模糊控制原理课件优秀课件

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E ke(eeH2 eL) EC k ec (e ceH c2 eL c)
式中,< >代表取整运算(四舍五入)。
3.1 模糊控制的基本原理
输入量和输出量论域的设计
模糊控制器的输出U可以通过下式转换为实际的输出值u:
ukuUuH2uL
Ke选的较大时,系统的超调变大,过渡过程变长。 Ke增大, 相当于缩小了误差的基本论域,增大误差变量的控制作用。
Kec选的较大时,系统的超调变小,系统的响应速度变慢。
Ku选的过小时,系统动态响应过程变长,选择过大会导致系 统振荡。 Ku影响着控制器的输出,能过调整Ku可以改变被控 对象输入的大小。
3.1 模糊控制的基本原理
对输入量进行模糊化处理,包括确定语言变量和隶属函数
确定语言变量的语言值 通常在语言变量的论域上,将其划分为有限的几档。 例如,可将E、EC和U的划分为 {“正大(PB)”,“正中(PM)”,“正小(PS)”, “零(ZO)”,“负小(NS)”,“负中(NM)”, “负大(NB)”}七档。
模糊控制原理课件
第三章 模糊控制原理
模糊控制的基本原理 模糊控制系统的分类 模糊控制器设计 模糊控制的应用
第三章 模糊控制原理
3.1 模糊控制的基本原理
3.1.1 模糊基本思想
模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础 的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过 程的一种智能控制方法。
模糊化
将输入的精确量转化成为模糊量的过程称为模糊化
模糊化步骤
确定符合模糊控制器要求的输入量和输出量 常用的输入量是系统输出的误差(e)和误差的改变量 (ec),而输出量就是控制量(u)。
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
基本论域
e ec u 的实际范围称为这些变量的基本论域
模糊化处理方法
模糊单点或单点模糊集合
如果输入值x0是准确的,那么通常将其模糊化为模糊单点,

A(x)10
xx0 xx0
离散化的输入论域 将确定的隶属函数曲线离散化,得到有限个点上的隶属度, 便构成了一个相应的模糊变量的模糊子集。
3.1 模糊控制的基本原理
有关论域的选择问题,一般误差论域m≥6,误差变化 论域n≥6,控制量的论域l≥7。
这是因为语言变量的词集多半选为七个(或八个)这 样能满足模糊集论域中所含元素个数为模糊语言词集 总数的二倍以上,确保模糊集能较好地覆盖论域,避 免出现失控现象。
道理上讲,增加论域中的元素个数,即把等级细分, 可以提高控制精度,但受到计算机字长的限制,另外 要增加计算量。把等级分得过细,显得必要性不大。
操作人员或专家的控制经验是如何转化为数字控制器的 ?
控制思想: 如果水温偏高,就把燃气阀 关小;如果水温偏低,就把 燃气阀开大。
人类对热水器水温的调节
3.1 模糊控制的基本原理
模仿人类的调节经验,可以构造一个模糊控制系统来实现对热水器的控制。 用一个温度传感器来替代左手进行对水温的测量,传感器的测量值经 A/D变换后送往控制器。 电磁燃气阀代替右手和机械燃气阀作为执行机构,电磁燃气阀的开度 由控制器的输出经D/A变换后控制。 构造控制器,使其能够模拟人类的操作经验。
人类的控制规则 如果水温比期望值高,就把燃气阀关小; 如果水温比期望值低,就把燃气阀开大。
描述了输入(水温与期望值的偏差 e)和输出(燃气阀开度的增量 u) 之间的模糊关系R
3.1 模糊控制的基本原理
模糊值
规则库R
模糊值
模糊化
输入e
输出u
模糊推理
精确值
精确值
期望值 +
e AFra Baidu bibliotekD

温度 传感器
热水器
输入量和输出量论域的设计
同理,假如误差变化率的连续取值范围是ec=[ecL,ecH] ,控制量的连
续取值范围是u=[uL,uH] ,则量化因子kec和比例因子ku可分别确定如
下:
kec
2n ecH ecL
ku
uH uL 2l
在确定了量化因子和比例因子之后,误差e和误差变化率ec可通过 下式转换为模糊控制器的输入E和EC:
档级多,规则制定灵活,规则细致,但规则多、复杂, 编制程序困难,占用的内存较多; 档级少,规则少,规则实现方便,但过少的规则会使 控制作用变粗而达不到预期的效果。 因此在选择模糊状态时要兼顾简单性和控制效果。
3.1 模糊控制的基本原理
对输入量进行模糊化处理,包括确定语言变量和隶属函数
确定隶属函数(原则)
3.1 模糊控制的基本原理
输入量和输出量论域的设计
如何实现实际的连续域到有限整数离散域的转换?
通过引入量化因子ke、kec和比例因子ku来实现
期望值
+ - y
e
d/dt
E
ke
ec
kec
EC
模糊 U 控制器
u
ku
实际中误差的连续取值范围是e=[eL,eH],则:
ke
2m eH eL
3.1 模糊控制的基本原理
e的基本论域: [eL eH] ec的基本论域: [ecL ecH] u的基本论域: [uL uH]
精确量
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
在模糊控制器的设计中,通常就把输入、输出量的论域定义 为有限整数的离散论域。例如,可以将E的论域定义为{-m, m+1, …, -1, 0, 1, …, m-1, m};将EC的论域定义为{-n, n+1, …, -1, 0, 1, …, n-1, n};将U的论域定义为{-l, -l+1, …, -1, 0, 1, …, l-1, l}。
反模糊化 u D/A
电磁阀
热水器水温模糊控制系统结构
3.1 模糊控制的基本原理
模糊控制原理框图
3.1 模糊控制的基本原理
3.1.2 模糊控制器的基本结构
模糊化
知识库
模糊推理
反模糊化
过过过
+ -


确 值

糊 值


过过过过
模 糊

精 确
值过 值


过过
模糊控制器
模糊控制器的构成框图
3.1 模糊控制的基本原理
?
为了提高实时性,模糊控制器常常以控制查询表的形式出现。 该表反映了通过模糊控制算法求出的模糊控制器输入量和输 出量在给定离散点上的对应关系。为了能方便地产生控制查 询表,在模糊控制器的设计中,通常就把输入输出的论域定 义为有限整数的离散论域。
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
相关文档
最新文档