2009年河北省中考数学试题

合集下载

2009—2018历年河北省中考数学试卷含详细解答(历年真题)

2009—2018历年河北省中考数学试卷含详细解答(历年真题)

河北省中考数学试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.103.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3分)图中三视图对应的几何体是()A.B.C.D.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 414.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.216.(2分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=.18.(3分)若a,b互为相反数,则a2﹣b2=.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)如图,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=α.(1)求证:△APM ≌△BPN ;(2)当MN=2BN 时,求α的度数;(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围.24.(10分)如图,直角坐标系xOy 中,一次函数y=﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.【解答】解:三角形具有稳定性.故选:A.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.10【解答】解:∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.3.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【解答】解:该图形的对称轴是直线l3,故选:C.4.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.(3分)图中三视图对应的几何体是()A.B.C.D.【解答】解:观察图形可知选项C符合三视图的要求,故选:C.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ.故选:D.7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁【解答】解:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s甲2=s丁2<s乙2=s丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 【解答】解:∵原正方形的周长为acm,∴原正方形的边长为a4 cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(a4+2)cm,则新正方形的周长为4(a4+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 4【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.14.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【解答】解:∵x2−2xx−1÷x21−x=x2−2xx−1•1−xx2=x2−2xx−1•−(x−1)x2=x(x−2)x−1•−(x−1)x2=−(x−2)x=2−x x,∴出现错误是在乙和丁,故选:D.15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE +DI +EI=DE +AD +BE=AB=4,即图中阴影部分的周长为4,故选:B .16.(2分)对于题目“一段抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确【解答】解:∵抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式{y =−x(x −3)+c y =x +2得x 2﹣2x +2﹣c=0△=(﹣2)2﹣4(2﹣c )=0解得c=1②如图2,抛物线与直线不相切,但在0≤x ≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c 的最小值=2,但取不到,c 的最大值=5,能取到∴2<c ≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5故选:D.二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=2.【解答】解:√−12−3=√4=2,故答案为:2.18.(3分)若a,b互为相反数,则a2﹣b2=0.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是14;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是21.【解答】解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:360180−2x=18090−x,以∠APB为内角的正多边形的边数为:360 x,∴图案外轮廓周长是=18090−x﹣2﹣2+360x﹣2=18090−x+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则会标的外轮廓周长是=18090−30+72030﹣6=21,故答案为:14,21.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了3人.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率=1024=512;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.23.(9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.【解答】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵{∠A=∠BPA=PB∠APM=∠BPN,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.24.(10分)如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.【解答】解:(1)把C (m ,4)代入一次函数y=﹣12x +5,可得4=﹣12m +5,解得m=2, ∴C (2,4),设l 2的解析式为y=ax ,则4=2a , 解得a=2,∴l 2的解析式为y=2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,y=﹣12x +5,令x=0,则y=5;令y=0,则x=10,∴A (10,0),B (0,5), ∴AO=10,BO=5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k=32;当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12;故k 的值为32或2或﹣12.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.【解答】解:(1)如图1中,由n⋅π⋅26180=13π,解得n=90°, ∴∠POQ=90°, ∵PQ ∥OB , ∴∠PQO=∠BOQ ,∴tan ∠PQO=tan ∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ 与⊙O 相切时时,x 的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设QH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.此时x的值为﹣31.5.综上所述,满足条件的x的值为﹣16.5或31.5或﹣31.5.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【解答】解:(1)由题意,点A (1,18)带入y=kx得:18=k1∴k=18设h=at 2,把t=1,h=5代入 ∴a=5 ∴h=5t 2(2)∵v=5,AB=1 ∴x=5t +1 ∵h=5t 2,OB=18 ∴y=﹣5t 2+18 由x=5t +1则t=15(x −1)∴y=﹣15(x −1)2+18=−15x 2+25x +895当y=13时,13=﹣15(x −1)2+18解得x=6或﹣4 ∵x ≥1 ∴x=6 把x=6代入y=18xy=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米) (3)把y=1.8代入y=﹣5t 2+18 得t 2=8125解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰好落在滑道y=18 x上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.52017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

2008、2009、2010年河北中考数学试题及详细答案)

2008、2009、2010年河北中考数学试题及详细答案)

2008年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(08河北)8-的倒数是( ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为(A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( A .点P B .点O C .点M D .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则 到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数 D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正图1图2 图3方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右2008年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=, 则2_____∠=.12.(08河北)当x = 时,分式31x -无意义. 13.(08河北)若m n ,互为相反数,则555m n +-= . 14.(08河北)如图7,AB 与O 相切于点B ,AO 的延长线交O 连结BC .若36A ∠=,则______C ∠=.15.(08河北)某班学生理化生实验操作测试成绩的统计结果如下表:成绩/分3 4 5 6 7 8 9 10图4 x x x 图5-1 图5-2 图5-3 …12 ba图6 c 图7人数1 12 2 8 9 15 12 则这些学生成绩的众数为 . 16.(08河北)图8每个果冻的质量也相等,则一块巧克力的质量是 g .17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m 18.(08河北)图9-1全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.20.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,ABC图9-1 图9-2图8A35% B20% C 20% D 各型号种子数的百分比 图10-1 图10-2直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(08河北)(本小题满分10分)在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(k m )d P A P B =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24.(08河北)(本小题满分10分)如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.图13-1 图13-2图13-325.(08河北)(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.26.(08河北)(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是A C AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).A (E )BC (F ) PlllB FC 图14-1图14-2图14-3(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC 上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图152008年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案DBBCAAC BDC二、选择题 11.70; 12,1; 13.5-; 14.27;15.9分(或9);16.20; 17.2; 18.76. 三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广. (4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由3336.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD = ,193322ADC S ∴=⨯⨯-=△. (4)(63)P ,. 22.解:(1)B -,200C -;图1(2)过点C 作CD OA ⊥于点D ,如图2,则CD =. 在Rt ACD △中,30ACD ∠=,CD =,cos30CD CA ∴==200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +; (2. 探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=.又AC BC ⊥ ,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠./kmlAB FC Q 图3M12 34 EP在Rt BCQ △中,1390∠+∠=,又34∠=∠,241390∴∠+∠=∠+∠= .90QMA ∴∠= .BQ AP ∴⊥.(3)成立.证明:①如图4,45EPF ∠=,45CPQ ∴∠= . 又AC BC ⊥ ,45CQP CPQ ∴∠=∠= .CQ CP ∴=. 在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠= ,90APC PBN ∴∠+∠= .90PNB ∴∠= . QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, lABQP EF 图4N C将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w > 乙甲,∴应选乙地. 26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =. 故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)E B图5B图6E B图7B图8B 图9图32009年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( ) A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( )BAC D图1A 图24=1+3 9=3+616=6+10图7…A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D .某两个负数的积大于08.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )AmB .4 m C. mD .8 m9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x (x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+312009年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共96分)ADCB图6图5图4注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约 为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为 . 17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.图9图8电视机月销量扇形统计图第一个月 15%第二个月 30% 第三个月 25%第四个月图11-120.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m , OE ⊥CD 于点E .已测得sin ∠DOE = 1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是; (2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)已知抛物线2y ax bx =+经过(33)A --,和点P (t ,0),且t ≠ 0.(1)若该抛物线的对称轴经过点A ,如图12,请通过观察图象,指出此时y 的最小值,并写出t 的值;(2)若4t =-,求a 、b 方向;O图10电视机月销量折线统计图图12(3)直.接.写出使该抛物线开口向下的t 的一个值. 23.(本小题满分10分)如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周. (2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由 ⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转 周.在 阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O 在点B 处自转 周. (2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从 ⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动 到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.图13-4图13-1AB图13-2单位:cm24.(本小题满分10分)在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)25.(本小题满分12分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)图14-1AHC (M )DEBFG (N )G图14-2AHCDBFNMAHCD图14-3BFG MN设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?26.(本小题满分12分)如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC (2)在点P 从C 向A 运动的过程中,求△APQ t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值.图162009年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1;17.3; 18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE 5.∴将水排干需:5÷0.5=10(小时).21.解:(1)30%; (2)如图1; (3)8021203=;(4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品/月图1第一 第二 第三 第四 电视机月销量折线统计图牌的月销量呈上升趋势. 所以该商店应经销B 品牌电视机.22.解:(1)-3.t =-6.(2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;l c .16;13.(2)54. 拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°, ∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc +1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .AHCDBFG NMP∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形. (3)是.25.解:(1)0 ,3. (2)由题意,得2240x y +=, ∴11202y x =-.23180x z +=,∴2603z x =-. (3)由题意,得 121206023Q x y z x x x =++=+-+-.整理,得 11806Q x =-.由题意,得112022603x x ⎧-⎪⎪⎨⎪-⎪⎩解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90张、75张、0张.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4. ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.图4P图3F由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】图52010年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70°C .80°D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为 A .6 B .9 C .12D .155.把不等式2x -< 4的解集表示在数轴上,正确的是6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a -B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是AB CD图2 ABC40°120°图1图3A B D 0C10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 A .7 B .8C .9D .1011.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2)C .(3,3)D .(4,3)12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子 向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按 上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.-的相反数是 .14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A对应的数为1-,则点B 所对应的数为 . 15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为 .17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高图7图8 图4图6-1 图6-2AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α, 则圆锥的底面积是 平方米(结果保留π).18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”).三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解方程:1211+=-x x .20.(本小题满分8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).21.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角甲校成绩统计表图10-1图10-2图11-1乙校成绩扇形统计图 图12-1等于 °.(2)请你将图12-2的统计图补充完整. (3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(本小题满分9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.23.(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2 是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以 左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且 PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研乙校成绩条形统计图图12-2。

2009年河北省数学中考模拟试卷及答案(大赛数学试题4)

2009年河北省数学中考模拟试卷及答案(大赛数学试题4)

参赛单位:0042009年某某省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的某某、某某号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)⒈.4的平方根是 ( )A.2±B.2C. -2D 162.下列运算正确的是 ( )A.532a a a =+B.532a a a =⋅C.532)(a a =D.10a ÷52a a =3.如图是由相同小正方体组成的立体图形,它的左视图为 ( )4.二次函数()3122+-=x y 的图像的顶点坐标是 ( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3) 5.袋中放有一套(五枚)2008年奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“欢迎”的概率是( )A .251B .201C .101D .51 6.在平面直角坐标系中,若点P(m -3,m +1)在第二象限,则m 的取值X 围为( ) A .-1<m <3B .m >3 C .m <-1 D .m >-17.如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:A .B .C .D .(3题)贝贝晶晶欢欢迎迎妮妮(1)DE=1,(2)AB 边上的高为3,(3)△CDE ∽△CAB ,(4)△CDE 的面积与 △CAB 面积之比为1:4.其中正确的有 ( ) A .1个 B .2个 C .3个 D .4个8.如图,已知⊙O 的半径为5,弦AB=6,M 是AB则线段OM 的长可能是 A .2.5 B .3.5 C .4.5 D .5.59.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是 A .10 B .16 C .18 D .2033⨯方格纸上,若以格点(即小正方形的顶点)为顶点画正方形,在该33⨯方格纸上最多可画出的正方形的个数是( )A.13B.14C.18D. 202009年某某省初中毕业生升学文化课模拟考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.分解因式:2x 2+4x+2=___________.第7题第8题图图 1图 212.∠α=︒25,则∠α的余角为度。

2009年河北省中考数学试卷答案(word版)

2009年河北省中考数学试卷答案(word版)
又∵三角形的外角和是360°,
∴在三个顶点处,⊙O自转了 (周).
∴⊙O共自转了( +1)周.
(2) +1.
24.(1)证明:∵四边形BCGF和CDHN都是正方形,
又∵点N与点G重合,点M与点C重合,
∴FB=BM=MG=MD=DH,∠FBM=∠MDH= 90°.
∴△FBM≌ △MDH.
∴FM=MH.
20.解:(1)∵OE⊥CD于点E,CD=24,
∴ED= =12.
在Rt△DOE中,
∵sin∠DOE = = ,
∴OD=13(m).
(2)OE=
= .
∴将水排干需:
5÷0.5=10(小时).
21.解:(1)30%;
(2)如图1;
(3) ;
(4)由于月销量的平均水平相同,从折线的走势看,A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势.
2009年河北省初中毕业生升学文化课考试
数学试题参考答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
A
D
C
B
B
A
B
C
C
D
C
二、填空题
13.>;14.1.2 × 107;15.36.4;16.1;17.3;18.20.
三、解答题
19.解:原式=
= .
当a= 2, 时,
原式= 2.
【注:本题若直接代入求值,结果正确也相应给分】
由一次函数的性质可知,当x=90时,Q最小.
此时按三种裁法分别裁90张、75张、0张.
26.解:(1)1, ;

2009—2018年河北省中考数学试卷含详细解答(历年真题)

2009—2018年河北省中考数学试卷含详细解答(历年真题)

2018年河北省中考数学试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.103.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3分)图中三视图对应的几何体是()A.B.C.D.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 414.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.216.(2分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=.18.(3分)若a,b互为相反数,则a2﹣b2=.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)如图,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=α.(1)求证:△APM ≌△BPN ;(2)当MN=2BN 时,求α的度数;(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围.24.(10分)如图,直角坐标系xOy 中,一次函数y=﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.【解答】解:三角形具有稳定性.故选:A.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.10【解答】解:∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.3.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【解答】解:该图形的对称轴是直线l3,故选:C.4.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.(3分)图中三视图对应的几何体是()A.B.C.D.【解答】解:观察图形可知选项C符合三视图的要求,故选:C.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ.故选:D.7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁【解答】解:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s甲2=s丁2<s乙2=s丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 【解答】解:∵原正方形的周长为acm,∴原正方形的边长为a4 cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(a4+2)cm,则新正方形的周长为4(a4+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 4【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.14.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【解答】解:∵x2−2xx−1÷x21−x=x2−2xx−1•1−xx2=x2−2xx−1•−(x−1)x2=x(x−2)x−1•−(x−1)x2=−(x−2)x=2−x x,∴出现错误是在乙和丁,故选:D.15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE +DI +EI=DE +AD +BE=AB=4,即图中阴影部分的周长为4,故选:B .16.(2分)对于题目“一段抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确【解答】解:∵抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式{y =−x(x −3)+c y =x +2得x 2﹣2x +2﹣c=0△=(﹣2)2﹣4(2﹣c )=0解得c=1②如图2,抛物线与直线不相切,但在0≤x ≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c 的最小值=2,但取不到,c 的最大值=5,能取到∴2<c ≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5故选:D.二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=2.【解答】解:√−12−3=√4=2,故答案为:2.18.(3分)若a,b互为相反数,则a2﹣b2=0.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是14;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是21.【解答】解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:360180−2x=18090−x,以∠APB为内角的正多边形的边数为:360 x,∴图案外轮廓周长是=18090−x﹣2+360x﹣2+360x﹣2=18090−x+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则会标的外轮廓周长是=18090−30+72030﹣6=21,故答案为:14,21.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了3人.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率=1024=512;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.23.(9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.【解答】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵{∠A=∠BPA=PB∠APM=∠BPN,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.24.(10分)如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.【解答】解:(1)把C (m ,4)代入一次函数y=﹣12x +5,可得4=﹣12m +5,解得m=2, ∴C (2,4),设l 2的解析式为y=ax ,则4=2a , 解得a=2,∴l 2的解析式为y=2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,y=﹣12x +5,令x=0,则y=5;令y=0,则x=10,∴A (10,0),B (0,5), ∴AO=10,BO=5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k=32;当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12;故k 的值为32或2或﹣12.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.【解答】解:(1)如图1中,由n⋅π⋅26180=13π,解得n=90°, ∴∠POQ=90°, ∵PQ ∥OB , ∴∠PQO=∠BOQ ,∴tan ∠PQO=tan ∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ 与⊙O 相切时时,x 的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设QH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.此时x的值为﹣31.5.综上所述,满足条件的x的值为﹣16.5或31.5或﹣31.5.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【解答】解:(1)由题意,点A (1,18)带入y=kx得:18=k1∴k=18设h=at 2,把t=1,h=5代入 ∴a=5 ∴h=5t 2(2)∵v=5,AB=1 ∴x=5t +1 ∵h=5t 2,OB=18 ∴y=﹣5t 2+18 由x=5t +1则t=15(x −1)∴y=﹣15(x −1)2+18=−15x 2+25x +895当y=13时,13=﹣15(x −1)2+18解得x=6或﹣4 ∵x ≥1 ∴x=6 把x=6代入y=18xy=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米) (3)把y=1.8代入y=﹣5t 2+18 得t 2=8125解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰好落在滑道y=18 x上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.52017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

2009年河北省中考数学试题评析

2009年河北省中考数学试题评析

2009年河北省中考数学试题评析2009年的数学试题在继承我省近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、变中求新”的命题原则,贯彻《义务教育课程标准(实验稿)》(以下简称《课程标准》)和《河北省2009年中考文化课学科说明》(以下简称《学科说明》)所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识,整套试题充满着人文关怀.一、总体评价试题命制严格按照《课程标准》和《学科说明》的相关要求,充分体现和落实新课程改革的理念和精神.整套试题覆盖面广,题量适当,结构合理,难度适中,内容新颖,表述科学.在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、开放性、应用性、探究性和综合性.在具体操作上,紧扣《学科说明》,参照我省各地使用的不同版本教科书,强调教材的重要性,保证素材的公平性,对教学工作能够起到明显的指导作用.1. 整体稳定,局部调整今年的数学试卷在保证整体格局稳定的基础上,作出了一些调整:选择题由原来的10个小题增至12个;填空题由原来的8个小题减至6个;解答题依然是8个小题.各题型的分值和部分试题的考查重点,也作了相应的调整.2. 全面考查,突出重点纵观整套试题,覆盖近百个知识点.所关注的内容,是支撑学科的基本知识、基本技能和基本思想.强调考查学生在这一学段所必须掌握的通法通则,淡化繁杂的运算和技巧性很强的方法.试题重点考查了代数式、方程(组)与不等式(组)、函数、统计与概率、相交线与平行线、三角形与四边形等学科的核心内容,同时关注了函数与方程思想、数形结合思想、分类讨论思想、统计与随机意识等数学思想,以及特殊与一般、运动与变化、矛盾与转化等数学观念.试题突出了对学生研究问题的策略和运用数学知识解决实际问题能力的考查.3. 层次分明,确保试题合理的难度和区分度试题在结构上形成合理的层次,整套试题从易到难形成梯度.其中第一、二大题分三个层次:第一层次(第1~7、13~15小题)考查基础知识、基本技能,判断、运算或操作方式单一,学生能直接上手;第二层次(第& 9、11、16〜18小题)是小范围的综合题,旨在考查最基本的数学方法和数学思想;第三层次(第10、12小题)更多的是关注数学思辨和思维过程.第三大题注重数学能力,也分三个层次:第一层次(第19~22小题),考查代数式变形和运算的能力,用所学知识解决简单实际问题的能力,对统计与概率知识的理解与应用,以及对函数概念的理解与应用的能力;第二层次(第23、24小题),考查学生的形成性学习方法与能力,以及逻辑思维能力.第三个层次(第25、26小题),考查学生的综合运用能力,包括知识综合、方法综合以及数学思想的综合运用.同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度,有利于高一级学校选拔新生.4. 科学严谨,确保试题的信度、效度和自洽性试卷题目陈述简明、科学准确;图形、图象规范美观.凡是联系实际题目,情景不仅不会干扰学生对其内容的分析与理解,而且有助于学生对其中数量关系的把握;凡是带有创新成分的试题,其内容均属《课程标准》和《学科说明》要求范围之内的核心知识.这就确保了考试具有较高的信度.每类题型由易到难形成三个难度循环.试题的设置,在提问方式、分值和位置等方面,充分考虑了学生不同的解答习惯、学习水平和承受能力.后面的几道解答题,设3~4问,形成问题串,起点很低,循序渐进,层层铺垫,且最后一问思维含量较高,具有一定的挑战性.这样“入口宽、出口窄”的试题设计,有利于学生临场发挥.各类型题目解答起来,容易上手,但要解答完整、准确,则需要具备较强的数学能力.这样的布局,能确保考试具有较高的效度.同时,试题的命制注意了整体的和谐性,试题的搭配,使考查功能之间形成合理的支撑,努力实现试题在能力层面上的相互校正功能.注重了整套试卷题目间的合理性、自洽性与可推广性.】、试题特点1. 从全新角度考查基础知识和基本技能要想学好数学,就必须牢固掌握数学的基础知识,并且在不同的环境中能够灵活的加以运用.因此本套试题在关注对基础知识和基本技能考查的同时,特别注意了考查方式的多样化和考查角度的新颖例1 (第5题)如图1,四个边长为1的小正方形拼成一个大正方形,A、B、为1 , P是O O上的点,且位于右上方的小正方形内,则/ APB等于A. 30 ° B . 45 °C. 60 ° D . 90 °评析本题旨在考查同弧所对的圆周角与圆心角的关系. 但其呈现方式却与众正方形之中,建立起了知识间的相互联系.例2 (第7题)下列事件中,属于不可能事件的是性.O是小正方形顶点,O O的半径不同,自然而巧妙地把问题置于A .某个数的绝对值小于0C .某两个数的和小于0 评析本题考查的是不可能事件的概念,B .某个数的相反数等于它本身D .某两个负数的积大于0但其中却蕴含着考生对数的基础知识的思考,使这道看似简单的题目变得丰满而扎实.PB图1例3 (第11题)如图2所示的计算程序中,y与x之间的函数关系所对应的图象应为评析对函数图象的考查是中考命题的常见内容,但本题不是平铺直叙,而是另辟蹊径一一借助程序设计的背景,将函数表达式的产生与函数图象的性质完美的衔接起来,设计出了一道新而不偏、新而不怪的好题.2. 关注数学思想方法,渗透数学文化数学的思想方法是数学学科的灵魂,它有时并非刻意指向解题所运用的数学知识,而更多的体现在对解题策略的思考和选择上.本套试题在对数学思想与方法的考查方面可谓独树一帜,其往往借助看似平实简洁的问题设置,却凸显了数学思想方法在解题时的重要作用.此外,渗透数学文化、陶冶学生心灵、感受数学魅力,使数学具有更为积极的教育功能,也是命题组在试题命制中始终关注的一个环节.例4 (第10题)从棱长为2的正方体毛坯的一角,这个零件的表面积是挖去一个棱长为1的小正方体,A . 20 220得到一个如图3所示的零件,则C . 24 D.例5 (第17题)如图4,等边△ ABC的边长为点A落在点A '处,且点A '在△ ABC外部,评析从表面看,上述两题是对基本几何知识性质26 1cm , D、E 分别是AB、贝V阴影部分图形的周长为(图形的周长和面积)不难发现,其关注的核心实际是数学的思想方法,即利用平移和轴对称实现这两道试题还具有良好的推广性.如例只在一个面上时,其表面积会怎样变化?例同?等等.4 (第10题)中,让挖去的小正方5 (第17题)中,点A '在△ ABC 但通过对解题策略的分析,却对问题的转化(化归). 体经过大正方体的两个面或阴影部分的周长有什么不例6 (第18题)如图5,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,另一根露出水面的长度是它的.两根铁棒长度之和为cm ,此时木桶中水5的深度是图5评析本题通过现实有趣的数学情景,将方程思想巧妙地蕴含其中.此外,解法的多样性也是本题的一大特点,既可以形成一元一次方程的模型(设水的深度为未知数),又可以形成二元一次方程组的模型(设两根木棒的长度为未知数)cm .,还可以有其他方法.这样使学生单向封闭的思路拓展成多维开放的思路,有效地培养了学生的创新思维能力.例7 (第12题)古希腊著名的毕达哥拉斯学派把1、3、数”,而把1、4、9、16 ,这样的数称为“正方形:: 一个大于1的“正方形数” 都可以看作两个相邻“三6、10 ,这样的数称为“三角形数”.从图6中可以发现,任何角形数”之和.下列等式中,符D图3点,将△ ADE沿直线DE折叠,图4 A'的内部或边上时,一根露出水面的长度是它的T ,3以借助图形进行分析,很好的体现了“数形结合”的思想.同时又向学生渗透了世界古代文化的精深与美妙,有一种内在的和谐与古远幽深的意境,激发了学生对数学文化的热爱,既有趣味性、挑战性,又有教育功能,令人耳目一新.3. 联系现实生活,突出应用意识现实生活是数学学科的出发点和最终归宿,让数学回归现实是数学课程改革的重要目标之一.着重考查学生运用所学知识解决简单实际问题的能力,要求学生能够解决决日常生活中的实际问题,能够用数学语言表达问题.为彰显课程改革的目占有相当的比例. 例8 (第25题)某公司装修需用A型板材240块、B型板材180块,A型型板材规格是40 cm X 30 cm .现只能购得规格是150 cm X 30 cm的标准地裁出A型、B型板材,共有下列三种裁法:(图7是裁法一的裁剪示设所购的标准板材全部裁完,其中按裁法一裁 x 张、按裁法二裁 y 张、按裁法三裁 z 张,且所裁出的 A 、B 两种型号的板材 刚好够用.(1 )上表中,m 二 ______________ , n 二 _______ .;( 2)分别求出y 与x 和z 与x 的函数关系式; (3)若用Q 表示所购标准 板材的张数,求 Q 与x 的函数关系式,并指出当x 取何值时 Q 最小,此时按三种裁法各裁标准板材多少张? 评析 试题在背景呈现上贴近社会现实,充满着生活气息,使学生真实地感受到“数学来源于生活,又返回来指导生活”的价 值.这正体现了《课程标准》中提到的“问题情景一建立模型一解释、应用和拓展”的数学学习模式.本题借助一次函数 关系式及其性质为知识载体,考查的核心是从现实情景中提取信息、分析数据、建立数学模型的思想和能力.4.在 考查思维能力的同时,更关注对思维方式和思维过程的考查在新课程理念的指导下,日常教学中,培养学生数学思维的能力尤为重要.但更重要的是,通过具体有形的数学知识,传递给学生一种数学的思维方式,体验思维和认知的一般方法与过程(数学思考) .可以说,今年的数学试题在关注“知识立意”与“能力立意”的同时,又注入了 “过程立意”.这必将对今后的教学产生重要的影响.例9 (第22题)已知抛物线y ax 2 bx 经过点A (- 3, - 3)和点线的对称轴经过点 A ,如图8,请通过观察图象,指出此时 若t - -4,求a 、b 的值,并指出此时抛物线的开口方向;下的t 的一个值.评析 该题以二次函数为背景, 但却打破了以往程式化的设问方式,清晰地为我们勾勒出了“在两个点确定的情况下,图80),且t 工0.( 1 )若该抛物最小值,并写出t 的值;(2) 直接 写出使该抛物线开口向抛物线的某些属性而是带有浓郁的探究成分, (开口方向)随另一个点的运动而变化 ”的一个连续的动态过程,将代数演绎与几何直观有机地结合了起来.本题考查的主旨并非是对解题方法和技巧的机械运算,而是巧妙地考查了学生直观思维的过程与方法,正所谓 斤”就是这个道理.例10 (第23题)如图9-1至图9-5 , O O 均作无滑动滚动,O O 1、O O 2、A段AB 或BC 相切于端点时刻的位置,OO 的周长为c .阅读理解:(1)如图9-1 , O O 从O O 1的位置出发,沿 AB 滚动到 恰好自转1周.(2)如图9-2,/ ABC 相邻的补角是n °,O O 在/ ABC 处,必须由O O 1的位置旋转到O O 2的位置,O O 绕点B 旋转的角 转亠周.360实践应用:(1)在阅读理解的(1 )中,若AB = 2c ,则O O 自转 -------------- 周;阅读理解的(2)中,若/ ABC = 120。

2009年河北省中考数学试卷及答案(word版)

2009年河北省中考数学试卷及答案(word版)
AC上的点,将△ADE沿直线DE折叠,点A落在点
处,且点 在△ABC外部,则阴影部分图形的周长
为cm.
18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中
加入水后,一根露出水面的长度是它的 ,另一根露
出水面的长度是它的 .两根铁棒长度之和为55 cm,
此时木桶中水的深度是cm.
三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)
多少张?
得分
评卷人
26.(本小题满分12分)
如图16,在Rt△ABC中,∠C=90°,AC= 3,AB= 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
求证:FM=MH,FM⊥MH;
(2)将图14-1中的CE绕点C顺时针旋转一个锐角,得到图14-2,
求证:△FMH是等腰直角三角形;
(3)将图14-2中的CE缩短到图14-3的情况,
△FMH还是等腰直角三角形吗?(不必
说明理由)
得分
评卷人
25.(本小题满分12分)
某公司装修需用A型板材240块、B型板材180块,A型板材规格是60 cm×30 cm,B型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)
∴ED= =12.
在Rt△DOE中,

2009年九年级数学中考试题分类汇编——应用题

2009年九年级数学中考试题分类汇编——应用题

2009年中考数学试题分类汇编——应用题(某某)l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.(某某)20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)(某某)22. (10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:第23题图(1)第23题图(2)(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?(某某)7.某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是…………………………【 】A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+(某某)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg么X 围内,以同样的资金可以批发到较多数量的该种水果.【解】(3数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案, )使得当日获得的利润最大.【解】()18.列方程或方程组解应用题:市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?(某某州)22.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大(其中B种商品不少于7件)?(2)在“五·一”期间,该商场对A、B两种商品进行如下优惠促销活动:促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?(某某市)23. (本小题满分12分)为了拉动内需,某某启动“家电下乡”活动。

专题16压轴题-2021版[中考15年]河北省2002-2021年中考数学试题分项解析(原卷版)

专题16压轴题-2021版[中考15年]河北省2002-2021年中考数学试题分项解析(原卷版)

]河北省2002-2021专题16:压轴题1. (2002年河北省2分)某工件形状如图所示,BC的度数为60°,AB=6cm,点B到点C的距离等于AB,∠BAC=30°,则工件的面积等于【】A.4πB.6πC.8πD.10π2. (2003年河北省2分)如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,则水槽中水面上升高度h与注水时间t之间的函数关系大致是下列图象中的【】3. (2004年河北省大纲2分)小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图所示的风筝,点E,F,G,H分别是四边形ABCD各边的中点.其中阴影部分用甲布料,其余部分用乙布料(裁剪两种布料时,均不计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料【】A.15匹B.20匹C.30匹D.60匹4. (2004年河北省课标2分)在同一个直角坐标系中,函数y=kx和kyx(k≠0)的图象的大致位置是【】A、B、C、D、5. (2005年河北省大纲2分)一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是【】A.4n+1 B.4n+2 C.4n+3 D.4n+56. (2005年河北省课标2分)法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。

下面两个图框是用法国“小九九”计算7×8和8×9的两个示例。

若用法国“小九九”计算7×9,左右手依次伸出手指的个数是【】A、2,3B、3,3C、2,4D、3,47. (2006年河北省大纲2分)小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是【】A.0.5cm B.1cm C.1.5cm D.2cm8. (2006年河北省课标2分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3x2y19x4y23+=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为【】A.2x y114x3y27+=⎧⎨+=⎩B.2x y114x3y22+=⎧⎨+=⎩C.3x2y19x4y23+=⎧⎨+=⎩D.2x y64x3y27+=⎧⎨+=⎩9. (2007年河北省2分)用M,N,P,Q各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.图1—图4是由M,N,P,Q中的两种图形组合而成的(组合用“&”表示).那么,下列组合图形中,表示P&Q的是【】A.B.C.D.10. (2008年河北省2分)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是【】A.上B.下C.左D.右11. (2009年河北省2分)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是【】A.13 = 3+10 B.25 = 9+16 C.36 = 15+21 D.49 = 18+3112. (2010年河北省2分)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是【】A.6 B.5 C.3 D.213. 2011年河北省3分)根据图中①所示的程序,得到了y与x的函数图象,如图中②,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2x②△OPQ的面积为定值③x>0时,y随x的增大而增大④MQ=2PM ⑤∠POQ可以等于90°其中正确结论是【】A.①②④B.②④⑤C.③④⑤D.②③⑤14. (2012年河北省3分)如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是【】A.①②B.②③C.③④D.①④15. (2013年河北省3分)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF = FB = 5,DE = 12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y = S△EPF,则y与t的函数图象大致是【】A.B.C.D.16.【2016中考河北2分】如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()第16题图A.1个B.2个C.3个D.3个以上1. (2002年河北省2分)如图,某建筑物BC直立于水平地面,AC=9米,要建造阶梯AB,使每阶高不超过20 cm,则此阶梯最少要建▲ 阶.(最后一阶的高度不足20 cm时,按一阶算,3取1.732)2. (2003年河北省2分)如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当边上摆8(即n=8)根时,需要的火柴总数为▲ 根.3. (2004年河北省大纲2分)扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是▲ .4. (2004年河北省课标3分)扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是▲ .5. (2005年河北省大纲2分)如图,已知圆锥的母线长OA=8,底面圆的半径r=2.若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到了A点,求小虫爬行的最短路线的长▲ .6. (2005年河北省课标3分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”. 根据题意可得CD的长为▲ m.7. (2006年河北省大纲2分)如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为▲ 米.8. (2006年河北省课标3分)小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是▲ cm.9. (2007年河北省3分)图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为▲ cm3.(计算结果保留 )10. (2008年河北省3分)图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是▲ .11. (2009年河北省3分)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm,此时木桶中水的深度是▲ cm.12. (2010年河北省3分)把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1▲ S2(填“>”、“<”或“=”).14. (2012年河北省3分)用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n 个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n 的值为 ▲ 。

2009年河北省数学中考模拟试卷及答案(大赛数学试题3)

2009年河北省数学中考模拟试卷及答案(大赛数学试题3)

参赛单位:0032009年某某省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的某某、某某号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-21的绝对值是( ) A.-2 B.2C.21D.21- 2.下列计算正确的是( ) A .246x x x +=B .235x y xy +=C .326()x x =D .632x x x ÷=3.2008奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为( ) A .4225.810m ⨯ B .5225.810m ⨯ C .522.5810m ⨯D .422.5810m ⨯4.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )5.下列说法中,正确的是( ) A.买一X 电影票,座位号一定是偶数B.投掷一枚均匀的一元硬币,有国徽的一面一定朝上 C.三条任意长的线段都可以组成一个三角形D.从1、2、3这三个数字中任取一个数,取得奇数的可能性大(第3题)从左面看 第4题图A . D .B .C . 从上面看6.如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( ) A .212πcm B .215πcmC .218πcmD .224πcm7.已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值X 围是( ). A .k>2 B .k ≥2 C .k ≤2 D .k <28.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△,则点A 的对应点A '的坐标为( ) A .(3,2 ) B .(2,3) C .(-2,-3) D .(-3,-2)9.若3a b +=,则222426a ab b ++-的值为( )A .12B .6C .3D .0 10.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形; 把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有()个边长是1的正六边形. A .13 B .14 C .15 D .162009年某某省初中毕业生升学文化课模拟考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.函数42-=x y 中自变量x 的取值X 围是.(第10题图①) (第10题图②) (第10题图③)12.不等组30417x x x -⎧⎨+<+⎩≥的正整数解是 .13.如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°, 则∠OAC 的度数是.14.如图,某商场正在热销2008年奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是元.15.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是.16.将一副直角三角板按图示方法放置(直角顶点重合), 则AOB DOC ∠+∠=.17.已知实数a b ,在数轴上的位置如图所示,则以下三个命题: (1)320a ab -<,(2)2()a b a b +=+,(3)11a b a<-, 其中真命题的序号为.18.如图,梯形ABCD 中,AB DC ∥,90ADC BCD ∠+∠=,且2DC AB =,分别以DA AB BC ,,为边向梯形外作正方形,其面积分别为123S S S ,,,则123S S S ,,之间的关系是.三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分) 先化简,再求值:211121a a a a a a+-÷--+,其中12a =- 20.(本小题满分8分)下面图①,图②是某校调查部分学生是否知道母亲生日情况的扇形和条形统计图:一共花了170元第14题图CDAO30°45°1S2S3SABD(第18题图)b0 a根据上图信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日? (3)通过对以上数据的分析,你有何感想?(用一句话回答) 21.(本小题满分8分)如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC =15°.(1)求B ,D 之间的距离;(2)求C ,D 之间的距离.不知道 记不清120 200 40图①道不清知道图②(第20题图) 知道 ABC 某某路文化路D和平路45° 15°30° 环城路 EF22.(本小题满分9分)在“5·12大地震”抗震救灾期间,甲、乙两个帐篷生产厂不断提高帐篷生产量.帐篷总产量y (顶)随时间t (天)之间的变化成直线(折线段)上升趋势,如图所示.请你结合图象填空和解答问题:(1)甲、乙两厂生产帐篷的总产量y 与时间t 之间的函数解析式为:20(03)5090(35)t t y t t ⎧=⎨-<⎩甲≤≤≤;y ⎧=⎨⎩乙 (2)截止5月17日,甲、乙两厂合计共生产帐篷顶;帐篷总产量最先达到120顶的是厂(填甲或乙);5月15日这一天...,甲厂生产了顶帐篷. (3)乙厂在5月18日又一次提高了生产效率,这样乙厂每天只比甲厂少生产5顶帐篷,求乙厂每天生产帐篷的数量提高了百分之几?y ( 5月13日 5月14日 5月15日 5月16日 5月17日第24题图23.(本小题满分10分)已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG BC ∥交AC 于点G .DE BC ⊥于点E ,过点G 作GF BC ⊥于点F ,把三角形纸片ABC 分别沿DG DE GF ,,按图1所示方式折叠,点A B C ,,分别落在点A ',B ',C '处.若点A ',B ',C '在矩形DEFG 内或其边上,且互不重合,此时我们称A B C '''△(即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片ABC 放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A B C D ,,,恰好落在网格图中的格点上.如图2所示, ①判断三角形A B C '''的形状并证明; ②请求出此时重叠三角形A B C '''的面积;(2)实验探究:设AD 的长为m ,若重叠三角形A B C '''存在.试用含m 的代数式表示重叠三角形A B C '''的面积,并写出m 的取值X 围(写出探究过程,备用图供实验,探究使用).(3)要使三角形A B C '''的面积是三角形ABC 面积的14, 是否能做到. 若能,求出此m 的值,若不能,说明理由。

2009河北中考数学试题及答案

2009河北中考数学试题及答案

2009河北中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是正数?A. -2B. 0C. 3D. -5答案:C2. 以下哪个数是无理数?A. 0.3B. πC. 0.33333...D. √4答案:B3. 以下哪个方程的解是x=2?A. x + 2 = 4B. x - 2 = 0C. 2x = 3D. 3x - 6 = 0答案:B4. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3答案:B5. 以下哪个图形是轴对称图形?A. 圆B. 椭圆C. 正三角形D. 所有选项答案:D6. 以下哪个图形是中心对称图形?A. 正方形B. 正五边形C. 正六边形D. 所有选项答案:A7. 以下哪个图形是相似图形?A. 两个等腰三角形B. 两个等边三角形C. 两个直角三角形D. 所有选项答案:B8. 以下哪个图形是全等图形?A. 两个等腰三角形B. 两个等边三角形C. 两个直角三角形D. 所有选项答案:B9. 以下哪个是锐角?A. 30°B. 90°C. 120°D. 150°答案:A10. 以下哪个是钝角?A. 30°B. 90°C. 120°D. 150°答案:C二、填空题(每题3分,共30分)11. 计算:(-3) × (-2) = _______。

答案:612. 计算:√9 = _______。

答案:3答案:1/414. 计算:2^3 = _______。

答案:815. 计算:(-2)^3 = _______。

答案:-816. 计算:(-3) + 4 = _______。

答案:117. 计算:3 - (-2) = _______。

答案:518. 计算:-2 × 3 ÷ (-6) = _______。

答案:1答案:020. 计算:√16 - 4 = _______。

2009年河北省中考数学试题(学生版)

2009年河北省中考数学试题(学生版)

2009年河北省中考数学试卷一、选择题(共12小题,每小题2分,满分24分)1.(2分)(﹣1)3等于()A.﹣1 B.1 C.﹣3 D.32.(2分)在实数范围内,有意义,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<03.(2分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.54.(2分)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m 5.(2分)如图,四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30°B.45°C.60°D.90°6.(2分)反比例函数y(x>0)的图象如图所示,随着x值的增大,y值()A.增大B.减小C.不变D.先减小后增大7.(2分)下列事件中,属于不可能事件的是()A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于08.(2分)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m9.(2分)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40m/s B.20m/s C.10m/s D.5m/s10.(2分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.2611.(2分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.12.(2分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空题(共6小题,每小题3分,满分18分)13.(3分)比较大小:﹣6﹣9.(填“<”、“=”或“>”).14.(3分)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为千瓦.15.(3分)在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃)36.1 36.2 36.3 36.4 36.5 36.6 36.7次数 2 3 4 6 3 1 2 则这些体温的中位数是℃.16.(3分)若m、n互为倒数,则mn2﹣(n﹣1)的值为.17.(3分)如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.18.(3分)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.三、解答题(共8小题,满分78分)19.(8分)已知a=2,b=﹣1,求1的值.20.(8分)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?21.(9分)某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.(1)第四个月销量占总销量的百分比是;(2)在图2中补全表示B品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.22.(9分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.23.(10分)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B 处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC =60°,则⊙O在点B处自转周;(2)如图3,∠ABC=90°,AB=BC c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.24.(10分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF 和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)25.(12分)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?26.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA 以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BC﹣CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.。

2009年河北省数学中考模拟试卷及答案(大赛数学试题5)

2009年河北省数学中考模拟试卷及答案(大赛数学试题5)

OABM参赛单位:0052009年某某省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的某某、某某号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 17-的绝对值是( ) A .7B .17C .7-D .71-2.在“谷歌”搜索引擎中输入“X 翔”,能搜索到与之相关的网页约11300000个,将这个数用科学记数法表示为( )A .1.13×107B .1.13×106C .1.13×105D .0. 113×1083.有6X 写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图),从中任意一X 是数字3的概率是( ) A.61 B.31 C.21D.324.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( )A.2 B.3 C.4 D.5 5.不等式组⎩⎨⎧≤>-411x x 的解集在数轴上表示应为()•10题图 2•10题图A B2C D6.一副三角板,如图所示叠放在一起,则图中∠α的度数是( )°° C .65°°3题图图14题图α7.下列运算正确的是( ) A .55102x x x +=B .()()853x x x -=---C .2363(2)6x y x y -=-D .22(23)(23)49x y x y x y --+=-8.两个完全相同的三角形纸片,在平面直角坐标系中的摆放位置如图所示,点P 与点'P 是一对对应点,若点P 的坐标为(a ,b )则点'p 的坐标为( )A.(a -,b -)B.(b ,a )C.(3a -,b -)D.(3b +,a )9. 如图,两个反比例函数y =k 1x 和y =k 2x (其中k 1>k 2>0)在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形P AOB 的面积为( ) A.k 1+k 2B.k 1-k 2C.k 1·k 2D.k 1k 210.如图,按如下规律摆放三角形:设y 为排列n 堆后(n 为正整数)三角形的总数,则下列关系正确的是( )A .32y n =+B .35y n =+C .31y n =-D .23722y n n =+2009年某某省初中毕业生升学文化课模拟考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.如图所示为一瓷砖镶嵌图的一部分,AB ⊥XY ,则x 的值为……(1)(2)(3)8题图9题图6题图____________.x时,函数221+-=xxy有意义。

2009年河北省数学中考模拟试卷及答案(大赛数学试题1)

2009年河北省数学中考模拟试卷及答案(大赛数学试题1)

D C BA参赛单位:0012009年某某省初中毕业生升学文化课模拟考试(校正稿)数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的某某、某某号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.31-的值是( ) A :31 B:-31C :3 D: -3 2.生物学家发现一种病毒长度约为0.000058mm ,用科学计数法表示这个数的结果为( )⨯410-510-⨯ C :58410-⨯610-⨯( )4.如图所示:C 、D 是线段AB 上两点,若AB =10cm,BC=7cm,C 为AD 中点,则BD =( ) A:3.5cm B:6cm C:4cm D:3cm5.如图,正方形ABCD 的边长为2,点E 在AB 边上且为中点,四边形EFGB 也为正方形,设AFC △的面积为S ,则( ) A.2S =B. 2.4S =C.S=3D.S 与BE 长度有关⎩⎨⎧≥<+134x x 的解集在数轴上表示为( ) A.B.G BA E-22 -2C D7.已知:如图4,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA=3,OA=4,则cos∠APO 的值为( )A .B 。

C 。

4/3D.8.如图,直线a b ∥,则A ∠的度数是( )A.28B35◦C.39D.429:新源超市庆"五一"抽奖活动,顾客转动转盘一圈以上,指针所指区域为顾客所获奖项,(与边缘线重合在来一次),则顾客获得一等奖的概率 为( ) A:361 B:121 C:52 D :13710:把长为8cm 的矩形按虚线对折,按图中虚线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6平方厘米,则打开后梯形的周长是( )A:542cm B26cmC(1054+)cm D:无法确定2009年某某省初中毕业生升学文化课模拟考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)31--x x 有意义,则x _. -2 2343545ABCDab70° 35°再来一次四等奖五等奖谢谢光顾三等奖二等奖一等奖(10 ) 谢谢光顾60203060504012. 解关于x 的方程x(x-2)+(x 2-4)=0的解为_13. 母亲节那天 ,很多同学给妈妈准了鲜花和礼盒。

河北省2009年中考第二次模拟考试数学试卷

河北省2009年中考第二次模拟考试数学试卷

2009年河北省中考仿真模拟(二)数 学 试 卷 2009.2注意事项:1、本卷共8页,总分120分,考试时间120分钟。

2、答题前请将密封线左侧的项目填写清楚。

卷Ⅰ(选择题,共20分)一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1.3-的倒数是…………………………………………………………………………【 】 A .13B .13-C .3D .3-2.据2009年2月1日中央电视台“朝闻天下”报道,我市目前汽车拥有量约为3 100 000辆.则3 100 000用科学记数法表示为 …………………………………………【 】 A .0.31×107 B .31×105 C .3.1×105D .3.1×1063.国家实行一系列惠农********************************************************市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是 …………………………………………………………………………………【 】A .6969元B .7735元C .8810元D .10255元 4.函数y =x 的取值范围在数轴上可表示为 ……………………【 】5.若反比例函数ky x=的图象经过点(12)-,,则这个函数的图象一定经过点…【 】A .B .C .D .A .(12),B .(21),C .(12)-,D .(12)--,By一共花了170元第12题图 第13题图6.如图所示,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是 ……………………【 】A .1:6B .1:5C .1:4D .1:27.****************************************************,则该几何体中正方体木块的个数是…………………【 】 A .6个 B .5个 C .4个 D .3个8.有下列事件: ①367人中必有2人的生日相同; ②抛掷一 只均匀的骰子两次,朝上一面的点数之和一定大于2; ③在 标准大气压下,温度低于0℃时冰融化; ④如果a 、b 为实 数,那么a+b=b+a.其中是必然事件的有 ………………………………………………………………【 】 A .1个 B .2 个 C .3 个 D .4个9.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶……………………………【 】 A .0.5mB .0.55mC .0.6m10. 如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形 方格的边长为1,则这个圆锥的底面半径为 ……【 】A. 21B. 22C. 2D. 22卷Ⅱ(非选择题,共100分)二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.分解因式:322x x x -+= .12.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.13.如图,OB=OC,∠B=80°,则∠AOD= .14.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与*********************************************,销售量必须 .(x的单位为万件,y的单位为万元)第16题图第15题图第18题图15.两圆有多种位置关系,图中不存在的位置关系是 .16.台州市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级任意抽取一名学生,抽到学生的年龄是16岁的概率是 .17.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形. 若只选购其中一种地砖镶嵌地面,可供选择的地砖共有 .(添序号即可) 18.如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形********************************************************,依次下去.则点B 6的坐标是________________.三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分) 当x =-0.5时,求2111x x x x⎛⎫-÷ ⎪--⎝⎭的值.20.(本题满分8分)《中华人民共和国道路交通管理条理》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时.”如图所示,已知测速站M 到公路l 的距离MN 为30米,一辆小汽车在公路l 上由东向西行驶,测得此车从点A 行驶到点B 所用的时间为2秒,并测得60AMN ∠=,30BMN ∠=.计算此车从A 到B的平均速度为每秒多少米(结果保留两个有效数字),并判断此车是否超过限速. 1.732≈ 1.414≈)M21.(本题满分8分)某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图1、图2)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题:(1)******************************************************** (2)在扇形统计图中,求“教师”所在扇形的圆心角的度数.(3)补全两幅统计图.22.(本题满分9分)如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线.实验与探究:(1)由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明B (5,3)、C (-2,5)关于直线l 的对称点B '、C '的位置,并写出他们的坐标: B ' 、C ' ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '运用与拓广: (3)已知两点D (1,-3)、E (-1,-4),试在直线 l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.其它 教师医生公务员军人10% 20%15%图1图2图(1)23.(本小题满分10分)两个全等的直角三角形****************************************************△ABC 不动,将△DEF 进行如下操作:(1)如图(1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图(3),△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sin α的值.图(2)E )ABG C E H FD 图(1)AB GC EHFD图(2)24.(本题满分10分)用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.(1)如图(1),当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,********************************************************(2)如图(2),当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时,你在图(1)中得到的结论还成立吗?简要说明理由.25.(本题满分12分)我市的特产——赵县鸭梨上市时,外商李经理按市场价格30元/箱收购了鸭梨1000箱存放入冷库中,据预测,*****************************************************鸭梨时每天需要支出各种费用合计310元,而且这类鸭梨在冷库中最多保存160天,同时,平均每天有3箱的鸭梨损坏不能出售.(1)设x天后每箱该鸭梨市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批鸭梨一次性出售,设这批鸭梨的销售总额为P元,试写出P 与x之间的函数关系式.(3)李经理将这批鸭梨存放多少天后出售可获得最大利润W元?(利润=销售总额-收购成本-各种费用)26.(本小题满分12分)如图,********************************************************,点C在x轴正半轴上,点B坐OH⊥于点H.动点P从点H出发,沿线段HO向标为(2,23),∠BCO= 60°,BC点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)求OH的长;∆的面积为S(平方单位). 求S与t之间的函数关系式.并求t为何值时,(2)若OPQ∆的面积最大,最大值是多少?OPQ(3)设PQ与OB交于点M.①当△OPM S Array线段OM长度的最大值是多少,直接写出结论.。

2009年河北省中考数学试卷及答案

2009年河北省中考数学试卷及答案
体,得到一个如图5所示的零件,则这个零件的表面积是()
A.20B.22
C.24D.26
11.如图6所示的计算程序中,y与x之间的函数关系所对应的图
象应为()
12.古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.
从图7中可以发现,任何一个大于1
2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.
题号


19
20
21
22
23
24
25
26
得分
得分
评卷人
二、填空题(本大题共6个小题,每小题3分,共18分.把答案
写在题中横线上)
13.比较大小:-6-8.(填“<”、“=”或“>”)
14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约
得分
评卷人
19.(本小题满分8分)
已知a= 2, ,求 ÷ 的值.
得分
评卷人
20.(本小题满分8分)
图10是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,
OE⊥CD于点E.已测得sin∠DOE= .
(1)求半径OD;
(2)根据需要,水面要以每小时0.5 m的速度下降,
∴ED= =12.
在Rt△DOE中,
∵sin∠DOE = = ,
∴OD=13(m).
(2)OE=
= .
∴将水排干需:
5÷0.5=10(小时).
21.解:(1)30%;
(2)如图1;
(3) ;
(4)由于月销量的平均水平相同,从折线的走势看,A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势.

2009河北中考真题

2009河北中考真题

图32009年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(-1)3等于A .-1B .1C .-3D .3 2.在实数范围内,x 有意义,则x 的取值范围是A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于 A .20 B .15C .10D .54.下列运算中,正确的是A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于A .30°B .45°C .60°D .90°6.反比例函数1y x=(x >0)的图象如图3所示,随着x 值的 增大,y 值 A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是 A .某个数的绝对值小于0 B .某个数的相反数等于它本身 C .某两个数的和小于0D .某两个负数的积大于08.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,D图1A 图24=1+3 9=3+6 16=6+10 图7∠ABC =150°,BC 的长是8 m ,则乘电梯从点B到点C 上升的高度h 是A B .4 m C . mD .8 m9.某车的刹车距离y (m)与开始刹车时的速度x (m/s)之间满足二次函数2120y x (x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为 A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是 A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为1、4、“三角形数”之和.下列等式中,符 合这一规律的是 A .13 = 3+10B .25 = 9+16D .49 = 18+312009年河北省初中毕业生升学文化课考试数 学 试 卷卷II (非选择题,共96分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.A D CB 图6图5电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为 . 17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ′处,且点A ′ 在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)已知a = 2,1-=b ,求2221a b a ab --+÷1a 的值.20.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE = 1213.O 图10图9图8电视机月销量扇形统计图(1)求半径OD;(2)根据需要,水面要以每小时0.5 m的速度下降,21.(本小题满分9分)只销售A、B共售出400两幅统计图,如图11-1和图11-2.(1)(2)在图11-2中补全表示B折线;(3抽到B品牌电视机的概率;(422.(本小题满分9已知抛物线y ax=过点(33)A--,和点0),且t ≠0.(1)若该抛物线的对称轴经过点A请通过观察图象,指出此时y并写出t的值;(2)若4t=-,求a、b物线的开口方向;t的一个值.23.(本小题满分10分)如图13-1至图13-5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.月图12阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周.(2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由 ⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O在点B 处自转 周;若∠ABC = 60°,则⊙O在点B 处自转 周. (2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从 ⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动到⊙O 4的位置,⊙O 自转 周. 拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.24.(本小题满分10分) 在图14-1至图14-3中,点B 是线段AC的中点.四边形BCGF 和CDHN 都是正方形.AE (1)如图14-1,点E 在AC 的延长线上,点N 点C 重合,求证:FM = MH ,FM ⊥MH ;图13-4图13-1AB 图13-2图13-3 图13-5(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 25.(本小题满分12分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm ×30 cm .现只能购得规格是150 cm ×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)图14-1AHC (M ) DEBFG (N )G图14-2AH C DEBFNM AH CDE 图14-3BFG M N26.(本小题满分12分)如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值. 2009年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1; 17.3; 18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,P图16∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE5.∴将水排干需:5÷0.5=10(小时).21. 解:(1)30%;(2)如图1; (3)8021203=; (4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机.22t =-6. (2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;l c .16;13.(2)54. /月图1电视机月销量折线统计图拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc +1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P .∵B 、D 、M 分别是AC 、CE 、AE 的中点,∴MD ∥BC ,且MD = BC = BF ;MB ∥CD ,且MB =CD =DH . ∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH .∴FM =MH ,且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形.(3)是.25.解:(1)0 ,3.(2)由题意,得2240x y +=, ∴11202y x =-. 23180x z +=,∴2603z x =-.(3)由题意,得 121206023Q x y z x x x =++=+-+-.整理,得 11806Q x =-.由题意,得 ≥0 ≥0 112022603x x ⎧-⎪⎪⎨⎪-⎪⎩图2AHCDBFG N M P解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90张、75张、0张.26(1)1,85; (2)作QF ⊥AC 于点F,如图3, AQ = CP = t ,∴3AP t =-.由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.3)能.①当DE ∥QB 时,如图4. ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t-=. 解得98t =.②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.此时∠APQ =90°.由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t-=. 解得158t =.(4)52t =或4514t =.【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =. 方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】(注:可编辑下载,若有不当之处,请指正,谢谢!)P图4 P 图5图3F。

2009年河北省中考模拟试卷数学试卷(二)

2009年河北省中考模拟试卷数学试卷(二)

2008—2009年度中考模拟试卷数学试卷(二)考生注意:本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是…………………………………………………………………………( )A .a 2·a 3=a 6B .(a 2)3=a 6C .a 2+a 3=a 6D .a 2-a 3=a 2.下面几何体的正视图是……………………………………………………………………( )3.某反比例函数的图象经过点(-2,3),则此函数图象也经过点…………………………( ) A .(2,-3) B .(-3,-3) C .(2,3) D .(-4,6) 4.已知半径分别为5cm 和8cm 的两圆相交,则它们的圆心距可能是………………………( ) A .1cm B .3cm C .10cm D .15cm5.下列事件中的必然事件是…………………………………………………………………( ) A .2008年奥运会在北京举行 B .一打开电视机就看到奥运圣火传递的画面 C .2008年奥运会开幕式当天,北京的天气晴朗D .全世界均在白天看到北京奥运会开幕式的实况直播6.国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村 居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是…( )A .6969元B .7735元C .8810元D .10255元 7.四川5·12大地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是…………( )A .⎩⎨⎧=+=+9000y 4x 20004y xB .⎩⎨⎧=+=+9000y 6x 20004y xC .⎩⎨⎧=+=+90006y 4x 2000y xD .⎩⎨⎧=+=+90004y 6x 2000y xA B C D图1图28.如图,现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为…………………………………………………( ) A .4cm B .3cm C .2cm D .1cm9.23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是………………………………( ) A .41B .39C .31D .2910.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( ) A .10 B .16 C .18 D .20卷II (非选择题,共100分)二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.分解因式=+-3223xy y 2x y x . 12.当21t s +=时,代数式22t 2st s +-的值为. 13.如图,点A 、B 、C 在⊙O 上,AO∥BC,∠AOB=50°,则 ∠OAC 的度数是 .14.如图,一副三角板如图所示叠放在一起,则图中∠α15.方程2x212x 3x =-+--的解是x= . 16.如图所示,有一电路AB 是由图示的开关控制,闭合 a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是 .17.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a+b 的值为 .18.如图,是某工件的三视图,其中圆的半径为10cm ,等腰三角形的高为30cm ,则此工件的侧面积是 cm 2.233 5431315 17 19339 117OCBA13题图 正 视 图 左 视图 俯 视 图8题图9题图 10题图16题图 14题图表一 表二 表三 17题图 18题图三、解答题(本大题共8个小题,共76分)19.(本小题满分7分)当5x =时,求代数式2)(x 42x 44x x 2+⋅-+-的值.20.(本小题满分8分)如图,小华家(点A 处)和公路(L )之间竖立着一块30米长且平行于公路的巨型广告牌(DE ),广告牌挡住了小华的视线,请在图中画出视点A 的盲区,并将盲区的那段公路记为BC ,一辆以60千米/小时匀速行驶的汽车经过公路BC 段的时间为6秒,已知广告牌和公路的距离为35米,求小华家到公路的距离.21.(本小题满分8分)甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;(2)已知甲队五场比赛成绩的平均分甲x =90分,请你计算乙队五场比赛成绩的平均分乙x ; (3)就这五场比赛,分别计算两队成绩的极差;DEA30米20题图得分 甲、乙两球队比赛成绩条形统计图图1 /场 图2得分//场甲、乙两球队比赛成绩折线统计图(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?22.(本小题满分9分)如图,在平面直角坐标系xoy 中,直线y=x+1与3x 43y +-=相交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A ,B ,C 的坐标;(2)当BD=CD 时,求点D 的坐标;(3)若S △BCD =21S △ABC ,求点D 的坐标.23.(本小题满分10分)提出问题:如图①,在四边形ABCD 中,P 是AD 边上任意一点,△PBC 与△ABC 和△DBC 的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=21AD 时(如图②):∵AP=21AD ,△ABP 和△ABD 的高相等,∴S △ABP =21S △ABD .∵PD=AD-AP=21AD ,△CDP 和△CDA 的高相等,∴S △CDP =21S △CDA .∴S △PBC =S 四边形ABCD -S △ABP -S △CDP =S 四边形ABCD -21S △ABD -21S △CDA =S 四边形ABCD -21(S 四边形ABCD -S △DBC )-21(S 四边形ABCD -S △ABC )=21S △DBC +21S △ABC .ABCDP图②图①PDC BA(2)当AP=31AD 时,探求S △PBC 与S △ABC 和S △DBC 之间的关系,写出求解过程;(3)当AP=61AD 时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: ;(4)一般地,当AP=n1AD (n 表示正整数)时,探求S △PBC 与S △ABC 和S △DBC 之间的关系,写出求解过程;问题解决:当AP=nm AD (0≤nm ≤1)时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: .24.(本小题满分10分)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F.如图1,当点P 与点O 重合时,显然有DF=CF . (1)如图2,若点P 在线段AO 上(不与点A 、O 重合),PE ⊥PB 且PE 交CD 于点E. ①求证:DF=EF ; ②写出线段PC 、PA 、CE 之间的一个等量关系,并证明你的结论; (2)若点P 在线段OC 上(不与点O 、C 重合),PE ⊥PB 且PE 交直线CD 于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明).图1 图2图325.(本小题满分12分)某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.当每间客房每天的定价每涨10元时,就会有5间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用.(1)请写出该宾馆每天的利润y(元)与每间客房涨价x(元)之间的函数关系式;(2)设某天的利润为8000元,8000元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?(3)请回答客房定价在什么范围内宾馆就可获得利润?26.(本小题满分12分)已知:如图1,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B 出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQ P'C,那么是否存在某一时刻t,使四边形PQ P'C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.B图1C2008—2009年度中考模拟试卷数学试卷(二)答案一、1.B 2.D 3.A 4.C 5.A 6.B 7.D 8.C 9.A 10.A二、11.xy (x-y )2; 12.41; 13.25°; 14.75°; 15. 0; 16.53; 17.37;18.π10100.三、19.原式4)(x 212)2)(x (x 212)(x 2)2(x 2)(x 22-=+-=+⋅--=.当5x =时,原式214)(521=-=. 20.(1)连结AD 交公路L于点B ,连结AE 交公路L 于点C ,BC 即为视点A 的盲区.(2)设小华家距公路的距离为xm ,∵BC=60000×36006=100m ,∵△ADE ∽△ABC ,∴(x-35): x =30:100 ∴x=50m ∴小华家距公路的距离为50m.21.(1)略.(2)乙x =90 (分).(3)甲队成绩的极差是18分,乙队成绩的极差是30分.(4)从平均分看,两队的平 均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下 降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;从极差看,甲队比赛成绩 比乙队比赛成绩波动小,甲队成绩较稳定.所以,选派甲队参赛更能取得好成绩.22.(1)在y=x+1中,当y=0时,x+1=0,∴x=-1,点B 的坐标为(-1,0).在3x 43y +-=中,当y=0时,03x 43=+-,∴x=4,点C 的坐标为(4,0).由题意,得⎪⎩⎪⎨⎧+-=+=3x 43y 1x y 解得⎪⎪⎩⎪⎪⎨⎧==715y 78x ∴点A 的坐标为)715,78(.(2)当△CBD 为等腰三角形时,且BD=CD 时,设动点D 的坐标为(x ,y ). 由(1),得B (-1,0),C (4,0),∴BC=5.当BD=CD 时,过点D 作DM ⊥x 轴,垂足为点M ,则BM=MC =21BC ,BM=25,CM=25-1=23;23x =.,81532343y =+⨯-=∴点D 的坐标为)815,23(. 23.(2)∵AP =31AD ,△ABP 和△ABD 的高相等,∴S △ABP =31S △ABD .又∵PD =AD-AP=32AD ,△CDP 和△CDA 的高相等,∴S △CDP =32S △CDA .∴S △PBC =S 四边形ABCD -S △ABP -S △CDP =S 四边形ABCD -31S △ABD -32S △CDA =S 四边形ABCD -31(S四边形ABCD-S △DBC )-32(S四边形ABCD-S △ABC )=31S △DBC +32S △ABC .∴S △PBC =31S △DBC +32S △ABC .(3)S △PBC =61S △DBC +65S △ABC ;(4)S △PBC =n 1S △DBC +n 1-n S △ABC ;∵AP =n 1AD ,△ABP 和△ABD 的高相等,∴S △ABP =n 1S △ABD .又∵PD =AD-AP=n 1-n AD ,△CDP 和△CDA 的高相等,∴S △CDP =n1-n S △CDA ∴S △PBC =S 四边形ABCD -S △ABP -S △CDP =S 四边形ABCD -n 1S △ABD -n 1-n S △CDA =S 四边形ABCD -n 1(S 四边形ABCD -S △DBC )- n1-n (S 四边形ABCD-S △ABC )=n 1S △DBC +n 1-n S △ABC .∴S △PBC =n 1S △DBC +n 1-n S △ABC .问题解决:S △PBC =n mS △DBC +nm-n S △ABC .24.(1)①证明:连结DP ,则△DPA ≌△BPA ,DP=BP ,又因为∠PED=∠PBC=∠PDC ,所以PD=PE ,∵PF ⊥DC ∴DF=FE.②PC-PA=2CE ;证明如下:在△DFC 中,PC=2 (FE+EC ),而FE=2PA,由这两个式子,可得结论。

专题04图形的变换-2021版[中考15年]河北省2002-2021年中考数学试题分项解析(原卷版)

专题04图形的变换-2021版[中考15年]河北省2002-2021年中考数学试题分项解析(原卷版)

]河北省2002-2021专题04 图形的变换1. (2004年河北省大纲2分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入【】球袋A、1号B、2号C、3号D、4号2. (2004年河北省课标2分)图中几何体的主视图是【】A.B.C.D.3. (2004年河北省课标2分)如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔果一个球按图中所示的方向被击出(球可以经过多反射),那么该球最后将落入的球袋是【】4. (2005年河北省大纲2分)一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是【】A.4n+1 B.4n+2 C.4n+3D.4n+55. (2005年河北省课标2分)图中几何体的主视图是【】A.B.C.D.6. (2005年河北省课标2分)将一正方形纸片按图中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的【】A.B.C.D.7. (2006年河北省大纲课标2分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3x2y19x4y23+=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为【】A.2x y114x3y27+=⎧⎨+=⎩B.2x y114x3y22+=⎧⎨+=⎩C.3x2y19x4y23+=⎧⎨+=⎩D.2x y64x3y27+=⎧⎨+=⎩8. (2006年河北省大纲2分)观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为【】A .3n 2-B .3n 1-C .4n 1+D .4n 3-9. (2006年河北省大纲2分)小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是【 】A .0.5cmB .1cmC .1.5cmD .2cm10. (2006年河北省课标2分)图中几何体的主视图是【 】A .B .C .D .11. (2006年河北省课标2分)如图,现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为【 】A .4cmB .3cmC .2cmD .1cm12. (2007年河北省2分)我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图给出了“河图”的部分点图,请你推算出P 处所对应的点图是【 】A.B.C.D.13. (2008年河北省2分)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是【】A.上B.下C.左D.右14. (2009年河北省2分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是【】A.20 B.22 C.24 D.2615. (2009年河北省2分)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是【】A.13 = 3+10 B.25 = 9+16 C.36 = 15+21 D.49 = 18+3116. (2010年河北省2分)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是【】A.6 B.5 C.3 D.217. (2011年河北省2分)将图①围成图②的正方体,则图②中的红心“”标志所在的正方形是正方体中的【】A.面CDHE B.面BCEF C.面ABFG D.面ADHG18. (2011年河北省3分)如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在A′处,若A′为CE的中点,则折痕DE的长为【】A.12B.5 C.6 D.719. (2012年河北省2分)图中几何体的主视图为【】A.B.C.D.A.70°B.40°C.30°D.20°21. (2012年河北省3分)如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a-b)等于【】A.7 B.6 C.5 D.422.【2014中考河北3分】图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体的距离是【】A、0B、1C、2D、3对于两人的观点,下列说法正确的是【】A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对24.【2015中考河北3分】一张菱形纸片按图1-1、图1-2依次对折后.再按图l-3打出一个圆形小孔,则展开铺平后的图案是()A. B. C. D.25.【2015中考河北3分】图中的三视图所对应的几何体是()A. B.C. D.26. 【2016中考河北3分】下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D27.【2016中考河北2分】如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°1. (2003年河北省2分)如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当边上摆8(即n=8)根时,需要的火柴总数为▲ 根.2. (2005年河北省大纲2分)如图,已知圆锥的母线长OA=8,底面圆的半径r=2.若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到了A点,求小虫爬行的最短路线的长▲ .3. (2006年河北省课标3分)图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为▲ m.(结果保留根号)4. (2006年河北省课标3分)小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是▲ cm.5. (2007年河北省3分)如图,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B内切,那么⊙A由图示位置需向右平移▲ 个单位长.6. (2009年河北省3分)如图,等边△ABC的边长为1 cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为▲ cm.7. (2011年河北省3分)如图中图①,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置得到图②,则阴影部分的周长为▲8. (2012年河北省3分)用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为▲ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图32009年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( ) A .某个数的绝对值小于0 B .某个数的相反数等于它本身 C .某两个数的和小于0D .某两个负数的积大于08.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,BAC D图1图24=1+3 9=3+616=6+10图7…∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )AmB .4 m C. mD .8 m9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x (x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+31ADCB图6图52009年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共96分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约 为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为 . 17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)图9图8电视机月销量扇形统计图第一个月 15%第二个月 30%已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.20.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m , OE ⊥CD 于点E .已测得sin ∠DOE = 1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是 ; (2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第O图10四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)已知抛物线2y ax bx =+经过点(33)A --,P (t ,0),且t ≠ 0.(1)若该抛物线的对称轴经过点A ,如图12请通过观察图象,指出此时y 并写出t 的值;(2)若4t =-,求a 、b 物线的开口方向;(3)直.接.写出使该抛物线开口向下的t 的一个值.时间/月图11-2第一 第二 第三 第四 电视机月销量折线统计图图1223.(本小题满分10分)如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周. (2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由 ⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转 周.在 阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O 在点B 处自转 周.图13-1AB 图13-2(2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从 ⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动 到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.24.(本小题满分10分)在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合, 求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)图13-4图14-1AHC (M )DEBFG (N )G图14-2AHCDBFNMAHCDE 图14-3BFG MN 图13-5图15单位:cm25.(本小题满分12分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?26.(本小题满分12分)如图16,在Rt △ABC中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.2009年河北省初中毕业生升学文化课考试图16数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1;17.3; 18.20.三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE 5.∴将水排干需:5÷0.5=10(小时).21.解:(1)30%; (2)如图1; (3)8021203=;(4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势./月图1第一 第二 第三 第四 电视机月销量折线统计图第 11 页 共 13 页所以该商店应经销B 品牌电视机.22.解:(1)-3.t =-6.(2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;l c .16;13.(2)54. 拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°, ∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc +1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .图2AHCDBFG NMP第 12 页 共 13 页又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形. (3)是.25.解:(1)0 ,3. (2)由题意,得2240x y +=, ∴11202y x =-. 23180x z +=,∴2603z x =-. (3)由题意,得 121206023Q x y z x x x =++=+-+-.整理,得 11806Q x =-.由题意,得112022603x x ⎧-⎪⎪⎨⎪-⎪⎩解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90张、75张、0张.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC , 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4. ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB=,图4P图3FP第 13 页 共 13 页即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】。

相关文档
最新文档