阴离子表面活性剂曲线

合集下载

阴离子合成洗涤剂57504标准曲线

阴离子合成洗涤剂57504标准曲线

阴离子合成洗涤剂57504标准曲线在化工生产和实验室研究中,阴离子合成洗涤剂是一种常见的化学品,而其57504标准曲线则是对其浓度进行精确测定的重要工具。

本文将从深度和广度两个方面对阴离子合成洗涤剂的57504标准曲线进行全面评估,并根据此提供有价值的文章内容。

1. 背景介绍阴离子合成洗涤剂是一类常用的清洁剂,其主要成分是含有阴离子表面活性剂的化学品。

这种化学品对于去除油脂和污垢具有很好的效果,因此在洗涤剂、清洁剂和卫生用品中被广泛应用。

而为了确保产品的质量和安全性,需要对阴离子合成洗涤剂的成分浓度进行准确测定,而57504标准曲线正是用来进行这一目的的。

2. 57504标准曲线的作用阴离子合成洗涤剂的57504标准曲线是一种用来测定其成分浓度的分析方法。

它通过测定洗涤剂在一系列稀释浓度下的吸光度,建立起一条浓度与吸光度的标准曲线,从而可以通过测定样品的吸光度来反推其成分浓度。

这种标准曲线可以为化验或产品质量控制提供准确可靠的数据支持,确保产品质量的稳定和可控。

3. 如何绘制阴离子合成洗涤剂的57504标准曲线要绘制阴离子合成洗涤剂的57504标准曲线,首先需要准备一系列不同浓度的洗涤剂溶液,并将它们分别置于紫外可见分光光度计中进行吸光度测定。

根据所得数据绘制出浓度与吸光度的标准曲线图,并通过回归分析等方法来得出标准曲线的数学表达式。

这样,就可以通过测定待测样品的吸光度,并代入标准曲线的方程中,来计算出其成分的浓度。

4. 个人观点和理解阴离子合成洗涤剂57504标准曲线的准确绘制对于产品质量的稳定和可控具有至关重要的意义。

只有通过严格的实验操作和数据分析,才能绘制出准确可靠的标准曲线,从而保证对产品成分浓度的准确测定。

在相关实验和生产中,要格外重视对于标准曲线的绘制和使用,确保产品质量和安全性。

总结回顾在本文中,我通过对阴离子合成洗涤剂57504标准曲线的深度评估,介绍了其在化学分析中的重要作用,并共享了个人对于其意义的理解。

CMC的测定 - 报告

CMC的测定 - 报告

物理化学设计性实验——CMC的测定学院:化学与分子工程学院班级:应用化学108班姓名:宁加彬学号:1002010806CMC的测定摘要: 表面活性剂的一个重要性质是其临界胶束浓度(Critical MicelleConcentration,简称CMC)。

本文利用电导率法对阴离子表面活性剂十二烷基硫酸钠(SDS)的CMC进行了研究,测试了这种离子型表面活性剂在不同温度时电导率变化,从而得到温度对SDS的临界胶束浓度的影响规律,也利用了分光光度法对阴离子表面活性剂十二烷基硫酸钠(SDS)的CMC进行了测定。

并对有关实验结果作了探讨。

关键词: 临界胶束浓度(CMC) ;电导率法;分光光度法;十二烷基硫酸钠(SDS) ;温度。

1.引言:表面活性剂是一种具有两亲性质的物质可以显著的改变体系表面的性质,在许多领域都有应用,如:在纺织工业中做洗涤剂、均染剂和分散剂,在石油工业中作为驱油剂提高原油采收率或进行油田杀菌等。

而临界胶束浓度会使体系的性质发生突变,因此研究表面活性剂的临界胶束浓度对表面活性剂在化学化工方面的应用有着十分重要的作用。

一定条件下的任何纯液体都具有表面张力,20℃时,水的表面张力为72.75mN·m-1。

当溶剂中溶入溶质时,溶液的表面张力因溶质的加入而发生变化,水溶液表面张力的大小因溶质不同而改变,如一些无机盐可以使水的表面张力略有增加,一些低级醇则使水的表面张力略有下降,而肥皂和洗衣粉可使水的表面张力显著下降。

使液体表面张力降低的性质即为表面活性。

表面活性剂是指那些具有很强表面活性、能使液体的表面张力显著下降的物质。

此外,作为表面活性剂还应具有增溶、乳化、润湿、去污、杀菌、消泡和起泡等应用性质,这是与一般表面活性物质的重要区别。

表面活性剂分子一般由非极性烃链和一个以上的极性基团组成,烃链长度一般在8个碳原子以上,极性基团可以是解离的离子,也可以是不解离的亲水基团。

极性基团可以是羧酸及其盐、磺酸及其盐、硫酸酯及其可溶性盐、磷酸酯基、氨基或胺基及它们的盐,也可以是羟基、酰胺基、醚键、羧酸酯基等。

阴离子表面活性剂曲线

阴离子表面活性剂曲线

阴离子表面活性剂曲线
阴离子表面活性剂曲线(CationicSurfaceActiveAgent,CSA)是一种特殊功能物质,在化学、化工和工业应用中广泛使用。

它们能有效地阻止矿物沉淀、润湿表面材料,以及改善表面活性剂的活性和稳定性。

CSA的主要成分是包含有阴离子的分子,其具有一种负的有机离子,它的结构取决于它的抗离子力和电荷密度。

抗离子力是关于电荷密度的函数,而这决定了阴离子表面活性剂的比表面张力的值。

CSA的比表面张力与电荷密度之间的函数关系可由曲线Cypers
模型表示,它可以概括性地描述比表面张力和电荷密度之间的关系,这个模型被称为Cypers模型曲线。

在Cypers模型曲线中,电荷密度从零增加到最大值,随着电荷密度的增加,比表面张力几乎不变。

当电荷密度大于最大值时,比表面张力开始增加,表明阴离子活性剂不再受到电荷密度的影响,而只受到其他外部因素的影响,如温度、pH值等。

Cypers模型曲线有助于分析阴离子表面活性剂的性能特性和应用情况,它们可以帮助用户了解阴离子表面活性剂在不同环境条件下的作用机制,如高温、低温、湿热、酸性、碱性等环境。

此外,Cypers模型曲线还可以帮助开发新的阴离子表面活性剂。

该模型可以通过模拟不同的表面活性物质来发现新的表面活性物质,这种新的表面活性剂具有优越的性能,可以满足工业和化学的需要。

总而言之,Cypers模型曲线是一种有用的工具,它可以帮助研
究者更准确地分析阴离子表面活性剂的性能,并为新型阴离子表面活性剂的开发提供理论指导。

同时,它也有助于开发新的性能优越的表面活性剂,满足不同领域的需求。

GBT 7494—1987 测定水质阴离子表面活性剂方法优化

GBT 7494—1987 测定水质阴离子表面活性剂方法优化

Science and Technology & Innovation ┃科技与创新·129·文章编号:2095-6835(2015)03-0129-01GB/T 7494—1987测定水质阴离子表面活性剂方法优化花建丽(河南广电计量检测有限公司,河南 郑州 450000)摘 要:根据《水质 阴离子表面活性剂的测定 亚甲蓝分光光度法》(GB/T7494—1987)测定水质阴离子表面活性剂,其原理为:阳离子染料亚甲蓝与阴离子表面活性剂相互作用生成蓝色的盐类,该生成物可被氯仿萃取,并于652 nm 处测量氯仿层的吸光度。

该方法操作烦琐、选择性差,且需要大量的有毒溶剂(氯仿)。

因此,研究、优化了上述操作,减少了反复萃取次数和有毒溶剂的用量,同时,保证了测定的准确性。

关键词:阴离子表面活性剂;氯仿;亚甲蓝分光光度法;分液漏斗中图分类号:O657.3 文献标识码:A DOI :10.15913/ki.kjycx.2015.03.129随着世界经济的快速发展和科学技术的不断进步,表面活性剂的发展十分迅猛。

其应用领域已从化学工业发展到国民经济的所有部门,因此,它又被称为“工业味精”。

但大量使用会增加表面活性剂排入废水中的量,导致江河湖泊和海洋等的水质污染问题日益严重。

而使用阴离子表面活性剂(简称“LAS ”),其被排入水中后不会产生不易消失的泡沫,并会消耗水中的溶解氧。

因此,测定表面活性剂是环境水质监测中的重要监测项目之一。

目前,紫外分光光度计已普及。

《水质阴离子表面活性剂的测定》(GB/T 7494—1987)中的亚甲蓝分光光度法具有简便、快捷和设备易操作等优点,已被广泛用于LAS 的测定。

但在运用该方法测定阴离子表面活性剂的过程中,明显存在一些不足,比如操作烦琐、必须进行三次萃取等,且很多实验也证明萃取时间和操作过程对实验有较大的影响。

同时,使用有毒的氯仿会对环境造成二次污染,且氯仿的使用量较大,一个样品需要消耗50 mL 的氯仿。

阴离子表面活性剂标准曲线

阴离子表面活性剂标准曲线

阴离子表面活性剂标准曲线
阴离子表面活性剂是一种有机化合物,它具有表面活性,可以与水溶液中的其
他物质结合,形成聚合物。

它们可以用来制备洗涤剂、护肤品、润滑剂等产品。

阴离子表面活性剂标准曲线是一种用于测量阴离子表面活性剂性能的技术。

它可以用来测量阴离子表面活性剂的活性、稳定性、抗热性、抗冻性等性能。

阴离子表面活性剂标准曲线的测量方法是:将阴离子表面活性剂溶液加入到一
定浓度的水溶液中,然后用pH计测量溶液的pH值,并记录下来。

随着溶液的浓度增加,溶液的pH值也会随之变化。

当溶液的浓度达到一定程度时,溶液的pH值会达到最低点,这个最低点就是阴离子表面活性剂的最低活性点。

阴离子表面活性剂标准曲线的测量结果可以用来评估阴离子表面活性剂的性能。

它可以帮助我们了解阴离子表面活性剂的活性、稳定性、抗热性、抗冻性等性能,从而为我们提供有效的参考。

总之,阴离子表面活性剂标准曲线是一种有效的测量阴离子表面活性剂性能的
技术,它可以帮助我们了解阴离子表面活性剂的性能,为我们提供有效的参考。

海水阴离子表面活性剂

海水阴离子表面活性剂

海水中阴离子表面活性剂的测定作业指导书1 主题含义及有关质量或排放标准1.1 主题含义规定了测定海水中阴离子表面活性剂的方法。

2 分析方法2.1 方法出处亚甲基蓝分光光度法海洋监测规范第4部分海水分析GB17378.4-2007(23)2.2适用范围本法适用于海水。

对有较深颜色的水样本法受干扰。

有机的硫酸盐、磺酸盐、羧酸盐、酚类以及无机的氰酸盐、硝酸盐和硫氰酸盐等引起正干拢,有机胺类则引起负干扰。

本方法为仲裁方法。

2.3 原理阴离子洗涤剂与亚甲基蓝反应,生成蓝色的离子对化合物,用氯仿萃取后,在650 nm波长处测定吸光值。

测定结果以直链烷基苯磺酸钠((LAS,烷基平均碳原子数为12)的表观浓度表示,实际上是测定了亚甲基蓝活性物质(MBAS)。

2.4 试剂和材料2.4.1直链烷基苯磺酸钠标准贮备溶液(1. 00 mg/mL):称取100. 0 mgLAS溶于50 mL水中,全量转人100 mL量瓶,加水至标线,混匀。

在冰箱内保存.至少可稳定6个月。

2.4.2 直链烷基苯磺酸钠标准使用溶液(10. 0ug/mL):量取10. 0 mL标准贮备溶液于100 mL量瓶中,加水至标线,混匀。

再量取10. 0 mL此溶液于100 mL量瓶中,加水至标线,混匀。

此标准使用溶液1. 00 mL含LAS 10.0ug。

在冰箱中保存,可稳定7 d。

2.4.3 氯化钠(NaCl)溶液:300 g/L。

2.4.4 亚甲基蓝溶液:于1 000 mL烧杯中加500 mL水,加50 g磷酸二氢钠(NH2P()4·H2 ()),搅拌下缓缓加入6. 8 mL硫酸(H2SO,p=1. 84 g/mL),加入50 mg亚甲基蓝(C16H18N3C1S·3H20)指示剂,搅拌溶解,加水至1 000 mL,混匀。

转入棕色试剂瓶保存。

2. 4. 5 洗涤液:于1 000 mL烧杯中加入500 mL水,加人50 g磷酸二氢钠,搅拌下缓缓加入6. 8 mL硫酸,搅拌溶解。

阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅰ)——表面活性

阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅰ)——表面活性

阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅰ)——表面活性第36卷第3期2OO6年6月日用化学工业ChinaSurfactantDeter~ent&CosmeticsV oI.36No.3June20o6阴离子表面活性剂与阳离子表面活性剂的相互作用(I)表面活性杜志平,王万绪(中国日用化学工业研究院,山西太原030001)摘要:通过临界胶束浓度(cmc),最低表面张力(y一),表面吸附(I1),表面膜强度和表面润湿等,介绍了阴/N离子表面活性剂混合溶液的表面活性.阴/阳离子表面活性剂混合溶液,消除了同电荷之间的斥力,形成了正,负电荷间的引力,十分有利于两种表面活性剂离子间的缔合,同时还增加了疏水性.因此,在适宜条件下,可以使胶团更容易形成,表面(或界面)上吸附量增加,使得复配溶液具有很低的表面和界面张力,提高表面活性.不仅等摩尔比的混合溶液的cmc和y一显着下降,非等摩尔t 昆合也使cmc减小,y一降低.等摩尔混合溶液表面吸附层分子摩尔比近于l:1,其他不同比例时,表(界)面层摩尔比在大多数情形中仍接近1:1.吸咐层呈等比组成时达到最大电性吸引,表(界)面吸附量趋于饱和.与此同时,由于吸附层中分子间静电吸引力的较强相互作用,还使得表面膜机械强度增加,并表现出良好的润湿性能.关键词:阴离子表面活性剂;阳离子表面活性剂;表面活性;表面吸附;表面膜;润湿性中图分类号:TQ432.1文献标识码:A文章编号:1001—1803(2006)03—0187—04 表面活性剂是一类易吸附于界面,从而明显改变界面的物理性质的两亲化合物,在其分子结构中同时含有极性和非极性基团,即头基和尾基.表面活性剂的分类方法很多,一般根据极性基团的类型划分为,阴离子,阳离子,两性离子和非离子四大类.阴离子表面活性剂含有带负电荷的极性头基,如羧酸基(一COO一),硫酸基(一0s0)和磺酸基(一S03-)等;而阳离子表面活性剂则含有带正电荷的头基,如三甲基铵(一N(CH3)3),三乙基锛(一P(C2))等.表面活性剂性能的优劣既取决于其分子结构的特点,即极性基团和非极性基团的组成,又受物理化学环境及分子间相互作用的影响.改进表面活性剂的应用性能的途径一般有两种:一种是根据结构与性能的关系设计合成新型表面活性剂,另一种是通过多种表面活性剂的复配得到具有优越应用性能的产品.开发表面活性剂新品种虽然有意义,但通过分子结构的调整去达到特定的综合性能,往往难度大,且实际应用前的毒性安全性试验又十分费事,费力而昂贵.相比之下通过研究表面活性剂问的相互作用,利用其在一定条件下的协同效应使之达到特定的综合性能往往比前者迅速,经济,有效.因此,几十年来该领域内的研究工作一直十分活跃,已经建立起比较系统的理论体系和实验手段l1J.对于离子电性相反的阴,阳离子表面活性剂混合体系,虽然低浓度时表现出极高的表面活性,但是浓度提高时,极容易形成大的相对分子质量,不易电离,由疏水阴离子与疏水阳离子构成的盐沉淀,失去表面活性_2J.因此,长期以来,涉及此领域的研究不多.随着科学研究的进一步深入,人们发现在适当的条件下,阴/阳离子表面活性剂复配可以不发生沉淀,而且由于强烈的相互作用,可以有明显的协同作用,使表面活性得到极大提高l3.4J,下面进行简单介绍.1临界胶束浓度和最低表面张力疏水基相同,亲水基分别为有机基团(即其中有疏水部分)作为反离子及无机离子作为反离子表面活性剂的对比研究表明,前者的l临界胶束浓度(c啪)小,最低表面张力(ytoo)也低,即表面活性高.对十二烷基烷基硫酸铵表面活性剂同系物表面活性的研究,发现cmc值随季铵离子中烷基链长增加而下降l5J(表1).类比这种表面活性剂的分子结构与阴/阳离子表面活性剂复配体系在水溶液中的缔合情况,可以设想在适宜条件下,后者有可能在溶液中不发生沉淀,并具有比单一表面活性剂更高的表面活性.收稿日期:2006—01—10;修回日期:20O6—02—24作者简介:杜志平(1960一),女(汉),山西人,教授级高工,英国I.KNN2lfl大学博士,联系电话:(0351)4084691,E—mail:**************.l87-嘲日用化学工业第36卷表1十二烷基烷基硫酸铵水溶液的cmc(25℃)[5]Tab.1cmcofalkylammoniumdodecylsulfates(25oC)表面活性剂cmc/mol?LI1[C2H5N(CH3)3]c12sO4一[QN(CH3)3]c12s04一[C6H13N(CH3)3]cnn~s04一[CsU17N(CH3)3]c12SO4一[C10H21N(CH3)3]c12H:sSO4一[C2H5NH3]CniluSO4一[C4H9NH3]C12H25S04[c6HI3NH3]C12H~SO4[H17NH3]C12一c8Hl7N(CH3)3Br/C8Hl7SO4Na等摩尔复配溶液的表面张力及界面张力测定结果表明:混合物的表面活性远较单一表面活性剂为高l6J,其水溶液的cmc约为7.5×l0~mo[/L,是纯C8H】7N(C)3Br的1/35,纯H17S04Na的1/20;空气/水表面的y约为23mN/m (纯C8H17N(CH3)3Br为41mN/m,纯C8H17so4Na为38mN/m).此1:1的混合物可使庚烷/水界面张力降至单一表面活性剂难以达到的0.2mN/m(纯c8H17N (C)3Br为14mN/m,纯C8H17S04Na为11raN/m)L6J. 表2列出一些阴/阳离子表面活性剂混合物和单一表面活性剂的cmc和y,可以看出,不仅等摩尔比的阴/阳离子表面活性剂混合物显示出高表面活性,非等摩尔配比时,阴/阳离子表面活性剂混合也使cmc减小,y一降低,表面活性提高l_5J.少量阳离子表面活性剂与阴离子表面活性剂混合(或少量阴离子表面活性剂混入阳离子表面活性剂),即可使溶液的表面活性明显提高lI.c8Hl7N(Ctt3)3Br/C8H17S04Na混合溶液的表面张力(y)与组成()间的关系曲线(图1),更能形象说明阴/阳离子表面活性剂在表面活性上的相互促进作用l6J.图1表明,少量C8H17SO4Na与c8H17N(CH3)3Br混合(或少量C8H17N(CH3)3Br混入c8H17S04Na),都可使溶液的表面张力迅速降低,在等摩尔比混合时表面张力达到最低值6.这种情况,不但存在于浓度较大时(图1中曲线3),而且在浓度较小时(图1中曲线1和曲线2)也存在.阴/阳离子表面活性剂混合物的增效作用,不仅表现在原来已具有相当大的表面活性的表面活性剂上(如c12以上),而且对于表面活性不大,不易生成胶团的两亲分子(如H1N(cH3)3Br,C8H17SO4Na)和特殊表面活性剂(如含氟表面活性剂)亦有此种特性_5].即使在单纯溶液中表面活性很低,不能形成胶团的短链"表面活性剂",阴/阳离子混合体系也有很高的表面活性,可以在较低浓度188?时即形成胶团【引.C6H13N(c)3Br和Hl3s04Na混合溶液的表面活性就相当高,ClTIC约为1.1×l0~moVL,比c8Hl7SO4Na的cmc还低,y.也比c8Hl7S04Na{l~[.由此可见,阴/阳离子表面活性剂之间强烈的作用,使混合表面活性剂的表面活性大为增加,具有普遍性.表2某些表面活性剂的唧和),一值(25℃)【5JTab.2ticandncofsuffactantmixtures(25oC)注:1)1:1阴/阳离子表面活性剂复配体系的一按单一表面活性剂浓度计算,非等摩尔比复配体系的—c则按总浓度计算.混合溶液总质凰摩尔浓度(m)/rmJ?kg一[6J:l5×l0一21×l032×l0图1H17N(CH3)3Br/CsHl7so4Na混合溶液的y与的关系曲线(25℃)Fig.1Surfacetension(),)ofC8HI7N(CH3)3Br/C~Ht7SO4Na mixtureslt8afunctionofmoleratio()阴/阳离子表面活性剂复配后的沉淀现象是由于强静电作用使两者相结合,形成不溶于水的相对分子质量较大的结合体而造成的,如果能够控制疏水链的长度,用短链表面活性剂或增加亲水基团(乙氧基化),则有可能在溶液中不出现沉淀现象,并使表面活性较单一组分有大幅度提高,达到增效作用.表3为辛基酚聚氧乙烯硫酸钠(c8H】7c6}{4(I)C2H4)9.6OSO3Na)与十二烷基三甲基溴化铵(C12Hz~N(CH3)3Br)以不同摩尔比333333333一一一一一一一一一OOOOOOOOO×××××××××∞勰∞∞g{勰42OO521O箜杜志平等:阴离子表面活性剂与阳离子表面活性剂的相互作用(I)——表面活性复配后的cmc和),一,说明在一种组分中加入很少的另一种组分,即产生很强的相互作用,使混合体系具有高表面活性l8J.由于较大聚氧乙烯基团的引入,在各种配比和浓度(如超过2X10I3mol/L)下,混合溶液都能呈透明均相状态.表3c8H17c6H4(OQIt4)9.6OS03Na与c12H25N(CH3)3Br混台体系的cme和)/eme[8]Tab.3cmcandy—ofQHI7C6H4(0C2H4)9.6OSOzNaandCl2HuN(CH3)sBrmixtures2表面吸附(r)由于阴,阳离子表面活性剂间存在异性离子问强烈的静电吸引作用,复配后会使表面吸附量明显增加,导致高表面活性【.在吸咐层呈等比组成时达到最大电性吸引,表面吸附层分子排列更紧密,吸附量增加达到最大值』.在c8H17N(cHa)3Br/C8H17so4Na等摩尔复配时,饱和吸附量可达5.6X100mol/cm2,相应的每个吸附分子平均所占面积约为0.3砌2,比单一表面活性剂溶液表面吸附层的最小分子面积(均大于0.4nrn2)小得多J.表4列出了C8H】7N(C)3Br/c8H17S04Na混合溶液在空气/水表面和正庚烷/水界面的吸附情况_6J.在所研究浓度下,等摩尔混合溶液的表(界)面吸附层中,c8Hl7N(cH3)3和c8Hl7So4一的摩尔比近于1:1;对于其他不同比例的混合溶液,表(界)面层中C8H】7N(CH3)3和C8H17So4一的摩尔比在大多数情形中仍接近1:l,不过在C(c8Hl7N(CH3)3Br)比例较小时也会出现r(c8H】7N(cH3)3)<PT的情况,因为在溶液浓度相当小时,离子问相互作用的影响减弱J.以上结果说明正,负离子的强烈电性相互作用对表,界面吸附的影响.表面吸附量增加形成排列紧密的碳氢链层,使得原来强极性,表面能较高的水表面,改变为非极性,低表面能的"油"表面,因而在很大程度上改变了表面性质,使之更接近于碳氢化合物表面.等摩尔cH1(cH3)3Br/C8H17S04Na混合溶液的最低表面张力(约23mN/m)与正辛烷的表面张力(约22mN/m)相近,以及溶液/庚烷的界面张力极低(<1mN/m)的现象,就是很好的例子.表4不同比例C8Hl7N(C}王3)3Br/QH17SO4Na混台溶液中表面活性离子的吸附量[6]Tab.4r(C8H17N(CH3)3)andrTofC8H17SO4NdC8H17N(CH3)3Brmixtures'Na):c(b"/,TX.10l,oCn(BH17N(CH3)3BI)/'L~,mdⅢ'an2/lll0I'咖一空气/100:13.00×10_..2.35.4水表面10:14.00×10一2.55.21:14.00×10—2.65.41:102.00×1022.65.4正庚烷/20:12.00×101.83.7水界面10:14.00×10~2.14.25:14.00×10—32.04.21:Q::兰:Q阴/阳离子表面活性剂混合溶液,不但消除了同电荷之问的斥力,而且形成了正,负电荷问的引力,十分有利于两种表面活性剂离子问的缔合,同时也就增加了疏水性.因此,在表面(或界面)上的吸附增加,也使胶团更容易形成,提高表面活性.3表面膜强度阴/阳离子表面活性剂混合体系表面吸附量的增加,使复配溶液具有很低的表面和界面张力.同时,由于吸附层中分子间静电吸引力的较强相互作用,表面膜机械强度增加.表5给出浓度为7.5X10I3mol/L 时气泡和液滴的"寿命"l6],在此浓度时,等摩尔复配溶液的气泡寿命比单一表面活性剂大得多;正庚烷液滴在"油"/水界面上的情况也相似.由于泡沫(或液滴)表(界)面吸附层中分子排列紧密以及分子之间较强的相互作用,使得表(界)面粘度增大,表面膜机械强度增加,使之受外力作用时不易破裂,泡沫(或液滴)内气(液)体流失速度变慢,透过性降低,延长了寿命.表5气泡在空气/水表面及正庚烷液滴在正庚烷/水界面的寿命l(25oC)[]I曲.5Lifetimeofairbubbleatair/watersurfaceandlifetime ofheptanedropatheptanefwaterinterface注:1)单泡法测溶液液面下形成气泡(液滴)后直至因守气(液体)透过液膜而消失的时间,以s为单位(在此浓度气泡或液滴不破裂).l89?斓4表面润湿日用化学工业第36卷与阴/阳离子表面活性剂混合溶液表现出的高表面活性相对应,混合溶液表现出良好的润湿性能.图2为C8Hl7N(CH3)3Br/Hl7s04Na混合溶液在石蜡表面上的润湿情况(图中c为体系总浓度,原文为lgc(CaH17N(CH3)3Br),可能有误,因为(C8H17N(cH3)3Br):(C8H17SO4Na)=0:1的曲线不可能在lgc(CsHl7N(c)3Br)下做出).在同一浓度(1×10I2mol/L)时,单一表面活性剂溶液在石蜡上的润湿角()约为100.,接近纯水在石蜡上的润湿角;而阴/阳离子表面活性剂混合溶液则显着不同,等摩尔混合溶液(1:1)润湿角可以降到l6.,在石蜡上近于铺展;在一种离子表面活性剂中只要加入少量电荷相反的另一种离子表面活性剂(1:10),润湿能力即有很大提高L2j2.对于其它比例(如l:50)的混合溶液,也有类似的情况.一3.5—3—2.5—2—1.5—1一O.50IgTn(c8Hl7N(CH3)3Br):n(c8Hl7SO4Na)[63:10:121:1031:1图2c8Hl7N(cHa)3Br/C8Hl7SO4Na混合溶液在石蜡表面的润湿角Fig.2ContactanglesofmixedC8Hl7N(Clt3)3Br/QH17SO4Na solutionatap日nsurfaceasafunctionoflgCT5小结阴/阳离子表面活性剂混合体系,由于其分子间极性基团的强静电吸引作用,表现出的临界胶束浓度(cmc)和表(界)面张力大大低于单一组分,使得表面吸附量(r)明显增大,润湿性能显着提高等.参考文献[1]HOLLANDPM,RUBINGHDN.Mixedsurfactantsystems[M]. Washington:AnOverview,InMixedSurfactantSystems,HollandPM, Rubin#DN(eds),AmericanChemicalSociety,1992:2—30.[2]赵国玺,朱耻瑶.正一负离子表面活性剂研究的新进展[c]//中国日用化学工业研究院信息中心.92国际表面活性剂,洗涤剂研讨会论文集.太原:中国日用化学工业信息中心.1992:4o5—412.[3]AMANTEJC,SCAMEHORNJF,HARWELLJHH.Precipifionof mixturesofanionicandcationicsurfactants[J].JColloidInterfaceSci, 1991.144(1):243—253.[4]STELLNERK,AMANTEJC,SCAMEHORNJF,eta1.Precipitionphenomenainmixturesofanionicandcationicsurfactantsinaqueoussolutions[J].JColloidInterfaceSci,1988,123(1):186—200.[5]赵国玺,朱砖瑶.表面活性剂作用原理[M].北京:中国轻工业出版社.2003.[6]赵国玺,程玉珍,欧进国.等.正离子表面活性剂与负离子表面活性剂在水溶液中的相互作用[J].化学,1980,38(5):409—420.[7]李学刚,宋丽.阴,阳离子混合表面活性剂的表面活性[J].日用化学工业,1997(3):12—15.[8]李学刚,张光先.阴阳离子表面活性剂混合体系的表面活性[J].西南农业大学,1995,17(4):286—290.[9]SHINODAK.Colloidsurfactants[M].NewY ork:AcadPress,1963.[10]HARMEDHS.Thephysicalchemistryofelectrolyticsolutions[M].2nded.NewY ork:ACSMonographSet,Reinhold,1950.InteractionsbetweenaIli0Ilicsurfactantsandcationicsurfactants(I)——SurflaceactivityDUZhi—ping.WANGWan—xu (ChinaResearchInstituteofDailyChemicalIndustry,Taiyuan030001,China) Abstract:Thesurfaceactivityofmixedanionicsurfactantsandcationicsurfactantshasbeenr eviewedbycriticalmicelleconcentrationcmc),surfacetensionatcmc(),cm),surfaceadsorption,strengthofsurfaceme mbrane(1ifetimeofairbubblesandheptanedroplets),andwettingpower(contactangleatparaffinsurface)andsoon.Duetost rongelectrostaticattraction betweenthemoleculesofanionicandcationicsurfactants.山eaggregationsofmixedsolutionshouldbemucheasier山an山isofsingle—ionicsurfactantsolution.AttheSalTletimehydropobicityisenhanced.Thus,undersuitablec onditions,theformation ofmicellesbecomesmucheasierandthemixturesblendmayhavehighersurfaceactivity.Thevaluesofcmcandomofmixedsystemswel'~obviouslylowerthantheseofsinglesystemsnotonlvat1:1moleratiobutalsoat othermoleratios.Themole ratioofthemoleculesatsurfaceadsorptionlayerisnearlyl:1whetherthemoleratioofbulksolu tionatl:lornot.Therefore.thesurfaceviscosity,thestrengthofthesurfacemembranesandthewettingpowerabilitywel' ~improvedbymixinganionicsurfactantsandcationicsurfactants.Keywords:anionicsurfactant;cationicsurfactant;surfaceactivity;surfaceadsorption;surfa cemembrane;wettability。

(完整版)阴离子表面活性剂分析方法亚甲基蓝分光光度法(GB7494-87)

(完整版)阴离子表面活性剂分析方法亚甲基蓝分光光度法(GB7494-87)

阴离子表面活性剂分析方法亚甲基蓝分光光度法(GB7494-87)1.1 阴离子表面活性剂含义阴离子表面活性剂主要指直链烷基苯磺酸钠类物质。

它的污染会造成水面产生不易消失的泡沫,并消耗水中的溶解氧。

2.1 适用范围:本方法适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS),亦即阴离子表面活性物质。

在实验条件下,主要被测物是LAS、烷基磺酸钠和脂肪醇硫酸钠,但可能存在一些正的和负的干扰。

当采用10mm光程的比色皿,试份体积为100ml时,本方法的最低检出浓度为0.05mg/L LAS,检测上限为2.0mg/L LAS。

2.2 原理:阳离子染料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,统称亚甲蓝活性物质(MBAS)。

该生成物可被氯仿萃取,其色度与浓度成正比,用分光光度计在波长652nm处测量氯仿层的吸光度。

2.3 试剂:在测定过程中,仅使用公认的分析纯试剂和蒸馏水,或具有同等纯度的水。

2.3.1氢氧化钠4%(NaOH):1mol/L。

2.3.2硫酸3%(H2SO4):0.5mol/L。

2.3.3氯仿(CHCl3):三氯甲烷(分析纯)2.3.4直链烷基苯磺酸钠贮备溶液。

称取0.100g标准物LAS(平均分子量344.4),准确至0.001g,溶于50ml水中,转移到100ml 容量瓶中,稀释至标线并混匀。

每毫升含1.00mgLAS。

保存于4℃冰箱中。

每周配制一次。

2.3.5直链烷基苯磺酸钠标准溶液。

当天配制准确吸取10.00ml直链烷基苯磺酸钠贮备溶液(2.3.4),用水稀释至1000ml,每毫升10.00μgLAS。

2.3.6亚甲蓝溶液。

先称取50g一水磷酸二氢钠(NaH2PO4·H2O)溶于300ml水中,转移到1000ml容量瓶中,缓慢加入6.8ml浓硫酸(H2SO4,ρ=1.84g/ml),摇匀。

另称取30mg亚甲蓝(指示剂级),用50ml 水溶解后也移入容量瓶,用水稀释至标线,摇匀。

(完整版)阴离子表面活性剂分析方法亚甲基蓝分光光度法(GB7494-87)

(完整版)阴离子表面活性剂分析方法亚甲基蓝分光光度法(GB7494-87)

阴离子表面活性剂分析方法亚甲基蓝分光光度法(GB7494-87)1.1 阴离子表面活性剂含义阴离子表面活性剂主要指直链烷基苯磺酸钠类物质。

它的污染会造成水面产生不易消失的泡沫,并消耗水中的溶解氧。

2.1 适用范围:本方法适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS),亦即阴离子表面活性物质。

在实验条件下,主要被测物是LAS、烷基磺酸钠和脂肪醇硫酸钠,但可能存在一些正的和负的干扰。

当采用10mm光程的比色皿,试份体积为100ml时,本方法的最低检出浓度为0.05mg/L LAS,检测上限为2.0mg/L LAS。

2.2 原理:阳离子染料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,统称亚甲蓝活性物质(MBAS)。

该生成物可被氯仿萃取,其色度与浓度成正比,用分光光度计在波长652nm处测量氯仿层的吸光度。

2.3 试剂:在测定过程中,仅使用公认的分析纯试剂和蒸馏水,或具有同等纯度的水。

2.3.1氢氧化钠4%(NaOH):1mol/L。

2.3.2硫酸3%(H2SO4):0.5mol/L。

2.3.3氯仿(CHCl3):三氯甲烷(分析纯)2.3.4直链烷基苯磺酸钠贮备溶液。

称取0.100g标准物LAS(平均分子量344.4),准确至0.001g,溶于50ml水中,转移到100ml 容量瓶中,稀释至标线并混匀。

每毫升含1.00mgLAS。

保存于4℃冰箱中。

每周配制一次。

2.3.5直链烷基苯磺酸钠标准溶液。

当天配制准确吸取10.00ml直链烷基苯磺酸钠贮备溶液(2.3.4),用水稀释至1000ml,每毫升10.00μgLAS。

2.3.6亚甲蓝溶液。

先称取50g一水磷酸二氢钠(NaH2PO4·H2O)溶于300ml水中,转移到1000ml容量瓶中,缓慢加入6.8ml浓硫酸(H2SO4,ρ=1.84g/ml),摇匀。

另称取30mg亚甲蓝(指示剂级),用50ml 水溶解后也移入容量瓶,用水稀释至标线,摇匀。

阴离子表面活性剂测定

阴离子表面活性剂测定

阴离子表面活性剂的测定亚甲蓝分光光度法GB7497-37阴离子表面活性剂是普通合成洗涤剂的主要活性成分,使用最广泛的阴离子表面活性剂是直链烷基苯磺酸钠(LAS)。

本方法采用LAS 作为标准物,其烷基碳链在C10~C13之间,平均碳数为12,平均分子量为344.4。

1 适用范围本标准规定了测定水溶液中的阴离子表面活性剂的亚甲蓝分光光度法。

本方法适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS),亦即阴离子表面活性物质。

在实验条件下,主要被测物质是LAS、烷基磺酸钠和脂肪醇硫酸钠,但可能存在一些正的和负的干扰。

当采用10mm光程的比色皿,试份体积为100ml时,本方法的最低检出浓度为0.05mg/LLAS,检测上限为2.0mg/LLAS。

2 原理阴离子染料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,统称亚甲蓝活性物质(MBAS)。

该生成物可被氯仿萃取,其色度与浓度成正比,用分光光度计在波长652nm处测量氯仿层的吸光度。

3 试剂3.1 氢氧化钠(NaOH):1mol/L3.2 硫酸(H2SO4):0.5mol/L3.3 氯仿(CHCl3)3.4 直链烷基苯磺酸钠贮备溶液秤取0.100g标准物质LAS(平均分子量344.4),准确至0.001g,溶于50ml水中,转移到100ml容量瓶中,稀释至标线并混匀。

每毫升含1.00mgLAS。

保存于4°C冰箱中。

如需要,每周配置一次。

3.5 直链烷基苯磺酸钠标准溶液准确吸取10.00ml直链烷基苯磺酸钠贮备溶液(3.4),用水稀释至1000ml,每毫升含10.0?gLAS。

当天配置。

3.6 亚甲蓝溶液先秤取50g一水磷酸二氢钠(NaH2PO4·H2O)溶于300ml水中,转移到1000ml容量瓶内,缓慢加入 6.8ml浓硫酸(H2SO4,ρ=1.84g/ml),摇匀。

另秤取30mg亚甲蓝(指示剂级),用50ml水溶解后也移入容量瓶,用水稀释至标线,摇匀。

阴离子表面活性剂LAS简介

阴离子表面活性剂LAS简介

LAS:英文缩写,代表意思广泛,组织、化工品、专业名称等等的缩写,凡关键词首字母的排列顺序为L、A、S皆可用此。

1、直链烷基苯磺酸钠化学物:直链烷基苯磺酸钠(Linear Alkylbenzene Sulfonates),属于烷基苯磺酸盐物质的理化常数国标编号----CAS号中文名称阴离子洗涤剂(LAS) ,直链烷基苯磺酸钠盐英文名称Linear Alklybezene Sulfonates别名阴离子表面活性剂分子式C18H29SO3X;CH3(CH2)9CH(CH3)C6H4SO3X 外观与性状分子量344.4(平均) 蒸汽压熔点溶解性密度稳定性危险标记:低毒物质,泡沫多、刺激性大,有一定致畸性。

主要用途:用作洗涤剂,已逐步被淘汰,包括某直销产品的洗洁精在美国和韩国已经因LAS 被淘汰。

用途:通常作为家庭合成洗涤剂、洗涤餐具和蔬菜用的厨房洗涤剂(目前被部分国家淘汰使用);除用作厨房洗涤剂之外, 还用作家庭用清洁剂、去污粉等的配制成分, 以及在洗衣店用的洗涤剂、纤维工业用的煮炼助剂、洗涤剂、染色剂、金属电镀过程用的金属脱脂剂、造纸工业用的树脂分散剂、毛毡洗涤剂、脱墨剂, 在制造树脂乳胶液聚合过程中用的乳化剂、在农药工业乳剂用的乳化剂、颗粒剂和可湿性粉剂用的分散剂、皮革工业用的渗透脱脂剂、肥料工业用的防结块剂、水泥工业用的加气剂等许多方面, 作为配合成分或单独使用;近年来, 在石油开采中3次回收用胶束溶液驱油法等新技术方面也有所应用.。

毒害:LAS对动植物有毒害。

直链烷基苯磺酸盐(LAS)和非离子表面活性剂(NIS)是产量和消耗量都相当大的两类表面活性剂.文章从生物降解性、毒性及在环境和生物体内的累积性3个方面分析了它们的环境安全性,认为表面活性剂对环境会产生不同程度的影响.LAS对动植物有毒害,在环境中和生物体内有累积(尽管易降解)。

物理指标:耐硬水性和钙皂分散能力差、耐强碱性差。

LAS的水溶液随着水硬度的增加而变得混浊,直至不透明;LAS相对AES和醇醚羧酸AEC及其盐AEC—Na的钙皂分散能力差。

阴离子表面活性剂标准曲线

阴离子表面活性剂标准曲线

阴离子表面活性剂标准曲线阴离子表面活性剂是一类具有表面活性的化学物质,其分子结构中含有一个或多个亲水基团和一个或多个疏水基团。

在水中,阴离子表面活性剂分子会自组装成胶束结构,能够降低液体表面张力,使液体更容易湿润固体表面,从而起到乳化、分散、渗透和去污等作用。

为了对阴离子表面活性剂的性能进行评估,通常会使用标准曲线来进行分析。

标准曲线是一种定量分析的方法,通过测定一系列已知浓度的标准溶液的吸光度或荧光强度,建立起吸光度或荧光强度与物质浓度之间的关系曲线,从而可以根据待测溶液的吸光度或荧光强度值,推算出其浓度。

在建立阴离子表面活性剂标准曲线时,需要选择一个合适的检测方法。

常用的方法包括紫外-可见分光光度法、荧光光谱法、高效液相色谱法等。

其中,紫外-可见分光光度法是一种简单、快速、准确的分析方法,适用于大多数阴离子表面活性剂的测定。

在进行分析时,需要注意选择合适的波长范围,并对样品进行预处理,如稀释、过滤等。

在实验中,我们首先准备一系列不同浓度的标准溶液,然后分别测定它们的吸光度或荧光强度值,绘制出标准曲线。

通常情况下,标准曲线呈线性关系,可以通过线性回归分析得到拟合直线的方程,从而可以根据待测溶液的吸光度或荧光强度值,通过方程求解得到其浓度。

在实际应用中,阴离子表面活性剂标准曲线可以用于分析水样中阴离子表面活性剂的浓度,监测环境水体的污染情况;也可以用于质量控制,检测工业产品中阴离子表面活性剂的含量,确保产品质量符合标准要求。

总的来说,阴离子表面活性剂标准曲线是一种重要的分析方法,通过建立标准曲线,可以准确、快速地测定阴离子表面活性剂的浓度,具有广泛的应用前景。

在实验中,我们需要严格按照标准操作程序进行,确保实验结果的准确性和可靠性。

同时,也需要不断完善和改进分析方法,提高分析效率和精度,为阴离子表面活性剂的分析与应用提供更好的技术支持。

阴离子表面活性剂(LAS)(烷基笨磺酸钠) 亚甲蓝分光光度法

阴离子表面活性剂(LAS)(烷基笨磺酸钠) 亚甲蓝分光光度法

阴离子表面活性剂(LAS)(烷基苯磺酸钠)亚甲蓝分光光度法GB 7497-87《水和废水监测分析方法》(第四版)P694一、方法的适用范围本方法适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS),亦即阴离子表面活性物质。

在实验条例下,主要被测物是LAS、烷基磺酸钠和脂肪醇硫酸钠,但可能存在一些正的和负的干扰。

当采用10mm比色皿,试样为100ml时,本方法的最低检出浓度为0.050mg/L LAS;检测上限为2.0mg/L LAS。

二、仪器1.分光光度计:能在652nm进行测量,配有5、10、20mm比色皿。

2.250ml分液漏斗,最好用取四氟乙烯(最好用PTFE活塞)3.索氏抽提器(150ml平底烧瓶,Φ35×160mm抽出筒,蛇形冷凝管)。

三、试剂1.氢氧化钠(NaOH):1mol/L。

2.硫酸(H2SO4):0.5mol/L。

3.氯仿(CHCl3)。

4.直链烷基苯磺酸钠标准贮备溶液:称取0.100g标准物LAS(平均分子量344.4,称准至0.001g),溶于50ml水中,转移到100ml容量瓶中,稀释至标线,混匀,每毫升含1.00mgLAS。

保存于4℃冰箱中。

每周配制一次。

5.直链烷基笨磺酸钠标准溶液:准确吸取10.0ml直链烷基苯磺酸钠标准贮备液,用水稀释至1000ml,每毫升含10.0μgLAS。

当天配制。

6.亚甲蓝溶液:称取50g一水合磷酸二氢钠(NaH2PO4·H2O)溶于300ml水中,转移到1000ml容量瓶内,缓慢加入6.8ml浓硫酸(H2SO4,=1.84g/ml),摇匀。

另称取30mg亚甲蓝(指标剂级),用50ml水溶解后也移入容量瓶,用水稀释至标线,摇匀。

此溶液贮存于棕色试剂瓶中。

7.洗涤液:称取50g一水磷酸二氢钠(NaH2PO4•H2O)8.酚酞批示剂溶液:将1.0g酚酞溶于50ml乙醇,然后边搅过加入50ml水,滤去沉淀物。

阴离子表面活性剂(概论)

阴离子表面活性剂(概论)
性能与用途:此类产品除具有表面活性外,其突出优点是低毒、低刺激 性。因而广泛用于人体洗涤品、化妆品和牙膏、食品等。
3.聚醚羧酸盐
结构类型:聚醚羧酸盐其分子式如下:
R-(OC2H4)nOCH2COONa 合成路线:聚醚羧酸盐是聚乙二醇型非离子 表面活性剂进行阴离子化后的产品。以高级醇聚 氧乙烯醚这种非离子表面活性剂为原料,与氯乙 酸钠反应或与丙烯酸酯反应,均可制备这种产品。
②盐析 在皂胶中加入电解质食盐,使皂胶中过量的水和杂质 分离出来,得到纯的皂胶。杂质包括水解生成的甘油、色 素、磷脂、动植物纤维、机械杂质等。将有害杂质出去, 可从废液中回收甘油。为使分离的干净,盐析、碱析可进 行多次。
③碱析 在皂胶中加入一定的碱,使未完全皂化的油脂 进一步皂化,并降低皂胶中氯化钠等无机盐的含量,进 一步出去杂质,净化皂胶。
松香酸皂另一个重要用途是作为造纸施胶剂。近来,这种 施胶剂不断发展和改进。如松香与马来酸酐(或富马酸) 加成,再经甲醛改性,最后制成钾皂,可作强化施胶剂使 用。
松香是一种来源丰富、价格便宜的再生型天然化工原料。 我国有着丰富的松脂资源,目前年产量50万吨,松香产量 40万吨/年,居世界第一位。在当前表面活性剂原料短缺, 价格上涨,环保要求更高的情况下,开发利用松香类合成 表面活性剂,无疑具有资源优势
2.4.1 阴离子表面活性剂概述 2.4.2 阴离子表面活性剂的性能及合成原理 2.4.3阴离子表面活性剂生产方法及工艺过程 2.4.4 主要阴离子表面活性剂介绍
阴离子表面活性剂一般特性:
(1)溶解度随温度的变化存在明显的转折点,即在较低的一 段温度范围内随温度上升非常缓慢,当温度上升到某一定 值时其溶解度随温度上升而迅速增大,这个温度叫做表面 活性剂的克拉夫特点,(Krafft point),一般离子型活性 剂都有Krafft点;

阴离子型表面活性剂的特性

阴离子型表面活性剂的特性

§8.1 表面活性物质的结构及分类
2. 表面活性剂的分类 非离子表面活性剂特点: (1) 是表面活性剂的第二家族,产量仅次于阴离子表面活性剂。
(2) 由于在水中不能解离,因此稳定性高。不受酸、碱、盐所 影响,耐硬水性强。 (3) 可与阴、阳、两性离子型表面活性剂混合使用,相容性好。
(4) 由于不能电离,故在固体表面不易发生强烈吸附。并且不 会与蛋白质结合,因而毒性低,对皮肤刺激性较小。
• 两憎:憎水又憎油,摩擦系数小。可用作润滑剂。
§8.1 表面活性物质的结构及分类
2. 表面活性剂的分类 特殊类型的表面活性剂:
含氟表面活性剂: • 含氟分子之间的相互作用力小,因此它的表面张力小, 是迄今为止所有表面活性剂中表面活性最高的一种。表现 为其最低表面张力和临界胶束浓度都低于碳氢表面活性剂。 并且碳氟链越长,表面活性越高。
表面活性剂的效率与有效值在数值上常常是相反的。例如, 当憎水基团的链长增加时,效率提高而有效值降低。
§8.2 表面活性物质在气液界面上的吸附
(6) 具有较高的表面活性,其水溶液表面张力低,临界胶团 浓度低,胶团聚集数大,增溶作用强,具有良好的乳化作 用和去污力。 (7) 起泡性差,适合配制低泡型洗涤剂。
(8) 产品大多微液状或浆状。
§8.1 表面活性物质的结构及分类
2. 表面活性剂的分类 高分子型表面活性剂(一般分子量在10000以上):
1. 表面活性剂的定义及结构
a
纯液体中加入其它的组
分变成溶液后,其表面张力
会发生变化。
a: 无机酸、碱、盐和多羟基有机
物(如蔗糖、甘露醇等)。溶液的
b
表面张力随浓度增加而缓慢增大
c
(大致成线性关系) ----表面惰性物质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档