物性学
食品物性学简介
纤维素等物含最与比例, 称为营养价值。
前三个属于被感知的因素,因此,通常称为感官特性。 感 官特性是评价食品质量的重要特性.消费者通过食用食 品,可以获得感官上的愉悦.例如对 麻、辣、烫等特殊风味 的追求.对酥脆食品口感追求等。 食品的终极目的是满足人们的物质要求,人们是食 品的生产和消费的主体,食品的感觉性质构成食品物性
但意义和前景却格外引人注目。
四、食品物性学研究的目的
食品加工过程中的物性变化是不可避免的,有些物
性变化是有利的,加工后的食品其物性有利于人们消化 吸收或满足口感,如小麦磨成粉末后加工出不同质构的 面包等;而有些物性变化是不利的,其中冷冻食品、罐 头食品和长期贮藏的果蔬产品,其质构变软、弹性减弱。 为了获得消费者满意的食品,在加工与贮藏过程中,我 们要采取必要的技术手段,如添加一些增稠剂提高产品 的黏弹性、添加氯化钙提高果蔬的硬度等。
了在一些单元操作方面(如杀菌、干燥、蒸馏、熟化、
冷冻、凝固、融化、烘烤、蒸煮等)热物性有着十分重 要的作用外,对食品进行冷热处理,改善其某种品质,
目前也成为令人注目的研究领域。
4 食品的电学性质
对食品电学性质的研究,虽然起步较晚,但随着食 品工业的发展,近年越来越受到重视。食品电学性 质主要是指:食品及其原料的导电特性、介电特性, 以及其它电磁和物理特性。
从组成来看,食品的大部分都属于复杂的混合
物,不仅有无机物、有机物,甚至还包括有细
胞结构的生物体。为非均质结构。
食品的形态也复杂多样。为了便于研究,有人把它
分为液状食品、凝胶状食品、凝脂状食品、细胞状 食品、纤维状食品和多孔状食品。
凝胶是固态或半固态的胶体体系。它是由胶体颗粒、高分子或表 面活性剂分子互相连接形成的空间网状结构,结构空隙中充满了 液体。液体被包在其中固定不动,使体系失去流动性,其性质介 于固体和液体之间。
食品物性学-固态与半固态食品的物性
● 甲酯化程度低,LM含量高时,加 热时不易软化,能够保持一定的 脆硬性。
1. 细胞状食品的物性
② 细胞状食品物性的测定 果蔬物性的测量是判断其成熟程度、新鲜程度和品质的重要 手段。 测量指标和方法要根据其组织结构的特点选定:
➢对球形细胞组织的试样,可采 用压缩穿透的方法; ➢对细胞呈方向排列,或纤维组 织、表皮组织,则可采用剪切、 穿孔、弯曲等方法。
胶。 3. 海藻酸凝胶:Ca2+会使两个分子间形成配位结合。 4. 果胶凝胶:高甲氧基果胶(HM),以氢键形成结合部位;低甲氧基果胶
(LM),以 Ca2+配位结合。
3. 凝胶状食品物性的测定方法
凝胶食品物性的测定方法有感观分析和仪器测定。 仪器测定有:基础测定法、经验测定法和模拟测定法。 基础测定法是对凝胶的基础流变性(动/静粘弹性、应力松弛) 进行测定和解析。方法有应力松弛实验和蠕变实验。 经验测定法是根据经验,对可以表现食品物性的某些特征值进 行测定,如硬度计、质构仪等。 模拟测定法是模拟人的感官对凝胶进行压缩、拉伸、剪切、搅 拌、咀嚼等测定的方法,如质构仪等。
二.粉体的堆积状态
三.粉体密度测定法
A、粒子密度:密度瓶
○ 其中m0为密度瓶的质量;m1为将样品投入密度瓶后的质量;m2为放入样 品后再注满分散介质时的质量;ms为密度瓶中只装满分散介质时的质量;ρs 为分散介质密度。
○ 分散介质多用四氯化碳。 ○ 对于可溶性粒子,还可以通过其溶液的密度和固形成分率的测定计算出。
二.粉粒的尺寸
○ 定向径:同一方向上平行线间的粒子尺寸,测定大量粒子的定向径,以消除 粒子随机位置带来的误差。
○ 定向面积等分径:用一定方向直线将粒子投影分为两部分,移动直线使两部 分面积相等时,投影内直线的长度。
物性学——精选推荐
食品物性学复习材料第一章:食品的主要形态与物理性质1、食品物性学是研究食品物理性质的一门科学。
2、食品形态微观结构按分子的聚集排列方式主要有三种类型:晶态、液态、气态,其外,还有两种过渡态,它们是玻璃态和液晶态。
各自特点:晶态:分子(或原子、离子)间的几何排列具有三维远程有序;液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序;气态:分子间的几何排列不但远程无序,近程也无序。
玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同。
它与液态主要区别在于黏度。
玻璃态粘度非常高,以致阻碍分子间相对运动液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)。
4、粒子凝胶:球状蛋白、脂肪晶体等5、分子分散体系是一种单相体系。
6、表面活性物质是由亲水性极性基团和疏水性非极性基团组成的,能使溶液表面张力降低的物质,具有稳定泡沫的作用。
蛋白质是很好的界面活性物质。
7、影响泡沫稳定的主要因素:气泡壁液体由于重力作用产生离液现象和液体蒸发,表面黏度和马兰高尼效果。
8、果胶作为细胞间质,与纤维素、半纤维素、糖蛋白一起发挥细胞壁的作用。
二、判断1、制作食品泡沫时,一般都是先打发泡,然后再添加糖,以使泡沫稳定。
三、名词解释1、离浆:凝胶经过一段时间放置,网格会逐渐收缩,并把网格中的水挤出来,把这种现象称为离浆2、马兰高尼效果:当气泡膜薄到一定程度,膜液中界面活性剂分子就会产生局部的减少,于是这些地方的表面张力就会比原来或周围其它地方的表面张力有所增大。
因此,表面张力小的部分就会被局部表面张力大的部分所吸引,企图恢复原来的状态。
这种现象称作马兰高尼效果。
四、简答与分析1、淀粉糊化过程中的粘度变化:淀粉糊化过程中的粘度变化颗粒代表支链淀粉,曲线代表直链淀粉答:天然淀粉是一种液晶态结构。
在过量水中加热时,淀粉颗粒吸水膨胀,使处于亚稳定的直链淀粉析出进入水相,并由螺旋结构伸展成线形结构。
物性学2.4
八 . 多要素模型
前言:为了更准确的模拟实际粘弹性体的流变特 征,很多时候需要建立更复杂的模型,这些模型 包括的力学元件不仅多,还可以进行任意搭配, 这种复杂的模型称为多要素模型。 常见的粘弹性体流变学分析,多用应力松弛和蠕 变实验。 而研究着两种试验的复杂流变现象利用广义模型 较为方便。 利用广义模型:把若干个麦克斯韦或开尔芬模型 并联或串联而组成的模型。
σ / ŋ1· t / ŋ1· t。
当在时刻t1 去掉载荷,模型将发生蠕变恢复, E1的虎克体瞬时恢复到 t1 t 原长,开尔芬模型在t= ∞后完全恢复,而阻尼体的变形无法恢复,整个 模型将产生残余形变,大小为σ
∵ ŋ2 = ∞, ∴ τ2 = ∞, 此时应力松弛式应为:
七 三 要 素 模 型
σ= ε0 E1e-t/ τ1+ ε0 E2
由许多开尔芬模型串联而成 的模型,用来分析蠕变性质 比较方便。 n i=1
ε=σΣ 1/ EMi(1- е-t/ τKi )
广义开尔芬模型
有残余应力存在的广义开尔芬模型
σ (t)= ε0 E1e-t/ τ1+ ε0 E2e-t/ τ2
四 要 素 模 型 的 应 力 松 弛 曲 线
σ(t)
σ= ε0 E1e-t/ τ1+ ε0 E2e-t/ τ2 ε E1+ ε E2
0
t
四 要 素 模 型 的 蠕 变 过 程 解 析
一个麦克斯韦模型和开尔芬模型串联
当加载荷应力σ时,整个模型的形变 相当于E1的虎克体,ŋ1 的阻尼体, 以及ŋ2 、E2的开尔芬体的叠加,设 开尔芬模型的弹性滞后时间 τk= ŋ2 / E2则有蠕变变形为:
注:既可表示牛顿流体性质,也可以表示非牛 顿流体性质。不特殊说明时,代表牛顿流体。
食品物性学
1 简述食品物性学主要内容和基本方法。
主要内容:食品物性学主要以食品的物理学性质为基本内容:食品的力学性质、光学性质、热学性质和电学性质等。
⑴食品的力学性质包括食品在力的作用下产生变形、振动、流动、破断等的规律,以及其与感官评价的关系等。
⑵食品的热学性质包括比热容、潜热、相变规律、传热规律及与温度有关的热膨胀规律等。
⑶食品的电学性质主要指食品及其原料的导电特性、介电特性、以及其他电磁核物理特性。
⑷食品的光学性质指食品物质对光的吸收、反射及其对感官反应的性质。
基本方法:(1)食品物性学是一门牵涉多学科领域的科学。
研究时应掌握一定物理学、物理化学、食品生化、高分子化学及食品工程原理等知识。
同时也涉及生物学、生理学、心理学等学科内容,所以应注意综合运用这些知识。
(2)食品物性学是一门实践性比较强的科学。
研究学习时,要求对食品加工有较多的实践经验。
食品物性学研究往往没有现成的模型或仪器,需要自己设计测试装置或有实验结果建立模型。
只有这样才能真正掌握这门科学,并做到善于应用它去解决食品开发中的各种问题。
(3)食品物性学是一门新的体系尚未形成的科学,有许多领域的研究还仅仅是一些初步的试验,系统的结论还需今后长期的研究。
所以,研究学习时要善于综合联想、大胆创新,对本学科内容举一反三、开拓新的研究思路,不仅真正掌握它的研究方法,而且能对食品物性学体系的形成做出贡献。
2 简述虎克模型、阻尼模型、滑块模型、麦克斯韦模型、开尔芬—沃格特模型、四要素模型和多要素模型的基本力学特征。
⑴虎克模型是用一根理想的弹簧表示弹性的模型,也称“弹簧体模型”或“虎克体”。
虎克模型完全代表弹性体的表现,即加载荷的瞬间同时发生相应的变形,变形的大小与受累的大小成正比。
⑵阻尼模型流变学中把物体黏性用一个阻尼体模型表示,称为“阻尼体模型”或“阻尼体”。
阻尼模型瞬时加载荷时,阻尼体及开始运动;当去载荷时,阻尼模型立刻停止运动,并保持其变形,没有弹性反复。
食品物性学【精选文档】
绪论:1)食品的质量因素:营养特性、感官特性、安全性。
2)流变学:流变学( Rheology)是研究物质在力的作用下变形和流动的科学。
3)食品流变学:食品流变学是在流变学基础上发展起来的, 它以弹性力学和流体力学为基础,主要应用线性粘弹性理论, 研究食品在小变形范围内的粘弹性质及其变化规律,测量食品在特定形变情况下具有明确物理意义的流变响应。
食品流变学的研究对象是食品及其原料的力学性质。
(了解)通过对食品流变学特性的研究,可以了解食品的组成、内部结构和分子形态等,为产品配方、加工工艺、设备选型及质量控制等提供方便和依据。
4)其他几个性质稍作了解.第一章1)物质的结构:是指物质的组成单元(原子或分子)之间相互吸引和相互排斥的作用达到平衡时在空间的几何排列.分子内原子之间的几何排列称为分子结构,分子之间的几何排列称为聚集态结构。
食品物质:聚集态结构2)高聚物结构研究的内容:1 高分子链的结构:近程结构(一级结构)、远程结构(二级结构);2 高分子的聚集态结构又称三级或更高级结构。
3)高分子内原子间与分子间相互作用:吸引力(键合原子之间的吸引力有键合力,非键合原子间、基团间和分子间的吸引力有范德华力、氢键和其他力。
)和推拒力(当原子间或分子间的距离很小时,由于内层电子的相互作用,呈现推拒力。
)键合力包括共价键、离子键和金属键。
在食品中,主要是共价键和离子键。
范德华力包括静电力、诱导力和色散力。
范德华力是永远存在于一切分子之间的吸引力,没有方向性和饱和性。
作用距离0.26nm,作用能比化学键能小1一2个数量级。
氢键:它是极性很强的X一H键上的氢原子与另一个键上电负性很大的Y原子之间相互吸引而形成的(X一H…Y).氢键既有饱和性又有方向性.氢键的作用能为12一30kJ/mol氢键作用半径一般为0。
17一0。
20nm。
氢键可以在分子间形成,也可以在分子内形成。
疏水键并不是疏水基团之间存在引力,而是体系为了稳定自发的调整。
食品物性学固态与半固态食品的物性
流变性质对食品品质的影响:分析流变性质对食品品质的影响,如口感、质地、保质期等方面的差异。
不同食品的流变性质比较:列举不同食品的流变性质,如面包、饼干、果冻、肉制品等,并进行比较分析。
流变性质与食品加工的关系:探讨流变性质与食品加工的关系,如加工工艺、设备选择、添加剂使用等方面的考虑因素。
加工特性的异同点
开发新品种和新产品:食品物性学可以通过研究不同种类和状态的食品的物性,为新品种和新产品的开发提供理论支持,从而满足消费者对不同口感和质地的需求。
改善食品质地:食品物性学可以通过研究食品的微观结构和性质,为固态和半固态食品的加工提供理论支持,从而改善产品的质地和口感。
提高食品稳定性:食品物性学可以研究食品的流变特性和微观结构,从而为固态和半固态食品的加工提供稳定剂和增稠剂等添加剂的选择和使用提供理论指导,提高产品的稳定性和保存性。
THANKS
汇报人:
利用食品物性学原理进行食品设计和开发
结合现代科技手段,实现个性化、功能化的食品开发
发展趋势包括:利用大数据和人工智能等技术手段,提高食品设计和开发的效率和精度
跨学科合作与交叉领域研究
食品物性学与材料科学的交叉研究
食品物性学与其他相关学科的合作与交流
食品物性学与计算机科学的融合
食品物性学与生物技术的结合
添加标题
黏性:固态食品的黏性是指食品在受到外力时容易黏附在一起的性质。例如,面粉和糖等食品通常具有较高的黏性。
添加标题
弹性:固态食品的弹性是指食品在受到外力后能够恢复原状的能力。例如,橡皮筋和口香糖等食品通常具有较高的弹性。
添加标题
脆性:固态食品的脆性是指食品在受到外力时容易破裂的性质。例如,饼干和面包等食品通常具有较高的脆性。
食品物性学
食品物性学
食品物性学是食品科学的一个重要分支,它致力于研究食品的物
理性质和物理性能,以帮助开发、分析和评估食品质量和安全性。
食品物性研究通常集中在液体食品、固体食品和混合食品之间的
不同物理性质上。
其中一个重要的物性是流变特性,它涉及食物的流
动过程,以及它们在物理上如何发生改变。
例如,液体食品的流变特
性可以用来测量液体的粘度,以及它们在流动过程中的变化。
此外,
固体食品的流变特性也很重要,例如分析固体食品的硬度和口感。
其他重要的物性有流体动力学、热学、电学和营养学特性。
食品
中的流体动力学特性可以用来测量食物的流速、流动方式和混合情况。
热学特性涉及食物的温度和热量传输,以及这种传输如何影响食物的
质量和安全性。
此外,电学特性会影响食物的电解质在其中的分布,
从而影响食物的品质。
最后,营养物性可以用来研究食物中的营养成分,以确定哪些成分具有最大的营养价值。
总之,食品物性学是一个复杂和多样化的科学,通过对食品中不
同物性的研究,可以更好地理解食物的制作、保存和运输过程,确保
向消费者提供优质的食品。
食品物性学考试复习题
食品物性学考试复习题食品物性学考试复习题食品物性学是食品科学中的重要学科之一,它研究食品的物理和化学性质,以及这些性质对食品质量和食品加工过程的影响。
对于食品科学专业的学生来说,掌握食品物性学的知识是非常重要的。
下面是一些食品物性学的考试复习题,希望对大家的复习有所帮助。
1. 什么是食品的物性?食品的物性是指食品的物理和化学性质,包括颜色、形状、质地、味道、营养成分等方面的特征。
2. 食品的颜色是由什么决定的?食品的颜色主要由其中的色素决定,如叶绿素、胡萝卜素、类胡萝卜素等。
此外,还受到光照、氧化、加热等因素的影响。
3. 什么是食品的质地?食品的质地是指食品的口感和咀嚼性,包括硬度、粘性、弹性等方面的特征。
4. 食品的质地是如何测量的?常用的方法是质地仪,通过测量食品在受力下的变形程度来评估其质地。
5. 食品的味道是由什么决定的?食品的味道主要由其中的香精、酸、甜、苦、咸等物质决定。
6. 食品的味道是如何感知的?食品的味道是通过舌头上的味蕾感知的,不同味蕾对应不同的味觉。
7. 食品的营养成分有哪些?食品的营养成分包括蛋白质、碳水化合物、脂肪、维生素、矿物质等。
8. 食品的营养成分如何测量?常用的方法有化学分析、生物学测定和光谱分析等。
9. 食品的pH值是什么?食品的pH值是指食品中氢离子浓度的负对数,用来表示食品的酸碱程度。
10. 食品的pH值对食品质量有什么影响?食品的pH值对食品质量有很大的影响,它可以影响食品的颜色、质地、味道和营养成分的稳定性。
11. 食品的水分含量是什么?食品的水分含量是指食品中水分的百分比,它是食品中最重要的组分之一。
12. 食品的水分含量如何测量?常用的方法有烘干法、滴定法和仪器分析等。
13. 食品的水分含量对食品质量有什么影响?食品的水分含量对食品的保存、质地和口感等方面都有重要影响。
14. 食品的热值是什么?食品的热值是指食品中每克含有的能量,通常以千卡或千焦单位表示。
食品物性学论文
食品物性学论文引言食品物性学是研究食品的物理性质和化学性质以及这些性质对食品质量和食品加工过程的影响的学科。
食品物性学对于食品工程师、食品科学家和食品生产厂商来说十分重要,它可以帮助他们更好地理解食品的特性,从而进行食品加工、质量控制和新产品的开发。
本文将重点介绍食品物性学的基本概念和一些常见的物性测试方法。
食品的物性食品的物性是指食品的物理和化学特性,包括了食品的形态、结构、力学性质、流变性质、传热性质等。
这些物性对于食品的加工、品质和储存都有着重要的影响。
形态和结构食品的形态和结构是指食品的外观、内部结构和组织特征。
食品的形态和结构可以直接影响到食品的口感和质感。
例如,在面包制作中,面团的形态和结构会直接影响到面包的蓬松度和口感。
力学性质食品的力学性质是指食品在外力作用下的变形行为。
常见的力学性质测试方法包括硬度测试、拉伸测试和压缩测试。
这些测试可以帮助我们了解食品的韧性、弹性和脆性等特性。
流变性质食品的流变性质是指食品在外力作用下的变形行为与应力关系的特性。
流变性质测试可以帮助我们了解食品的黏度、流动性和变形特性。
例如,在糖果制造中,流变性质的测试可以帮助我们确定最佳的糖浆黏度,以获得所需的糖果形状。
传热性质食品的传热性质是指食品在传热过程中的热传导特性。
食品的传热性质对于食品的加热、冷却和保温过程都有着重要的影响。
通过测量食品的传热性质,我们可以优化食品加工过程,提高生产效率和产品质量。
食品物性测试方法为了准确地了解食品的物性,我们需要借助一些测试方法和仪器。
下面介绍一些常见的食品物性测试方法:形态和结构测试形态和结构测试是通过观察和测量食品的外观、内部结构和组织特征来进行的。
常用的方法包括光学显微镜、扫描电子显微镜和X射线成像等。
力学性质测试力学性质测试可以通过应力-应变关系来评估食品的韧性、弹性和脆性等特性。
常用的方法包括质感分析、硬度测试仪和拉伸仪。
流变性质测试流变性质测试是通过应力和变形速率之间的关系来评估食品的黏度、流动性和变形特性的。
食品物性学(精品PPT)
食品物性学
1 绪论
1.1课程性质
食品物性学是食品科学与工程专业的 一门重要学科基础课。 专业基础课 32学时 1.2课程的定义及研究内容 物理学:研究物质的物理性质。 食品物性学(食品物理学):研究食 品及食品原料的物理性质。
我们对食品的关心体现在 食品的质量上。
1.4课程特点 本课程所涉及到的内容与高分子物理有很多相似之处. 主要原因是食品中的蛋白质、多糖和脂肪等主要成分 属于高分子物质,它们以一定结构形态和物性影响食 品的感官价值、营养价值和稳定性。高分子物理学是 以橡胶和塑料为研究对象的课程,它突出材料强度和 材料对光、电、热的稳定性问题。而食品物性学研究 的材料非常复杂,有些是有生命的活体,有些是有特 殊组织结构的物质(例如:果蔬产品和加工制品)或高分 子和小分子物质混杂.这些都有别于高分子物理学。本 课程还与力学、光学、电学、热学等许多课程有联系. 但是最大差异还是来自于所研究的材料差异。我们是 利用这些学科基本知识,解决食品和农产品的物性问 题,因此,欲学好本课程要有较好的物理学知识和工 程基础知识。
式中,Ek——分子间静电相互作用能; μ1、μ2——两种极性分子的偶极矩; R——分子间的距离; T——热力学温度; k——玻耳兹曼常数。 从上式可以看出,静电力大小受分子间的距离 影响最大。
(2)诱导力 当极性分子与其他分子 (包括极性 分子和非极性分子)相互作用时,其他分子产生 诱导偶极。极性分子的永久偶极与其他分子的 诱导偶极之间的作用力称为诱导力。作用能的 大小为:
疏水键 当疏水化合物或基团进入水中时,体系界面自 由能增加,嫡减少,这是一个热力学不稳定问 题。为此,体系将力图趋向稳定,尽量减少疏 水混合物与水接触面积,在嫡驱动下,疏水化 合物自发地相互靠近。因此,疏水键并不是疏 水基团之间存在引力,而是体系为了稳定自发 的调整。疏水键的键能在5~30kJ/mol范围内, 主要与疏水基团的大小和形状有关。疏水键在 稳定蛋白质的三维结构方面占有突出地位。
食品物性学复习知识点
食品物性学复习知识点一、名词解释1、食品物性学:是以食品〔包括食品原料〕为研究对象,研究其物理性质和工程特性的一门科学。
2、内聚能:定义为1mol的聚集体汽化时所吸收的能量。
3、结晶态:分子〔或原子、离子〕间的几何排列具有三维远程有序。
4、液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性〔如动植物细胞膜和一定条件下的脂肪〕。
5、玻璃态:分子间的几何排列只有近程有序,而远程无序,即与液态分子排列相似。
6、粒子凝胶:具有相互吸引趋势的离子随机发生碰撞会形成粒子团,当这个粒子团再与另外的粒子团发生碰撞时又会形成更大的粒子团,最后形成一定的结构形态。
7、聚合物凝胶:是由细而长的线形高分子,通过共价键、氢键、盐桥、二硫键、微晶区域、缠绕等方式形成交联点,构成一定的网络结构形态。
8、黏性:是表现流体流动性的指标,阻碍流体流动的性质。
9、牛顿流体:流动状态方程符合牛顿定律的流体统称为牛顿流体;非牛顿流体:流动状态方程不符合牛顿定律,且流体的黏度不是常数,它随剪切速率的变化而变化,这种流体称为非牛顿流体。
10、胀塑性流体:在非牛顿流动状态方程式中,如果1<n<∞,称为胀塑性流也随着增动;即随着剪切应力或流速的增大,那么黏性食品的流变特性a大。
11、塑性流体:当作用在物质上的剪切应力大于极限值时开始流动,否那么物质就保持即时形状并停止流动,具有此性质的物质称为塑性流体。
12、触变性流体:指当液体在振动、搅拌、摇动时,其黏性减少,流动性增加,但静置一段时间后,流动又变得困难的现象。
13、分散体系:是指数微米以下,数纳米以上的微粒子在气体、液体或固体中浮游悬浊的系统;在这一系统中,微粒子被称为分散相,分散的气体、固体或液体的介质被称为分散介质,也称连续相。
14、黏弹性食品:指既具有固体的弹性又具有液体的黏性这样两种特性的食品。
15、泊松比:固体在受到轴向拉伸或压缩应力时,轴向会伸长或缩短产生轴向应变,同时为了维持体积,径向也产生应变;对于一定的物质,其径向应变与轴向应变的比值往往是一个常数,称为泊松比,记作u。
物质科学领域的基本内容
物质科学领域的基本内容物质科学是一门涵盖了大量的研究领域的科学,它涉及到包括物理学、化学、材料学在内的多个领域,旨在探究物体的性质以及组成元素的性质。
物质科学的基本内容如下:一、物理学物理学是研究物质的属性、运动和结构的实证研究学科,是研究物体的物理性质的基础科学,涵盖了力学、电学、声学、热学、光学等许多学科领域。
物理学的基本原理主要是研究某一物质在不同情况下的性质及其变化,以及物质之间的相互作用。
二、化学化学是研究物质的组成、性质、变化和转化的基础科学,是对物质的结构、性质和变化规律的实验研究,是物质科学的核心科学。
化学研究的内容主要有:物质的组成、性质、变化和转化,以及物质之间的相互作用。
三、材料学材料学是研究物质的性质、结构和加工方法,以及材料在工程应用中的表现,并研究如何改善材料性能和使用寿命的基础科学。
材料学的内容包括材料的分类、性能、结构、加工方法等,以及材料的表征、测试、数值模拟和优化研究等。
四、物性学物性学是研究物质的性质、结构和变化规律的实验研究学科,是物质科学的一个重要分支,也是物质加工、分析、检测和控制的基础学科。
它的基本内容包括物质的性质、结构、变化规律以及物质的测定、加工、分析、检测和控制等。
五、物理化学物理化学是结合物理学和化学的基础理论,研究物质的物理性质和化学反应的规律的学科。
它的基本内容包括:物质的结构、性质、变化和转化,以及物质之间的相互作用,以及物理化学方法的研究,如电化学、热力学、流体动力学等。
物质科学是一门涵盖了许多领域的广泛科学,它包括物理学、化学、材料学、物性学等多个学科,通过研究物质的性质、结构和变化规律,使人们可以更好地理解物质,探索物质的真实性质,开发出新的材料,并有效地控制物质的性能,从而为社会的发展和进步做出重要的贡献。
物性学论文
食品物性学结课论文一.食品物性学研究的现状与趋势食品物性学(Physical Properties of Foods)是一门新兴的科学,是以食品及其原料为研究对象,研究其力学(流变学)、光学、热学、电学特性等物理性质的一门科学。
其发展大致可分为3个阶段:食品流变、食品质构和食品的光、电、热特性。
食品物性学是食品加工研究的基础,是食品科学与工程专业的一门重要的学科基础课。
食品科学与工程专业主要是培养具有化学、生物学、食品工程和食品技术知识,能在食品领域内从事食品生产技术管理、品质控制、产品开发、科学研究、工程设计等方面工作的食品科学与工程学科的高级工程技术人才。
而食品的品质控制、产品开发和设计等工作都离不开食品物性学的知识。
与国外相比,我国这方面的研究很少,尚处于起步阶段,与国外差距很大,高校对食品物性学课程的重视程度也有待提高。
《食品物性学实验》是四川大学食品工程系开设的一门专业实验课,而国内只有少数几家高校开设了该课程。
这些高校所开的实验项目基本上为基础性和验证性实验,导致学生重视程度不够,学习积极性不高。
因此,有必要对食品物性学实验项目进行改革,以调动学生的积极性和主动性,培养其实践能力和创新意识[1]。
基于我国对食品物性学现代教育的现状,我们有必要朝着以下目标努力:首先,在高校中大范围开设该课程,使同学普遍认识物性学的重要性;其次,改革教育方式,运动多层次教育,注重培养学生的综合能力;尤其是实验动手的能力;第三,引进双语教育,紧跟国外食品物性学的发展趋势,不断更新知识国内知识;最后,高校科技工作者在我国目前研究比较不成熟的项目如食品品质控制、产品研发和设计等方面要不断创新,引领我国食品物性学的不断完善。
二.流体食品——牛奶的物理特性及其应用1.牛奶常见的物理特性1.1在力学方面的特性所谓力学特性即指食品在力的作用下发生变形、振动、流动、破裂等的规律特性。
奶制品粘度的测量就是基于力学基础建立起来的,乳制品比重的测量也是如此;新鲜牛奶具有的清香味,基于牛奶分子的运动原理,牛奶中含有一定量的挥发性脂肪酸,故加热时,此种香气在加热时更为显著[2]。
食品物性学.
液体为连续相的胶体: 气泡(bubble):在液体中分散有许多 气体的分散系统。,当无数气泡分散在水中 时,溶液呈白色,这是一种气体溶胶。 乳胶体(emulsion):指两种互不相溶的液 体,其中一方为微小的液滴分散在另一方液 体中的胶体。
乳胶体一般由水、油、乳化剂构成。 乳胶体中,当连续相为水,分散相为油时, 称为水包油型(O/W型),如食品中生奶油、蛋 黄酱属于O/W型; 与之相反,成为油包水型,例如黄油、人 造奶油等属于W/O型。
食品的力学基础
1、食品物质的凝胶性 1)胶体的概念: 一般的食品不仅含有固体,而且还有水、空气存 在,属于分散系统或称为非均质分散系统,也称分散 系。 所谓分散系统是指数微米以下、数纳米以上的微 粒子,在气体、液体或固体中浮游悬浊的系统,以上 所说的微粒子称为分散相,而属于气体、液体或固体 的介质被称为分散介质或连续相(分散介质)。
食品的热学性质
常见的热学性质指标和研究内容有:比热容、 潜热、相变规律、传热规律及与温度有关的热 膨胀规律等。 在一些食品加工的单元操作中,如杀菌、 干燥、冷冻、熟化、烘烤等方面,热物性有十 分重要的作用,在改善食品的风味方面,热物 性也成为引人注目的研究新领域。
食品的电学性质
主要是指食品及其原料的导电特性、介电特性以 及其他的电磁物理特性。其研究领域主要分为: 1、食品品种状态的监控:食品的状态、成分的变化 往往反映在电学特性的变化上,用电测传感器的方法 把握食品的特性,尤其在食品的非破坏性检测(无损 检测)方面。 2、电磁物理加工:主要有静电场处理技术、电磁波 加工技术、通电加热技术、电磁场水处理技术、电渗 透脱水技术等。
最早将流变学引入食品加工研究的是荷兰人Scott
Blair,1953年写书《Foodstuffs ther Plasticity,Fludity
食品物性学考试复习题
食品物性学考试复习题食品物性学是一门研究食品材料的物理性质及其在食品加工和储存过程中的变化规律的学科。
以下是一些食品物性学考试的复习题,供同学们参考:1. 食品物性学的定义:- 简述食品物性学的研究内容和重要性。
2. 食品的物理性质:- 列举食品的几种基本物理性质,并解释它们在食品加工中的作用。
3. 食品的流变学特性:- 解释流变学是什么,以及它在食品工业中的应用。
4. 食品的热物理性质:- 描述食品的热传导、热容和比热容,并解释它们对食品加工的影响。
5. 食品的光学性质:- 讨论食品的颜色、透明度和光泽等光学性质,以及它们对消费者选择的影响。
6. 食品的力学性质:- 解释食品的硬度、弹性和韧性等力学性质,并讨论它们在食品加工和评估食品质量中的作用。
7. 食品的水分活度:- 定义水分活度,并讨论它在食品保存和微生物生长中的重要性。
8. 食品的凝胶化和凝固:- 描述食品中常见的凝胶化和凝固现象,以及它们在食品加工中的应用。
9. 食品的乳化和分散体系:- 讨论食品中的乳化和分散体系,以及它们对食品稳定性的影响。
10. 食品的气溶胶性质:- 解释气溶胶在食品中的应用,如泡沫和喷雾干燥。
11. 食品物性学在新产品开发中的应用:- 举例说明如何利用食品物性学原理开发新的食品产品。
12. 食品物性学在质量控制中的应用:- 讨论如何通过测量食品的物理性质来评估和控制食品质量。
13. 食品物性学在食品安全中的应用:- 描述食品物性学如何帮助确保食品的安全性和避免污染。
14. 食品物性学在食品工程中的应用:- 讨论食品物性学在设计食品加工设备和工艺中的作用。
15. 食品物性学的未来趋势和挑战:- 预测食品物性学领域的未来发展趋势,并讨论可能面临的挑战。
结束语:食品物性学是一个不断发展的领域,它对于食品工业的创新和食品质量的保证至关重要。
通过深入理解食品的物理性质,我们可以更好地控制食品加工过程,开发新产品,并确保食品的安全性和营养价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品物性学结课论文摘要:本文系统的论述了食品物性学这一新型学科的研究现状与趋势,着重论述食品电特性在食品工业中的应用,以及多孔状食品面包的主要物理特性和物性学评价指标,并设计实验进行系统的物性学评价。
关键词:物性学电特性面包一、食品物性学研究的现状与趋势食品物性学是以食品(包括食品原料)为研究对象,研究其物理性质的一门科学。
由于食品本身的复杂性及物理性质在人们对食品感官评价中的特殊位置,食品物性学包含了比物理学本身更广泛的学科领域,即食品物性学不仅包括对食品本身理化性质的分析研究,而且包括食品物性对人的感官产生的所谓感觉性质的研究。
纵观所有与物性学相关的书籍教材,概括起来有食品的结构形态、固体食品的基本物理特性、食品流变学特性、食品的质构特性、食品的力学性质、食品的热物性、食品的电特性、食品的光学特性等。
食品的结构形态包括微观上的分子间相互作用各化学成分的分子结构和形态等。
固体食品的基本物理特性包括形状、尺寸、密度、体积、孔隙率、曲率半径等。
食品流变学主要研究作用于物体上的应力和由此产生的应变规律,是力变形和时间的函数,以虎克弹性定律和牛顿黏性定律为基础,在线性变形范围内研究物质流动和变形的科学食品质构特性主要指食品的组织结构,状态、口感、滋味等。
IFT委员会规定:食品的质构是指眼睛、口中的黏膜及肌肉所感觉到的食品的性质,包括粗细滑爽颗粒感等。
ISO 规定的食品的质构是指力学的触觉的可能的话还包括视觉的、听觉的方法能够感知的食品流变学特性的。
综合感觉食品的力学特性包括散体的振动特性流动特性应力分析等。
食品的热物性包括材料的热物理性质及其估算方法等。
食品的电学特性包括食品材料的介电特性介电特性电磁性等。
食品的光学特性是指光的吸收反射散射等。
目前,随着人们生活水平的提高,人们对食品的要求不但在量上,而且在质上,不但在营养上,还要求在感观上,这大大提高了食品工业的难度,也促进着食品学科的发展无论从学科建设学科发展还是从人才培养上,提高教学质量和培养学生能力是教学中最核心的问题,要明确学生的培养目的,根据培养目的,确定课程框架,食品物性学是食品加工研究的重要基础课程,开设食品物性学是非常必要的,有了食品物性学的学习,能使专业课程设置更合理,更完善通过食品物性学的学习,使学生了解食品的物理特性力学性质电物性热物性光学特性流变特性,及相关的实验原理与方法,将有助于研制新的产品,进行质量评定,质量控制与最佳工艺条件的确定。
二、食品电特性的应用电特性在食品加工中的应用,一是更有效地利用其电磁物理性质;二是来更好地对食品成分、组织、状态等品质进行分析和监控。
食品的电物理加工包括电磁波加工、静电场加工以及电阻抗加工等。
电磁波加工大致可以分为商用交流电、高频波、微波、红外线辐射、紫外线辐射等几类。
食品加工应用较广的是微波、红外线辐射和紫外线辐射。
微波萃取具有萃取速度快、产率高、产品品质好、色泽浅、无污染等优点。
用于油脂的萃取时,王平艳等对葵花子进行微波正己烷萃取发现该法的出油率比压榨法高。
微波萃取在提取天然产物有效成分中也很有效。
微波萃取还可用于果胶、麦角固醇等的萃取。
微波加热因在理论上无温度梯度,相对传统加热方法穿透力强,热惯性小,节能高效,具有反射性和透射性,所以在食品加工中被广泛应用。
微波加热可用于干燥食品,郑捷夫研制的微波无油方便面,复水性强,与油炸方便面相比能较好地保持原有的色、香、味,且能够减少营养成分及维生素的损失,有较长的保质期。
微波加热用于焙烤食品,如面包的烤制,可使面包品质得到很好的改善,使其结构均匀,内芯不粘牙,缩短加工时间并延长面包的货架期。
微波用于动物性冻制食品的调温、解冻所需时间短,表里解冻均匀,解冻过程食物成分损失少。
其它冷冻食品如水饺、馒头等都可以选择微波设备来加工。
微波加热用于大蒜除臭,大豆除腥等的加工,也具有较好的效果。
微波杀菌的应用已相当广泛,微波杀菌机理可用热效应和非热效应来解释。
热效应是指微波产热使得微生物内的蛋白质、核酸等分子改性,从而达到杀菌的效果。
非热效应是指在电磁场作用下,微生物的细胞壁破裂,致使细胞内核酸和蛋白外泄导致微生物死亡。
微波杀菌已用于固体物料、保健品、乳制品、豆制品、淀粉类制品、饮料制品、蔬菜制品、调味品、水产品、水果等的杀菌保鲜及对包装材料和容器的灭菌。
此外,微波还可用于酒类、发酵调味品的催陈,绿茶杀青,蔗糖汁的减色等工艺过程。
红外线是指波长0.75~1000um之间的电磁波。
热辐射效率最大的理想物体称为黑体。
普通食品加工所使用的加热温度范围大都在300~500K,这一温度范围内,黑体或近似黑体的物质辐射能量密度最大波长正是在2.5~20um的远红外线波长范围,因此远红外线有较高的辐射效率。
另一方面水中羟基O-H键伸缩振动的固有频率与波长2.7um的电磁波相同,所以当接受远红外线辐射时,水和其他含有羟基的食物成分与远红外线发生共振,引起物料温度上升,从而使物料得以加热。
远红外线的波长较长,对物料的穿透性强,且远红外线的光子能量级小,一般只产生热效应,不会引起物质的化学变化,对食品的营养成分和色泽不会造成影响,远红外线被物料吸收的程度也不受物料色泽的影响,所以使用远红外热加工,物料受热均匀,加工品质优良。
远红外线在食品加工中可用于点心、肉等的烘烤,烹调食品的保温,冷藏食品的快速加热,谷物、大豆、咖啡、茶叶等的干燥,油炸食品如炸鱼、炸虾、炸土豆片等的炸制,无水煮食品的加工,酒、调味品、水果的催熟,肉类制品、谷物、面粉的杀菌等。
波长在200~400nm的电磁波通称为紫外线,根据波长把紫外线分为短波紫外线(波长200~280nm)、中波紫外线(波长280~320nm)、长波紫外线(波长320~400nm)。
短波、长波紫外线均有杀菌效果,其中短波的杀菌效果最好。
紫外线在食品加工中多应用在杀菌上,也可应用于果蔬的保鲜及对加工食品性能的改善。
食品工业中,紫外线杀菌主要用于三个领域:表面杀菌、空气杀菌和液体杀菌。
表面杀菌常用于包装材料的消毒,如在牛乳的生产中,用紫外线对包装材料消毒,可使其货架期延长到两周。
紫外线也可用于食品表面的消毒,如Huang 和Toledo证明紫外辐射可明显减少新鲜鱼的表面菌群。
空气杀菌主要用于食品加工环境的消毒,如果蔬的去皮操作中,用紫外线处理过的气流流过去皮单元,产品质量会显著提高。
同样的技术也用于孵化室和冷藏室。
液体杀菌的应用是因为紫外线处理可有效杀灭水中大部分微生物和减少环境污染。
紫外线消毒不改变水的颜色、味道和pH值,在日本,紫外线辐射已用于天然矿泉水的消毒。
虽然有报道说FDA正在考虑允许紫外线用于果汁的杀菌,但封明仁认为紫外线不宜用于饮料灭菌,这是因为紫外线穿透性较弱,不能杀灭饮料液体深层的细菌。
此外,紫外线对固体食品物料的杀菌也有较多报道。
紫外线在果蔬的保鲜中也有极大的潜在市场,如萝卜采摘后,用紫外线对其处理发现植物抗毒素得到了一定的积累,可增加萝卜对霉菌的抵抗能力。
用紫外线处理的新鲜草莓可延长货架期4~5d,除紫外线可杀灭其表面微生物外,研究发现紫外线处理后果实的呼吸强度减低,酸度增加,而且经处理的果实的硬度也比未经处理的果实要高。
紫外线辐射会对加工食品的性能有所改善,Rhim等研究了紫外线对蛋白膜的影响,发现用紫外线照射小麦谷蛋白、玉米蛋白、鸡蛋清蛋白和酪蛋白形成蛋白膜后,前三种蛋白的拉伸强度增加,对酪蛋白的拉伸强度虽然没有影响但减少了可溶性物质,所以用紫外线辐射可改善蛋白膜的功能。
余东霞等发现使用适当强度的紫外线可降低猪肉中脂肪和胆固醇的含量。
鲭鱼肉糜经紫外线处理后其蛋白质之间发生交联,凝胶强度上升,可显著改变产品的感官质量。
牛乳、蘑菇经紫外线处理后,VD含量都得以提高。
高压静电场对食品的加工可分为静电分离、静电熏制、静电干燥、静电保鲜、静电解冻等,它们的原理都是使离子化的气体在电场内移动,传递物质的散体微粒(尘埃、熏烟等)。
这样的带电粒子再受电场作用,从一极向另一极进行定向移动,从而达到加工所需目的。
静电分离是指静电场下对粉体粒子的分离;静电熏制是指在静电场内让熏烟雾粒子向各种食品表面或内部渗透,达到快速均匀熏制的目的。
在高压静电场中研究和应用最多的是其在干燥、保鲜和解冻方面的应用。
日本学者浅川发现在高压静电场下,水的蒸发变得非常活跃。
施加电场后,水的蒸发速度加快,当去掉电场后,水蒸发的潜热大大降低。
李里特等通过实验发现静电场可使琼脂凝胶的干燥速率明显加快,水分的蒸发速率随电场强度增大呈线性升高,随电极间距离的增加呈指数下降。
张璐等做了常温下高压静电场中豆渣的干燥试验,结果表明电场作用下豆渣干燥速率是不加电场干燥的两倍左右,节能率在85%~90%。
食品解冻中的微生物污染、耗能及风味改变一直是食品生产中的大问题,为此,高压静电场下食品的解冻渐渐被人们所重视。
日本的Tatsukiyo Ohtsuki经实验证实,高压静电场中,-3°C~﹢3°C下金枪鱼片、牛肉片的解冻时间仅为同样温度下的1/4~1/3,且解冻后无明显汁液流失,微生物指标也明显低于对照样。
谢晶等以马铃薯为研究对象,在不同场强下对冻结马铃薯解冻,发现高压静电场对其解冻过程、解冻后质量均有很大影响。
杨光德对高压静电场的果蔬保鲜机理进行了较为深入的分析,认为高压静电场下果蔬内部能量分布、细胞膜电势都发生了改变,生物酶活性得以降低,呼吸代谢活动受到抑制,催熟激素乙烯被分解,果蔬的后熟被破坏,从而有效地保持水分,达到保鲜的效果。
李里特、方胜研究了高压静电场下黄瓜、豇豆和西红柿的保鲜,发现三者的保鲜期相比对照组都有延长。
石贵玉等用高压静电场处理温州蜜柑,蜜柑的贮藏时间有所延长。
高压静电场和超高压杀菌、辐射杀菌一样是近20年发展起来的冷杀菌技术,具有保持食品中功能成分的生理活性,保持食品色、香、味及其营养成分的特性。
黄炜等利用高压静电场对单一菌液、液态的果汁和固态的豆腐干、鱼丸及芹菜进行杀菌,发现随着杀菌时间的延长,杀菌效果明显上升,得出高压静电场杀菌在一定程度上是一种较好的杀菌技术,对食品无不良影响的结论。
蒋耀庭等利用高压静电场对生酱油进行处理,对处理后的酱油进行香气成分、氨基酸含量、理化指标等进行分析,表明高压静电场不但可杀灭酱油中的有害细菌,同时还可改善酱油的色、香、味。
利用直流电流加工食品归纳起来主要有电渗透、电渗析、电泳及电浮选等;利用交流电主要有欧姆加热。
电渗透的脱水机理为电场作用下蛋白质四周的水分子形成带正电荷的离子氛相对于蛋白质运动,从而达到脱水的目的。
日本的领木等人首次将电渗透脱水应用于食品领域,将鱼糜的含水量从75%降到38%;李里特等把电渗透脱水用于食品植物蛋白的固液分离,取得了较好的效果。