biological tissues with a high signal-to-noise ratio. Finally, near-infrared II fluorescence confocal imaging system based on indirect wavefront shaping was deployed and relevant experiments were conducted. The experimental results indic-ate that the system effectively compensates for the aberrations induced by air plates, scattering media and mouse skull, and increases the final signal intensity by 1.47, 1.95 and 2.85 times, respectively. As a result, the final imaging quality is significantly enhanced.Key words: Indirect wavefront shaping;near-infrared-II imaging;confocal imaging;in vivo experiments1 引 言高分辨率的光学成像技术一直是推动生物学发展的主要手段,在生物分子解构[1]、光遗传[2]和细胞形态学[3]等方面发挥着不可替代的作用。
近红外二区荧光探针的设计及应用研究进展
第61卷 第1期厦门大学学报(自然科学版)V o l .61 N o .1 2022年1月J o u r n a l o f X i a m e nU n i v e r s i t y (N a t u r a l S c i e n c e )J a n .2022h t t p :ʊjx m u .x m u .e d u .c n d o i :10.6043/j.i s s n .0438-0479.202011026㊃综 述㊃近红外二区荧光探针的设计及应用研究进展黄艳芳,李子婧*(厦门大学公共卫生学院,分子影像暨转化医学研究中心,福建厦门361102)摘要:高时空分辨率和高灵敏度的荧光成像技术是一种新兴的活体可视化检测工具.与近红外一区(N I R -Ⅰ,700~900n m )相比,近红外二区(N I R -Ⅱ,1000~1700n m )成像具有更低的自发背景荧光㊁更深的组织穿透性和更高的信背比,因此N I R -Ⅱ荧光成像能促进深部疾病的精确诊断.N I R -Ⅱ荧光探针是N I R -Ⅱ荧光成像的基础.目前已开发一系列基于有机和无机材料的N I R -Ⅱ荧光探针,包括有机小分子染料㊁基于小分子染料的有机纳米粒子㊁共轭聚合物㊁量子点㊁稀土掺杂纳米粒子和单壁碳纳米管等.本文综述近期新型N I R -Ⅱ荧光探针的研究进展及其在生物医学领域的应用.关键词:荧光成像;近红外二区;荧光探针;有机小分子染料中图分类号:R445 文献标志码:A 文章编号:0438-0479(2022)01-0001-12收稿日期:2020-11-16 录用日期:2020-12-09基金项目:国家自然科学基金(81971674);福建省自然科学基金(2019J 06006)*通信作者:z i j i n g.l i @x m u .e d u .c n 引文格式:黄艳芳,李子婧.近红外二区荧光探针的设计及应用研究进展[J ].厦门大学学报(自然科学版),2022,61(1):1-12.C i t a t i o n :H U A N GYF ,L IZJ .R e s e a r c h p r o g r e s s i nd e s i g na n da p pl i c a t i o no f f l u o r e s c e n c e p r o b e s i n t h e s e c o n dn e a r -i n f r a r e d w i n d o w [J ].JX i a m e nU n i vN a t S c i ,2022,61(1):1-12.(i nC h i n e s e) 光学成像技术具有无创㊁安全㊁可视化能力强㊁空间分辨率高㊁成本低等优点,可对生物分子㊁细胞㊁组织和生物体进行实时㊁多维的可视化监测,是生物医学领域中的重要研究手段[1-2].荧光成像由于其灵敏度高㊁分辨率高及操作简单等优点,在生物分子检测成像㊁药物分布代谢跟踪㊁疾病检测和诊断,特别是癌症早期诊断和影像引导治疗中,具有良好应用前景.与可见光相比,发射波长在近红外区域的荧光探针可获得更深的穿透深度和更好的成像质量,因此,近10年来,荧光成像技术主要集中在近红外窗口.近红外一区(N I R -Ⅰ,700~900n m )荧光成像以其高灵敏度㊁快速反馈㊁无危害辐射㊁低成本等优点,在生物医学研究中受到广泛关注.例如,利用N I R -Ⅰ荧光染料可以精确地描绘前哨淋巴结/肿瘤轮廓,并在术中引导切除前哨淋巴结/肿瘤组织[3].最近的研究表明,由于具有散射少㊁组织吸收可忽略和自荧光效应最小化等优势,在近红外二区(N I R -Ⅱ,1000~1700n m )进行生物医学成像可以充分提高成像的时空分辨率(约20m s 和约25m m )以及穿透深度(高达3c m ),从而获得比N I R -Ⅰ更好的图像质量和更高的信背比[4-7].目前,临床批准的近红外荧光染料有两种,分别是吲哚菁绿(I C G ,发射波长800n m )和亚甲基蓝(M B ,发射波长700n m ),两者都是可以快速排泄的小分子,主要用于N I R -Ⅰ成像[2].随着化学合成的不断发展,新的荧光材料不断被发掘.N I R -Ⅱ荧光材料种类也日益丰富,如有机荧光材料㊁量子点㊁稀土纳米材料等被开发应用于近红外生物医学成像.然而,缺乏良好的水溶性㊁稳定性㊁荧光效率和生物相容性等是N I R -Ⅱ荧光材料发展的瓶颈.如何解决这些问题是N I R -Ⅱ荧光成像领域的热点,也是未来发展方向[8-12].因此,开发荧光效率高㊁水溶性好㊁生物相容性好的新型N I R -Ⅱ荧光材料,对荧光成像技术的发展具有重要意义.本文对近期新型N I R -Ⅱ荧光材料的设计理念及其在生物医学领域的应用进行综述和展望,以期为N I R -Ⅱ荧光成像技术的发展提供参考思路.1 有机N I R -Ⅱ荧光探针目前,已经开发出多种性能优良的有机N I R -Ⅱ荧光材料,其具有明确的化学结构,并且易于代谢,生物相容性好[13],因此极具吸引力和发展前景,有望率先在未来的临床中应用.1.1 苯并双噻二唑(B B T D )类具有供体-受体-供体(D -A -D )特征的荧光团,如Copyright©博看网 . All Rights Reserved.厦门大学学报(自然科学版)2022年h t t p :ʊjx m u .x m u .e d u .c n B B T D 衍生物,具有较大的斯托克斯位移(约200n m )和高成像质量.在D -A -D 支架中,强电子供体与中心电子受体的空间结构可缩小杂化最高占据分子轨道(H O M O )与最低未占据分子轨道(L U M O )能级之间的能隙,将荧光发射波长红移至N I R -Ⅱ窗口[13-16].B B T D 通过调节D -A -D 荧光团的受体和供体结构可以有效地改变吸收和发射光谱特征.通常,B B T D 基荧光团的最大吸收波长和发射波长分别位于800和1000n m 左右,波长相对较短.设计波长更长的新型荧光团将有利于在N I R -Ⅱ对深层组织进行成像[17].F a n g 等[18]研究后发现:用S e 原子取代B B T D 骨架中的S 原子可以使发射波长红移,引入给电子氨基也可以使发射波长延长至N I R -Ⅰ;但是单一的改进措施只能使波长红移ɤ50n m ,如何进一步有效延长波长仍然是一项挑战.通过同时在B B T D 骨架中引入一个S e 原子和一个氨基,开发了一种最大发射波长为1210n m 的新型有机小分子荧光团F M 1210;与S 取代的类似物C F 1065相比,F M 1210的发射波长大幅红移了145n m ,并保持相当的量子产率和亮度,从而使F M 1210的活体成像质量明显高于C F 1065,波长增益约为使用单一修饰的B B TD 衍生物(约50n m )的3倍,超过1200n m 区域波长的大幅增加可归因于S e 原子和氨基的协同作用.这些优点进一步使N I R -Ⅱ荧光探针能够以100帧/s 的速度对小鼠进行成像.此外,该研究还证明纳米尺度的F M 1210脂质体(F M 1210-N P s)能以高信背比对肿瘤及血管系统进行活体成像(图1).图1 F M 1210的结构(a)及其脂质体用于血管及肿瘤的荧光成像(b)[18]F i g .1T h e s t r u c t u r e o f F M 1210(a )a n d f l u o r e s c e n c e i m a g i n gf o r b l o o d v e s s e l a n d t u m o rw i t hF M 1210-N P s (b)[18]揭示B B T D 基荧光团的分子结构与光学行为之间的关系,也有助于开发具有长波长荧光发射的探针.为此,Y e 等[19]研究了B B T D 核心两侧的共轭桥和电子供体对光学行为的影响:当将苯基噻吩共轭桥(如P T ㊁P P T 和P T T )置于B B T D 核心两侧时,它们的吸收波长在640~860n m 区域,而其发射波长约1070n m ;当加入噻吩桥(T P A T )时,吸收和发射波长分别可达920和1150n m.在芴吡咯(F P)官能团存在的情况下,由于吡咯的N H 基团与B B T D 的氮原子之间形成了分子内氢键,吸收波长可达1020n m ,发射波长超过1200n m.这些结果表明,T P A T 和电子供体是延长荧光团吸收和发射波长的关键成分.基于此,选择T P A T 和苯乙烯来放大共轭桥,以N ,N -二甲基氨基作为电子供体,将它们整合到B B T D 支架中,从而得到在942n m 处有一个很强的吸收峰㊁在1302n m 处有一个发射峰的目标分子B B T D -1302.1302n m 处的最大发射峰不仅有助于解决更深层肿瘤的成像问题,还避免了使用长通滤波器时荧光成像的亮度下降[13].接着以聚乙二醇(P E G )化表面活性剂对其进行功能化形成水分散性纳米粒子B B T D -1302N P s,并通过体外研究验证了B B T D -1302N P s 的高生物相容性和耐光降解性;基于B B T D -1302N P s 的良好性能,在荷瘤裸鼠体内对B B T D -1302N P s 的光热治疗能力进行了研究,结果显示经尾静脉注射B B T D -1302N P s 和980n m 激光照射的小鼠肿瘤生长受到抑制.为了改善N I R -Ⅱ荧光量子产率,目前还开发出多种具有屏蔽单元-供体-受体-供体-屏蔽单元(S -D -A -D -S)结构的荧光团.引入屏蔽单元可以保护荧光团的共轭骨架免受分子间相互作用,从而提高量子产率;同时,供体单元也有助于改善S -D -A -D -S 荧光团在水溶液中的量子产率性能.例如:使用3,4-乙二氧基噻吩(E D O T )代替噻吩作为供体单元,可以使荧光探针水溶液中的量子产率从0.002%指数级增加到0.2%(将荧光团I R -26在二氯乙烷中的量子产率0.05%作为参比测定得出);具有增强疏水性的3-辛基噻吩进一步作为荧光团I R -F T A P 的第一供体,在水中的量子产率提高到0.53%[20].尽管这种供体修饰可有效改善水溶液中的量子产率,但也会引起共轭主链更大的畸变,从而导致吸收光谱移动,发射波长减小,吸收系数降低.因此,为有效改善荧光团的亮度,在提高量子产率的同时应不牺牲吸收系数.基于此,M a 等[21]设计并合成了以二辛基链取代的3,4-丙基二氧基噻吩(P D O T )为供体单元的新型S -D -A -D -SN I R -Ⅱ荧光团I R -F P 8P ,以增强量子产率和吸收系数;与I R -F T A P 的3-辛基噻吩相比,P D O T 供体的共轭主链扭曲较小,因此I R -F P 8P 实现了吸收光谱的红移和吸收㊃2㊃Copyright©博看网 . All Rights Reserved.第1期黄艳芳等:近红外二区荧光探针的设计及应用研究进展h t t p :ʊjx m u .x m u .e d u .c n 系数的提高.此外,二辛基链取代的P D O T 能很好地保护主链不与水相互作用,量子产率明显提高.结果显示:I R -F P 8P 在水溶液中的荧光量子产率为0.60%,在水溶液中的峰值吸收系数为1.3ˑ104L /(m o l ㊃c m );与I R -F T A P 相比,亮度(808n m 激发)增加了5.7倍以上.I R -F P 8P 可在1300n m 长通滤波器下对小鼠后肢血管进行成像,并观察到清晰的血管网络,信背比约为7.此外,通过偶联卵泡刺激素(F S H )制备具有靶向能力的F S H@F P 8荧光探针,可用于小鼠卵巢成像.大多荧光分子探针在聚集态时,会由于平面结构分子间强π-π相互作用诱导荧光猝灭(A C Q )效应,在水溶液或生理条件下荧光亮度降低,从而限制了其生物成像质量.M e i 等[22]和L i u 等[23]发现了与A C Q 相反的聚集诱导发光(A I E )现象,即处于聚集状态的荧光探针强度远高于分散态.因此,当赋予N I R -Ⅱ荧光材料A I E 特性,它将具有更高的荧光效率和光稳定性,同时大幅提升成像清晰度和分辨率.近期,L i 等[24]以B B T D 为电子受体㊁三苯胺(T P A )为电子供体,利用A I E 活性分子转子,设计并合成了P E G 化S A -T T B -P E G 100;通过自组装技术获取了纳米颗粒(粒径为35n m ),在约1050n m 处表现出最大荧光发射峰,在水中的最高量子产率为10.30%.此外,该自组装的纳米颗粒相比于通过两亲性聚合物包裹的对应物,表现出更小的多分散指数(P D I )㊁更好的均一性以及更久的胶体稳定性,在生物成像方面具有更好的潜力.接着,利用此纳米探针在小鼠和兔模型中评估了这种A I E 纳米颗粒的近红外荧光成像性能,结果显示,N I R -Ⅱ荧光成像在体分辨率约38μm ,穿透深度约1c m.该研究表明,高效自组装策略设计的N I R -ⅡA I E 纳米颗粒对血管相关疾病的诊断和治疗具有重要意义,为N I R -Ⅱ荧光成像技术的转化应用提供了新机会.1.2 花菁类基于聚次甲基骨架的花菁染料含有扩展π共轭体系,具有独特的共轭骨架结构.通过加长聚次甲基链㊁增加杂环供体强度,或将杂原子从氧改变为其他硫族元素等方法,可以使染料的吸收波长红移.与D -A -D 型染料相比,花菁类染料合成过程相对简单,吸收强度较高(ε>105L /(m o l ㊃c m )),特别是对近红外光有很强的吸收,因此很适合于近红外成像[25-26].由于循环时间短,菁类染料为血管成像提供的成像时间窗口通常小于2m i n .将染料与蛋白质进行生物结合可以增强循环时间,但这可能会产生猝灭效应而牺牲亮度.因此,需要发展一种新策略,在改善药代动力学特征的同时,又能确保N I R -Ⅱ荧光团的高量子产率.T i a n 等[27]通过牛血清白蛋白(B S A )和花菁染料之间的工程化超分子组装,开发了一个自组装的㊁尺寸约为50n m 的I R -783@B S A .该复合物可以保持扭曲的构象,且I R -783与白蛋白之间的纳摩尔级结合亲和力增强了扭曲的分子内电荷转移(T I C T )过程和循环时间;循环时间增强使I R -783@B S A 能够在注射后3h 内观测到3μm 宽的血管,同时具有超高的对比度,从而获得高质量的N I R -Ⅱ成像.目前,N I R -Ⅱ花菁类染料在生物成像中存在稳定性差㊁斯托克斯位移小,或发生溶剂化猝灭等缺点.针对这些问题,R e n 等[28]通过理性设计和理论计算相结合,提出构建N I R -Ⅱ荧光染料的新思路,即增大空间位阻和电子不对称性,并以此开发了一系列稳定㊁高量子产率㊁抗溶剂化猝灭的新型菁荧光团(N I RⅡ-R T s ),其在水溶液中的吸收和发射峰分别高达977和1008n m.与传统的N I R -Ⅱ七甲川菁相比,N I RⅡ-R T s 具有较小的斯托克斯位移和对溶剂极性敏感的吸收带,在极性溶剂中表现出稳定且强烈的吸收.稳定性测试表明,N I R Ⅱ-R T s 在生理环境中的化学稳定性和光稳定性均优于商用七甲川菁类似物I R 1061和吲哚菁绿.这些特点使N I RⅡ-R T s 在生物成像应用中具有优异的高亮度和深层组织穿透性.此外,由于引入了羧酸官能团,新型染料N I RⅡ-R T 3/4可以通过螺旋环化作用产生一个强大的荧光开关机制,所以N I R Ⅱ-R T 染料可以设计作为可激活的N I R -Ⅱ荧光探针.作为概念的证明,该团队应用N I R Ⅱ-R T 4构建了一系列可靶向激活的N I R -Ⅱ荧光探针(N I R Ⅱ-R T -pH ㊁N I RⅡ-R T -三磷酸腺苷(A T P )和N I RⅡ-R T -H g),用于生物相关物质的检测.特别是利用N I RⅡ-R T -A T P 探针,首次实现了高对比度药物性肝损伤小鼠肝脏A T P 含量的实时监测.通常,有机荧光染料仅通过结构修饰很难将最大吸收波长和发射波长红移至1300n m 以上,而J -聚集体可以使单个分子的吸收和发射波长红移,吸收系数增强且斯托克斯位移减小.因此,为了获取更长吸收和发射波长的N I R -Ⅱ探针,最近S u n 等[29]通过自组装F D -1080花菁染料和1,2-二肉豆蔻酰基-s n -甘油-3-磷酸胆碱(D M P C ),成功开发了一种新型的N I R -Ⅱ探针F D -1080J -聚集体,其在生理条件下表现出较高的亲水性和稳定性,最大吸收和发射波长均超过1300n m ;进一步利用分子动力学模拟研究了磷脂D M P C 与F D -1080在J -聚集体形成过程中的相互作用;此外,还㊃3㊃Copyright©博看网 . All Rights Reserved.厦门大学学报(自然科学版)2022年h t t p :ʊjx m u .x m u .e d u .c n 对F D -1080J -聚集体进行了1500n m 以上的光学成像(图2),并成功用于监测高血压大鼠在给药后颈动脉的动态变化,以评价降压药的疗效.图2 浸没于不同深度甘油中的J -聚集体的荧光图像(a ),不同成像窗口中在穿透深度处J -聚集体的半峰宽(F W H M )(b)及注射J -聚集体后在不同区域获得的脑和后肢血管图像(c )[29]F i g .2F l u o r e s c e n c e i m a g e s o f J -a g g r e ga t e s i m m e r s e d a t v a r i e d d e p t h s i n g l yc e r o l (a ),f u l l w id t h a t h a l f -m a x i m u m (F WHM )o f J -a g g re g a t e s a t p e n e t r a t i o n d e p t h i n v a r i e d i m a g i n gw i n d o w s (b ),a n d i m a ge s of b r a i n a n d h i n d l i m b v e s s e l s a c h i e v e d b y J -ag g r e g a t e s i n v a r i e d r e gi o n s (c )[29]1.3 硼二吡咯烷(B O D I P Y )类B O D I P Y 染料具有高的量子产率㊁优异的化学和光物理稳定性,在分子成像和药物传递方面发挥着重要作用[30-31].经典的B O D I P Y 吸收范围为500~600n m ,并且具有相当小的斯托克斯位移(15~30n m ).基于B O D I P Y 的强吸电子性质,引入给电子基团可促使吸收和发射波长红移.例如,M c d o n n e l 等[32]在3,5-位将己二甲胺基引入苯环,可使其在三氯甲烷溶液中吸收和发射光谱的峰值分别从650和672n m 显著红移到799和823n m.近年来,基于B O D I P Y 的N I R -Ⅱ型有机荧光材料也得到了迅速的发展.氮杂B O D I P Y (a z a -B O D I P Y )的水溶性较差,限制了它们在活体研究中的应用.为了解决该问题,G o d a r d 等[33]采用了一种新策略,通过在硼原子上引入铵基,制备出水溶性a z a -B O D I P Y ,命名为S W I R -W A Z A B Y -01.无需亲水性包封或P E G 辅助,S W I R -W A Z A B Y -01可直接用于肿瘤的N I R -Ⅱ成像(图3).这种以a z a -B O D I P Y 为基础的染料可以在肿瘤中迅速到达和累积,并在体内保留长达1周.图3 S W I R -W A Z A B Y -01的结构及其用于肿瘤的荧光成像[33]F i g.3T h e s t r u c t u r e o f S W I R -W A Z A B Y -01a n d f l u o r e s c e n c e i m a g i n gf o r t u m o rw i t hS W I R -W A Z A B Y -01[33]最近,B a i 等[34]利用分子工程开发出一系列新的a z a -B O D I P Y 染料:N J 960㊁N J 1030和N J 1060.与经典的a z a -B O D I P Y 相比,该类分子在强D -A 分子内电荷转移(I C T )效应的帮助下可将近红外发射光谱红移到N I R -Ⅱ.此外,该类染料具有很好的光物理性能,如斯托克斯位移大㊁光稳定性好㊁水溶液中荧光亮度大等,其中N J -1060在N I R -Ⅱ荧光量子产率高达1.00%,并且体内N I R -Ⅱ荧光成像结果表明N J -1060具有高分辨率和深穿透成像能力.1.4 基于共轭聚合物的N I R -Ⅱ染料富电子供体和吸电子受体可使共聚物的带隙变小,因此通过D -A 交替共聚生成的共轭聚合物具有带隙小㊁易调整的优点,是N I R -Ⅱ探针设计的一种有效途径.半导体聚合物点(P d o t s )是近年来出现的一种新型有机荧光材料.与传统荧光染料相比,P d o t s具有宽吸收㊁对称窄发射㊁高光亮度㊁高光稳定性及大斯托克斯位移.因此,高荧光P d o t s 组成的纳米颗粒被视为一种有效的荧光探针[35-36],在生物成像㊁分子检测㊁指导药物治疗等领域展现出广阔的应用前景.尽管P d o t s 由于其可调的光学特性,在生物成像和生物传感方面具有很强的实用价值,但是与有机溶剂中的原始聚合物相比,纳米粒子形式的半导体聚合物通常表现出荧光猝灭,可归因于链间和链内π-π堆积的强相互作用,从而导致非发射性激子和激基复合物的形成[37-38].随着发射能量的降低,无辐射衰减率显著增加,很难获得高量子产率的N I R -Ⅱ荧光团.最近,Z h a n g 等[39]提出了一种双重荧光增强机制来增强㊃4㊃Copyright©博看网 . All Rights Reserved.第1期黄艳芳等:近红外二区荧光探针的设计及应用研究进展h t t p :ʊjx m u .x m u .e d u .c n P d o t s 的N I R -Ⅱ荧光,通过分子工程策略开发了9种N I R -Ⅱ半导体聚合物.在该研究中,一方面利用吩噻嗪单元的聚集诱导发射特性来减少聚集态聚合物的非辐射衰变路径;另一方面引入了大量的侧链基团,通过空间位阻来减弱链间和链内π-π堆积产生的强相互作用,进一步增强荧光量子产率.基于这种双重增强策略制备的P 3c P d o t s 在水溶液中的荧光量子产率约为1.70%,比四氢呋喃溶液中的原始聚合物增强约21倍.活体小鼠头盖部荧光成像有显著改善,表明这种双重增强策略在设计活体荧光成像的N I R -Ⅱ荧光团方面具有潜在应用前景.另外,针对P d o t s 在水溶液中往往会出现严重的荧光猝灭问题,L i u 等[40]通过在聚合物受体的不同位置引入氟原子,利用分子调控N I R -Ⅱ荧光增强策略,减少聚合物与水分子的相互作用和非辐射越跃,从而提高N I R -Ⅱ荧光量子效率(图4).分别以苯并二噻吩(B D T )和三唑[4,5-g ]-喹喔啉(T Q )衍生物为供体和受体,设计了两种含氟半导体聚合物.光物理实验结果显示:在808n m 光激发下,聚合物发射光谱覆盖了N I R -Ⅱ,肩峰延伸超过1300n m ;随着氟化程度的加深,聚合物发射光谱红移.随后利用密度泛函理论表明氟化使激发态和基态之间的结构畸变减小,从而减少了非辐射弛豫,增强了P d o t s 的荧光量子产率.最后用P d o t s 进行小鼠颅骨肿瘤血管系统的活体荧光成像,获取了一系列高穿透深度和高信背比的荧光图像.各种有机N I R -Ⅱ荧光探针的关键参数和应用总结于表1.图4 纳米尺度氟化效应的示意图[4]F i g.4S c h e m a t i c i l l u s t r a t i o n o f n a n o s c a l e f l u o r o u s e f f e c t [40]表1 有机N I R -Ⅱ荧光探针的比较T a b .1 C o m p a r i s o n o f o r g a n i cN I R -Ⅱf l u o r e s c e n t pr o b e s 类型N I R -Ⅱ荧光材料激发波长/n m 发射波长/n m 量子产率/%应用B B T D 类F M 1210-N P s [18]980 12100.04肿瘤及血管系统的活体成像B B T D -1302N P s [19]94213022.40肿瘤光热治疗I R -F P 8P [21]74810400.60小鼠后肢血管成像S A -T T B -P E G 1000[24]808105010.30血管相关疾病的诊断和治疗花菁类I R -783@B S A [27]785143321.20肿瘤成像N I R Ⅱ-R T s [28]97710082.03肝脏A T P 含量的实时监测F D -1080J -聚集体[29]136013700.06监测颈动脉的动态变化,评价降压药的疗效B O D I P Y 类S W I R -W A Z A B Y -01[33]638720~12002.50肿瘤成像N J -1060[34]80810601.00脑血管成像共轭聚合物P 3c P d o t s [39]74610831.70小鼠脑部成像m -P B T Q 4F [4]808850~14003.20小鼠颅骨肿瘤血管系统成像㊃5㊃Copyright©博看网 . All Rights Reserved.厦门大学学报(自然科学版)2022年h t t p :ʊjx m u .x m u .e d u .c n 2 无机N I R -Ⅱ荧光探针与N I R -Ⅱ有机小分子染料相比,N I R -Ⅱ纳米探针具有相对较高的量子产率和较低的光漂白敏感性,在肝脏㊁肾脏㊁大脑和肺成像等领域具有独特优势.目前,已开发如稀土纳米粒子(R E N P s )㊁量子点(Q D s)㊁金纳米团簇(A u N C s )㊁单壁碳纳米管(S W N T s )等材料作为N I R -Ⅱ探针[41-43].在此,介绍基于无机材料的N I R -Ⅱ荧光探针的开发及其在生物成像领域的应用,并重点关注近期新型无机N I R -Ⅱ荧光探针的研究进展.2.1 稀土纳米材料R E N P s 具有较大的斯托克斯位移㊁较小的光漂白㊁狭窄和多峰值的发射特性以及可忽略的激发-发射带重叠,因此受到越来越多的关注.此外,由于可通过掺杂不同的稀土金属离子来调谐发射波长和延长发光寿命[43-45],R E N P s 成为N I R -Ⅱ荧光成像的研究热点,有着很广泛的应用前景.由于具有很长的荧光寿命(m s 级别)以及很大的斯托克斯位移(ȡ200n m ),镧系R E N P s 作为荧光探针被广泛使用.最近,L i 等[46]以77.5ʒ20.0ʒ2.5的摩尔比混合1,2-二棕榈酰磷脂酰胆碱(D P P C )㊁胆固醇(C h o l )和聚乙二醇化脂质(D S P E -P E G 2000)合成脂质体,然后使用该脂质体进一步包覆N I R -Ⅱ镧系荧光基团R E N P s ,得到在1064和1345n m 处双发射㊁大斯托克斯位移(分别为264和545n m )的R E N P s @L i p s .R E N P s @L i ps 在1064n m 处的量子产率为7.90%,在808n m 激发下1345n m 处的量子产率为4.10%.此外,R E N P s @L i ps 显著增强了静脉排泄性和胶体稳定性,缩短了在网状内皮系统中的停留时间,并且超过90%的R E N P s @L i p s 静脉给药后72h 内可以从肝脏排出.与之前报道的R E N P s @D S P E -m P E G 相比,R E N P s @L i p s 的体内清除速度快且半衰期短;同时,未发现明显的R E N P s @L i p s 骨积聚,这有助于减少骨系统滞留和加速静脉清除.这些结果表明R E N P s @L i p s 具有良好的生物相容性㊁静脉内排泄性和优异的光化学性质,适合于临床前评估和监测生理和病理过程,可促进其未来的临床转化.据报道,稀土元素Y b /E r 共掺杂纳米颗粒(E r R E N P s )具有N I R -Ⅱ波长的发光特性,并表现出斯托克斯位移大(高达450n m )㊁寿命长㊁光稳定性好等优点,被认为是新一代近红外探针的优异候选者.然而,E r3+容易发生能量转移到纳米晶体表面的现象,导致严重的荧光猝灭.最近,C a o 等[47]采用N d 3+敏化Y b3+的体系,在内部C e 3+的辅助下将能量转移到发光中心E r 3+上.该研究中,在内核中掺杂E r3+作为激活剂,并在核心层和中间层混合Y b3+作为敏化剂,之后在N a Y b F 4:E r 核纳米晶中进一步掺杂C e 3+以增强N I R -Ⅱ发射,并通过调节掺杂离子来优化纳米粒子的发光性能.引入P E G 配体提高了纳米颗粒的水溶性(图5),实现了较长的血液循环时间.通过采集其N I R -Ⅱ荧光信号,该纳米探针可用于肿瘤的高分辨率追踪和成像.U C L .上转换荧光.图5 N a Y b F 4:E r ,C e @N a Y F 4:Y b @N a Y F 4:N d 核壳纳米颗粒的合成过程(a )㊁结构示意图(b )及其能量传递的简化机制(c)[47]F i g .5S yn t h e s i s (a )a n d t h e s t r u c t u r e i l l u s t r a t i o n (b )o f N a Y b F 4:E r ,C e @N a Y F 4:Y b @N a Y F 4:N d c o r e -s h e l l -s h e l l n a n o p a r t i c l e s ,a n d t h e s i m pl i f i e dm e c h a n i s m (c )o f i t s e n e r g yt r a n s f e r [47]2.2 Q D sQ D s 具有宽激发光谱㊁窄发射光谱㊁高量子产率㊁抗光漂白等优点,在活体生物成像中具有很高的时空分辨率,因此引起了人们的广泛关注.已有研究通过对P b S ㊁C d S e ㊁A g 2S 等Q D s 的尺寸和形状进行微调,可以调节其药代动力学和组织分布[48-49].目前研究中用于N I R -Ⅱ荧光成像的Q D s 主要为Ⅱ-Ⅵ族和Ⅳ-Ⅵ族半导体材料,如C d S e ㊁C d T e 和P b S e 等,但其中含有的重金属元素(如C d 2+和P b2+等)极大地限制了其后续的生物医学应用[48].因此,开发具有良好生物相容性且高效发光的新型N I R -Ⅱ荧光Q D s 是目前生物标记领域的研究热点和难点.L i u 等[50]成功合成了在N I R -Ⅱ具有强吸光度的石墨烯量子点(G Q D s),并讨论了其在肿瘤光热治疗中的潜在生物医学应用.该研究以苯酚分子为单前驱体㊁过氧化氢为氧化剂,在9T 外加强磁场作用下,采用一步㊃6㊃Copyright©博看网 . All Rights Reserved.第1期黄艳芳等:近红外二区荧光探针的设计及应用研究进展h t t p :ʊjx m u .x m u .e d u .c n 溶剂热法合成了9T -G Q D s ;外加强磁场用于控制反应体系中氧的溶解浓度和苯酚分子分解过程中超氧自由基的生成,从而形成具有大量C O 键和较大共轭体系的G Q D s ,吸收峰位于约1070n m 处;合成的9T -G Q D s 具有丰富的亲水基团㊁良好的水溶性和较小的粒径分布(3.6n m ).此外,对9T -G Q D s 的细胞毒性和生物安全性进行体外和体内实验,证明其具有良好的生物相容性.体内实验证明9T -G Q D s 在N I R -Ⅱ荧光成像引导的光热癌症治疗中,对小鼠肿瘤的生长具有明显抑制作用.P b SQ D s 具有多种独特的特性,包括窄带隙㊁大玻尔半径㊁在近红外区可调谐和强发射,使其广泛应用于光电子器件㊁传感器和活体成像等领域[48].目前胶体法制备窄粒径P b SQ D s 的方法已得到很好的发展,但在较高的温度下,该方法制备的纳米晶很不稳定.此外,由于表面易被氧化,其光学性质对空气和水相当敏感,限制了它们在生物成像中的应用.S h i 等[51]通过阳离子掺杂工艺,制备了一系列高质量的锌掺杂P b SQ D s ,发现锌掺杂后可以形成掺杂态,降低了主体P b S 的能隙,有效增强了P b SQ D s 的量子产率和光致发光寿命,并改善了Q D s 在高温下的荧光稳定性.这种阳离子掺杂策略为制备波长更长的更小粒子提供了一种新方案,可批量制备一系列波长覆盖整个N I R -Ⅱ的高质量Q D s ,为近红外光学成像提供了新工具;同时,P E G 化的Q D s 可用于活体小鼠的脑血管无创高分辨荧光成像,实现了在毛细血管水平上高分辨率的脑血管无创近红外成像.2.3 惰性金属纳米材料惰性金属基(如A u 和P t)发射体不易引起荧光猝灭,因此很适用于N I R -Ⅱ成像.A u N C s 是其中一个典型的代表,其具有比肾脏排泄阈值更小的尺寸㊁良好的光稳定性㊁易于修饰㊁优异的光热活性和多样性等多种独特优势,因此成为极具发展前景的新型N I R -Ⅱ探针[52-53].考虑到胃肠道的酸性和酶生物环境可能会导致大多数纳米发射体的荧光猝灭,W a n g 等[54]提出合成惰性金属基发射体用于胃肠道近红外成像,以克服潜在的荧光猝灭问题.通过构建核糖核酸酶-A (R N a s e -A ,由巯基和芳香族氨基酸组成)封装A u N C s ,得到具有一个完美高斯型发射峰的R N a s e -A @A u N C s ,峰中心位于1050n m ,F WHM 约为205n m ,与大多数报道的新型金属基成像剂相比,该发射峰相对狭窄,且R N a s e -A@A u N C s 的量子产率为1.90%.将R N a s e -A @A u N C s 暴露于胃肠道模拟液和哺乳动物细胞中以评估其稳定性和生物安全性,结果表明R N a s e -A @A u N C s 具有高稳定性和良好的生物相容性.与两个已报告的近红外发射体(A g 2S 和N a Y F 4:E r /Y b )相比,R N a s e -A@A u N C s 胃肠道灵敏度提高了50倍以上.该研究首次将蛋白电晕技术应用在A u N C s 上,将激发波长红移到N I R -Ⅱ,并使用一个肠癌模型来证明A u N C s 作为肿瘤诊断显像剂的潜在效用.近期,L i 等[55]合成了粒径3.3n m 左右的具有25个A u 原子和18个肽配体的新型A u N C s ,即A u 25(S G )18,可在N I R -Ⅱ发射.由于天冬氨酸和亚氨基二乙酸等羧酸可以作为天然骨靶向配体,研究人员假设A u 25(S G )18中丰富的羧酸侧链能使其与骨结合,从而作为一种新型的骨显像N I R -Ⅱ探针.该研究首次发现A u 25(S G )18与羟基磷灰石具有良好的体外结合能力.通过结合A u 25(S G )18,N I R -Ⅱ荧光成像能高分辨率和高对比度地描绘出体内骨结构,并探讨了以A u 25(S G )18作为骨组织术中N I R -Ⅱ荧光导航的潜在价值.E D C .1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐;N H S .N -羟基琥珀酰亚胺;H C C .肝细胞癌.图6 A u N C s -P t 的合成(a )㊁患者源性肝细胞癌(P D H C)异种移植瘤模型的建立示意图(b)及癌细胞吞噬A u N C s -P t 后的双重作用机制(c)[57]F i g .6S y n t h e s i s o fA u N C s -P t (a ),i l l u s t r a t i o n o f t h e e s t a b l i s h m e n t o f t h e p a t i e n t -d e r i v e d h e pa t o c e l l u l a r c a r c i n o m a (P D H C )t u m o r x e n o gr a f tm o d e l (b ),a n d d u a l -a c t i o nm e c h a n i s m s a f t e r e n d o c yt o s i s o f A u N C s -P t b y ca n c e r c e l l s (c )[57]除具有N I R -Ⅱ成像能力外,带裸A u 原子的A u N C s 还可通过形成A uS 共价键与某些含巯基的物种如谷胱甘肽(G S H )发生反应[56].Y a n g 等[57]开发出一种双功能的热释光纳米药物(A u N C s -P t),利用A u N C s 来递送P t (Ⅳ)(图6).一方面,A u N C s -P t 的N I R -Ⅱ成像能力保证了高分辨率的肿瘤深部模型中P t 转运的有效可视化;另一方面,A u N C s -P t 通过A u S 键来结合G S H ,以清除胞内G S H ,从而有效地使肿瘤细胞对P t 类药物敏感.结果表明,A u N C s -P t 能够消除高危害的深部肿瘤,并减轻人体来源的肝癌异种㊃7㊃Copyright©博看网 . All Rights Reserved.。
双钙钛矿量子点近红外发光
双钙钛矿量子点近红外发光是指在钙钛矿量子点中引入双配体,使其在近红外区域发出光。
这种发光材料在生物成像、医疗诊断、光电器件等领域具有广泛的应用前景。
制备双钙钛矿量子点时,需要选择合适的溶剂体系和合成条件,以保证量子点的尺寸、纯度和均匀性。
同时,需要选择合适的缓冲体系和表面活性剂,以调控量子点的光学性能和稳定性。
在掺杂稀土离子时,需要考虑离子的光谱特性和浓度效应,以优化发光的颜色和亮度。
双钙钛矿量子点的光学性能受到多种因素的影响,如量子点的尺寸、形状、组成、掺杂离子、环境介质等。
因此,需要不断优化制备条件和工艺参数,以获得具有优异性能的量子点材料。
此外,可以通过调节掺杂离子的浓度和类型,以及环境介质的性质,来调控量子点的发光颜色、亮度、稳定性和寿命等参数。
双钙钛矿量子点近红外发光的优势在于其波长较长,不容易受到生物组织中水分子的吸收和散射影响,因此具有较高的光学穿透能力。
此外,近红外光的能量与生物细胞的分子结构更匹配,有利于提高光子的利用效率和信号强度,降低背景噪声。
因此,双钙钛矿量子点近红外发光在生物成像、医疗诊断等领域具有广泛的应用前景。
在实际应用中,双钙钛矿量子点近红外发光需要与其他光学材料和器件相结合,如光纤、光学窗口、光栅等,以实现更高效、更可靠的信号传输和检测。
同时,需要进一步研究双钙钛矿量子点的生物相容性和毒性问题,以确保其在医疗诊断和生物成像中的应用安全可靠。
总之,双钙钛矿量子点近红外发光作为一种具有优异性能的光学材料,将在未来生物成像、医疗诊断、光电器件等领域发挥重要作用。
通过不断优化制备条件和工艺参数,以及深入研究其光学性能和生物安全性,将为双钙钛矿量子点的发展和应用奠定坚实的基础。
双光子激发荧光成像技术的研究与应用
双光子激发荧光成像技术的研究与应用随着生物科学和医学领域的不断发展,对于细胞和组织的研究和诊断技术也越来越关注。
而双光子激发荧光成像技术就是近年来得到广泛应用的一种非常重要的手段。
一、什么是双光子激发荧光成像技术?双光子激发荧光成像技术是指通过同时吸收两束波长相同的光子,从而在样品内部产生一个激发态分子。
这个过程中,荧光分子的激发能量只有在光子聚焦点上才会达到荧光分子的激发门槛,这种特殊的成像方式比普通的荧光显微镜更加精确,可以用于生物样品的三维成像。
同时,这种技术也能对活细胞进行成像,无需任何特殊处理,因此被广泛应用于生物领域。
二、研究双光子激发荧光成像技术的意义双光子激发荧光成像技术的研究意义非常重大。
首先,它可以为细胞和组织的成像提供一个更加精确和高分辨率的手段,不仅可以直观地观察细胞和组织的结构和形态,还可以更加深入地研究其功能和代谢状态。
其次,它的应用范围非常广泛,不仅可以用于研究基础生物学问题,还可以用于临床的诊断和治疗,为生物科学和医学领域的发展提供了有力的支撑。
三、双光子激发荧光成像技术的应用双光子激发荧光成像技术已经被广泛应用于细胞和组织的成像、动态过程的观察、基因表达分析、药物研发、癌症诊断和治疗等领域。
在细胞和组织的成像方面,双光子激发荧光成像技术可以用于观察细胞内的细微结构和亚细胞器的分布情况,可以进行三维成像,从而更加精确地研究细胞和组织的形态和结构。
在动态过程的观察方面,双光子激发荧光成像技术可以用于观察细胞内的生物分子和化学物质的转移和传递过程,比如细胞成分的运动、信号传递和分子扩散等。
在基因表达分析方面,双光子激发荧光成像技术可以用于观察和记录基因活性的变化,从而研究基因调控的机制和过程。
在药物研发方面,双光子激发荧光成像技术可以用于观察药物和生物分子的互动过程,从而提高药物研发的效率和成功率。
在癌症诊断和治疗方面,双光子激发荧光成像技术可以用于检测癌症细胞和组织中的分子标记和生物指示物,从而提供癌症的早期诊断和治疗。
近红外二区aie分子 带氨基
近红外二区aie分子带氨基
近红外二区aie分子是指分子在近红外二区(700-900nm)内具有聚集诱导发光(aggregation-induced emission,AIE)特性的分子。
这类分子具有带氨基结构,通过氢键作用,使分子在溶液中处于单体
状态,而在固态状态下则通过氢键和范德华力相互作用,形成聚集态,从而实现AIE发光。
AIE分子由于其溶解度高、量子产率高、组装可控性好等特点,近年来引起了广泛的关注和研究,被广泛应用于生物传感、荧光成像、化学
传感、有机发光等领域。
例如,在生物成像方面,研究人员将AIE分子与细胞膜染料结合,通
过微米级的成像技术进行细胞成像。
在荧光材料方面,AIE分子可用于制备高效率、高亮度的有机发光二极管(OLED),具有广阔的市场应用前景。
总之,近红外二区aie分子具有一系列优秀的性质,可以在多个领域
应用。
通过对其结构和性质的研究,我们可以深入了解分子结构和物
理化学特性之间的关系,为有机分子合成和应用提供有力支持。
生物医学工程相关试题
Df《生物医学工程进展》试题库1. 试述组织光透明技术在生物医学成像旳作用及应用前景?作用: 生物组织属于浑浊介质, 具有高散射和低吸取旳光学特性, 这种高散射特性限制光在组织旳穿透深度和成像旳对比度, 使得诸多光学成像技术只能用于浅表组织, 制约了光学手段检测诊断及治疗技术旳发展和应用。
生物组织光透明技术旳作用就是通过向生物组织中引入高渗透、高折射、生物相容旳化学试剂, 来变化组织旳光学特性, 以此来临时减少光在组织中旳散射、提高光在组织中旳穿透深度, 从而提高光学成像旳成像深度, 推进成像技术旳发展和新措施旳产生。
前景: 1、应用骨组织使得骨组织变得光透明, 进而对骨组织下旳组织成像, 防止手术开骨窗照成旳伤害, 如应用于颅骨, 用得当旳成像措施获得皮层神经亚细胞构造与微血管信息;2、处理皮肤角质层旳天然阻挡作用, 增进透皮给药系统旳研究和应用;3.皮肤光透明剂旳发展推进光学相干断层成像技术旳发展;4.光透明剂使得光辐射能在生物组织到达一定深度之后, 可以极大地推进光学显微成像、光学手段检测诊断及治疗技术旳发展和应用。
推进无损光学成像技术在临床上旳发展。
2. 请结合图示, 描述怎样通过单分子定位旳措施, 实现超辨别光学显微成像。
要通过单分子定位实现超辨别光学显微成像, 首先需要运用光激活/光切换旳荧光探针标识感爱好旳研究构造。
成像过程中, 运用激光对高标识密度旳分子进行随机稀疏点亮, 进而进行单分子荧光成像和漂白;不停反复这种分子被漂白、新旳稀疏单分子不停被点亮、荧光成像旳过程, 将原本空间上密集旳荧光分子在时间上进行充足旳分离。
随即, 运用单分子定位算法对采集到旳单分子荧光图像进行定位, 可以精确得到分子发光中心位置;最终, 运用这些分子位置信息, 结合图像重建算法, 获得最终旳超辨别图像。
超辨别图像质量旳关键在于二点:一是找到有效旳措施控制发光分子旳密度, 使同一时间内只有稀疏旳荧光分子可以发光;二是高精度地确定每个荧光分子旳位置。
肿瘤诊疗的“火眼金睛”:近红外二区荧光成像
肿瘤诊疗的“火眼金睛”:近红外二区荧光成像
李芊芊;叶林书;赵冰珊;曲艳波;龙涛
【期刊名称】《黄冈师范学院学报》
【年(卷),期】2022(42)3
【摘要】培养高中化学学科核心素养是高中化学新课标对教师提出的新要求,这不仅要求教师具备扎实的化学基础知识,同时要求化学教师不断汲取前沿的化学科学知识。
利用情境素材辅助教学,有效激发学生的学习兴趣,培养化学学科核心素养。
本文从近红外二区荧光材料的种类及活体肿瘤诊疗方面的应用阐述,不仅为高中化学的“有机化学基础”“化学物质结构与性质”“化学与生活”等章节的教学提供新颖的情境素材,而且有助于培养高中生“宏观辨识与微观探析”“证据推理与模型认识”的化学学科核心素养。
同时,将激发学生的化学学科兴趣,提高科学探究与创新意识,培养科学态度与社会责任。
【总页数】6页(P52-57)
【作者】李芊芊;叶林书;赵冰珊;曲艳波;龙涛
【作者单位】黄冈师范学院化学化工学院
【正文语种】中文
【中图分类】O62
【相关文献】
1.基于近红外二区荧光纳米探针的活体光学成像技术在生物医学应用的研究进展
2.近红外二区成像载药脂质体的制备、体外成像及抗肿瘤活性
3.Nd^(3+)离子敏化
的荧光纳米探针用于近红外二区血管成像4.近红外二区荧光宽场显微活体成像技术和应用5.近红外二区荧光活体成像在细胞示踪上的应用进展
因版权原因,仅展示原文概要,查看原文内容请购买。
NIRx近红外线成像仪介绍_2012.3.23介绍
深圳市翰翔生物医疗电子有限公司
光源
探测器
图 2 一个通道
图 3 地形图光源与探测器排挤,及计数方式(红色:光源;绿色:探测器)
深圳市翰翔生物医疗电子有限公司
图 4 地形图成像图例
2. 断层图成像
断层图成像方式时,光源的光不仅能被相邻的探测器探测,还能被较远的探测器探测, 因此一个光源可与多个探测器组成多个通道,见图 5。光源与探测器之间的距离最小为 1cm, 则起通道数计数方式见图 6。通过该方式得出的图像将图 7.
深圳市翰翔生物医疗电子有限公司
一、 fNIR 概述
近红外线光谱(functional near-infrared imaging,fNIR)是一种使用光谱法测量大脑神经 活动水平的神经成像方法。该方法基于神经血管耦合,即代谢活性和血管中氧水平(氧合血 红蛋白)的关系。fNIR 以氧合血红蛋白、脱氧血红蛋白和总血红蛋白等为指标,考察与神经 元活动、细胞能量代谢以及血液动力学相关的大脑功能。这一技术具有无创性、可实时在体 监测、能在动态运动条件下应用等优点。
1. fNIR 的物理原理
大脑的活动与脑组织光学特性的变化相联系,光学参数与细胞活动、能量代谢和血液动 力学之间有着密切的关系。采用近红外脑成像设备,将光源置于头部相应部位,在距光源 2~ 7 cm 处放置近红外光探测器。光源发射的光进入组织或细胞后,除被脑组织吸收外,还会 受到多次散射。吸收主要源于脑组织内的生色团,导致能量在脑组织中的丧失,散射则主要 与细胞核有关,发生在介质的边界。在历经一系列吸收、散射事件后,仍会有一部分光子到 达皮层表面,探测器可以接收到这些光信号(见图 1)。
1 Jobsis FF. Non-invasive near infrared spectroscopy of cerebral and myocardial oxygen sufficiency and circulatory parameters. , 1977, 198: 1264~1267 2 Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EOR. Characterization of the near infrared absorption spectra of cytochrome α α 3 and haemoblobin for the non-invasive monitoring of cerebral oxygenation. , 1988, 933: 184~192
近红外二区小动物活体荧光成像系统的研制
近红外二区小动物活体荧光成像系统的研制
邬丹丹;潘力;周哲;付威威;朱海龙;董月芳
【期刊名称】《物理学报》
【年(卷),期】2024(73)7
【摘要】近年来,小动物活体荧光成像系统被广泛应用于生物医学成像研究.但是,现有的荧光成像系统存在穿透深度有限、图像信噪比低等缺点.因此,利用近红外二区(near-infrared-Ⅱ,NIR-Ⅱ,900—1880 nm)荧光成像技术在生物组织中具有的低吸收、低散射和穿透深度深等优点,研制出一套NIR-Ⅱ小动物活体荧光成像系统,提出了一种荧光图像增强校正方法,并设计生物组织模拟实验和活体动物实验测试该系统的性能和成像效果.实验结果表明,该系统具有穿透深度深、信噪比高、灵敏度高等优点.结合商用的吲哚菁绿试剂和聚集诱导发光染料,该系统可实时监测小鼠体内的血管分布情况,并对深层组织器官进行持续监测,实现活体小鼠清醒状态下的动态监测研究,有助于推动生物医学成像领域的肿瘤研究和药物开发研究等进入一个新阶段.
【总页数】10页(P344-353)
【作者】邬丹丹;潘力;周哲;付威威;朱海龙;董月芳
【作者单位】中国科学院苏州生物医学工程技术研究所;苏州国科视清医疗科技有限公司
【正文语种】中文
【中图分类】TP3
【相关文献】
1.基于近红外二区荧光纳米探针的活体光学成像技术在生物医学应用的研究进展
2.近红外二区荧光宽场显微活体成像技术和应用
3.近红外二区荧光活体成像在细胞示踪上的应用进展
4.辊压机电动机滑环打火的处理
5.硫化铅量子点辅助近红外二区荧光成像技术在活体应用中的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
荷瘤鼠活体成像研究进展
荷瘤鼠活体成像研究进展程凯【期刊名称】《医学综述》【年(卷),期】2011(17)21【摘要】With the development of living tumor-bearing imaging technology, non-invasive imaging has gained increasing importance in pre-clinical research, which can take images of biological process in living tissues or animals in vivo This technique can monitor gene expression,trace cells and identify the interaction between proteins. 5 kinds of living tumor-bearing mice imaging technology, including optical imaging,PET/ SPECT, MRI, CT and ultrasound imaging, were reviewed from the aspects of their characteristics and main applications. The trends of living tumor-bearing mice imaging technology were discussed as well.%随着荷瘤鼠活体成像技术的发展,非侵袭性成像在临床前研究中发挥了越来越重要的作用.活体成像可以在微创或无创的条件下对活体组织或动物体内的生理生物活动进行成像跟踪.直观灵敏地检测基因的表达模式、标记和示踪细胞、探讨蛋白质间的相互作用.在此围绕可见光成像、核素成像、磁共振成像、计算机断层摄影和超声成像等5种活体成像技术,总结其特点及主要应用,并讨论活体成像技术的发展趋势.【总页数】4页(P3318-3321)【作者】程凯【作者单位】武汉大学人民医院,武汉,430060【正文语种】中文【中图分类】Q334【相关文献】1.活体成像技术观察胶质瘤荷瘤鼠中过表达SASH1基因的作用 [J], 张思铭;马超;胡樱子;尤正晨;陈汉;巫荣华;杨柳;刘梅2.基于近红外二区荧光纳米探针的活体光学成像技术在生物医学应用的研究进展[J], 陈蓦; 陈俊; 陈世益3.Immuno-PET在程序性细胞死亡受体配体-1活体成像中的研究进展 [J], 肖庆澳;夏旋4.活体光学成像研究进展 [J], 罗文波;张文强5.生物发光成像技术在肿瘤细胞活体可视化研究中的应用研究进展 [J], 陈丹;王文静;王庆雅;曾鋆;詹勇华因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最创新的近红外二区荧光/生物发光双模式光学成像
技术
在众多影像技术中,活体光学成像技术具有成像速度快、灵敏度高、可以进行多通道成像以及经济快捷等特点,已被广泛应用于干细胞示踪研究。
然而,传统的荧光成像的波长大多集中在可见光到近红外一区波段,存在组织穿透深度低和空间分辨率低的缺点,这大大限制了荧光成像方法的应用。
最新的研究表明近红外二区荧光(NIR-II,1000-1700 nm)在活体组织中具有更少的组织吸收和散射以及更低组织自发荧光特性,可以大大提高荧光成像的组织穿透深度和空间分辨率,在生物医学影像中具有广阔的应用前景。
日前,中科院苏州纳米所王强斌团队开发了一种新型的近红外二区荧光/生物发光双模式光学成像技术,并以急性肝损伤小鼠为模型,实现对移植干细胞在活体内的动态迁移、存活和免疫清除的一体化分析。
相关成果发布于《微尺度》。
据介绍,该影像技术具有以下优势:首先,以Ag2S量子点为探针的高时空分辨的近红外二区荧光成像,可以对干细胞移植全过程实现100 ms时间分辨的实时荧光监测;其次,通过近红外二区荧光成像和可特异指示干细胞活性的生物发光成像的共定位和定量分析,可以在活体水平上对活细胞、死细胞的分布及其动态变化进行原位成像分析。
从而可以帮助人们了解移植干细胞在活体内的实时动态分布、存活和免疫清除过程,以揭示干细胞。