初一数学实数计算题专题训练(含答案)
初一数学实数的运算试题答案及解析
![初一数学实数的运算试题答案及解析](https://img.taocdn.com/s3/m/83a91525bdd126fff705cc1755270722192e597c.png)
初一数学实数的运算试题答案及解析1.计算:= .【答案】﹣14【解析】先把二次根式、三次根式化简,再作乘法运算.解:原式=10×(﹣2)×0.7=﹣14.故答案为:﹣14.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式的运算.2.不用计算器,计算:= .【答案】5【解析】根据立方运算法则,分别相乘,直接得出答案.解:()3=××=5.故答案为:5.点评:此题主要考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式乘法运算.3.有一个数值转换器,原理如下:当输入x为4时,输出的y的值是.【答案】y=【解析】本题有x=4很容易解出它的算术平方根,在判断它的算术平方根是什么数,最后即可求出y的值.解:∵x=4时,它的算术平方根是2又∵2是有理数∴取2的算术平方根是∴y=点评:本题主要考查了算术平方根的计算和有理数、无理数的概念,解题时要掌握数的转换方法.4.= ;= .【答案】5,2【解析】根据幂的乘方法则进行计算即可.解:()2==5;()2==2.故答案为:5,2.点评:本题考查的是实数的运算,熟知幂的乘方法则是解法此题的关键.5.在下面算式的两个方框内,分别填入两个绝对值不相等的无理数,使得它们的积恰好为有理数,并写出它们的积.【答案】()()=2【解析】只要满足两个绝对值不相等的无理数,使得它们的积恰好为有理数即可,可以任意列举出两个不相等的无理数,如:和,()(+1)=3﹣1=2满足题意.解:和+1是两个绝对值不相等无理数,那么,()()=3﹣1=2,即:这两个数满足是两个绝对值不相等的无理数,且它们的积恰好为有理数,所以空白处应填:()()=2,答案不唯一.点评:本题主要考查写出两个绝对值不相等的无理数,使得它们的积恰好为有理数的能力,可以任意取两个绝对值不相等的无理数,使它们相乘,如满足乘积是有理数则可取,如不满足舍去即可,本题属于开放性类型.6.长方形的长为厘米,面积为平方厘米,则长方形的宽约为厘米.(,结果保留三个有效数字)【答案】5.66【解析】根据长方形面积公式,代入即可得出答案.解:长方形的面积=长×宽,∴长方形的宽为=4≈5.66.故答案为5.66.点评:本题主要考查了长方形面积公式,比较简单.7.是20a+2b的平方根,是﹣2a﹣b的立方根,则+= .【答案】6【解析】根据平方根与立方根的定义得到,解得,则原式=+,然后进行开方运算,再进行减法运算.解:根据题意得,解得,则原式=+=8﹣2=6.故答案为6.点评:本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了平方根与立方根.8.计算:(1)(2).【答案】(1)﹣2(2)0【解析】(1)先算乘方、开方和除法化为乘法得到原式=﹣16﹣6+4×(﹣)×(﹣2),再进行乘法运算,然后进行加减运算;(2)利用乘法的分配律进行计算.解:(1)原式=﹣16﹣6+4×(﹣)×(﹣2)=﹣16﹣6+20=﹣22+20=﹣2;(2)原式=﹣×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.9.计算:.【答案】2【解析】本题涉及立方根、乘方、二次根式及绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:=1﹣4+3+2=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、立方根、二次根式、绝对值等考点的运算.10.在算式□的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【答案】D【解析】将加减乘除符号放入计算,比较即可得到结果.解:+=,﹣=0,×=,÷=1,则这个运算符号是除号.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.已知:≈5.196,计算:,保留3个有效数字,运算的结果是()A.1.73B.1.732C.1.74D.1.733【答案】A【解析】首先化简得3,再计算的值,可得,又由≈1.732,即可求得结果.解:=×3=≈1.732≈1.73.故选A.点评:此题考查了实数的计算.注意首先将二次根式化为最简二次根式,再进行计算.12.计算:的结果为()A.7B.﹣3C.±7D.3【答案】A【解析】先根据算术平方根的意义求出的值,再根据立方根的定义求出的值,然后再相减.解:原式=5﹣(﹣2)=5+2=7.故选A.点评:本题考查了实数的运算,熟悉算术平方根的意义和立方根的意义是解题的关键,解答此题时要注意要注意,负数的立方根是负数.13.若|a|=5,=3,且a和b均为正数,则a+b的值为()A.8B.﹣2C.2D.﹣8【答案】A【解析】利用绝对值以及二次根式的化简公式求出a与b的值,即可求出a+b的值.解:根据题意得:a=±5,b=±3,∵a和b都为正数,∴a=5,b=3,则a+b=5+3=8.故选A.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.的平方根与的差等于()A.6B.6或﹣12C.﹣6或12D.0或﹣6【答案】D【解析】首先利用二次根式的性质化简,然后利用实数的运算法则计算即可求解.解:∵=9,∴的平方根为±3,而=3,∴的平方根与的差等于0或﹣6.故选D.点评:此题主要考查了实数的运算,同时也利用了二次根式的性质及平方根的定义,是比较容易出错的计算题.15.若实数x,y,使得这四个数中的三个数相等,则|y|﹣|x|的值等于()A.B.0C.D.【答案】C【解析】此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可.解:因为有意义,所以y不为0,故x+y和x﹣y不等(1)x+y=xy=解得y=﹣1,x=,(2)x﹣y=xy=解得y=﹣1,x=﹣,所以|y|﹣|x|=1﹣=.故选C.点评:解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论.16. m,n为实数,且,则mn=()A.B.C.D.不能确定【答案】B【解析】先根据非负数的性质求出m、n的值,再计算出mn的值即可.解:由题意得,m+3=0,n﹣=0,解得m=﹣3,n=,故mn=﹣3.故选B.点评:本题考查的是非负数的性质,根据题意列出关于m、n的方程,求出m、n的值是解答此题的关键.17.对于正实数x和y,定义,那么()A.“*”符合交换律,但不符合结合律B.“*”符合结合律,但不符合交换律C.“*”既不符合交换律,也不符合结合律D.“*”符合交换律和结合律【答案】D【解析】根据实数混合运算的法则进行计算验证即可.解:∵x*y=,y*x==∴x*y=y*x,故*符合交换律;∵x*y*z=*z==,x*(y*z)=x*()==∴x*y*z=x*(y*z),*故满足结合律.∴“*”既符合交换律,也符合结合律.故选D.点评:本题考查的是实数的运算,熟知交换律与结合律是解答此题的关键.18.如果,则(xy)3等于()A.3B.﹣3C.1D.﹣1【答案】D【解析】首先根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解:由题意得:,解得,∴(xy)3=(﹣×)3=(﹣1)3=﹣1.故选D.点评:本题考查了实数的运算和非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.下列运算中,错误的是()A.B.C.D.=3.14﹣π【答案】D【解析】A、根据二次根式的乘法法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的加减法则计算即可判定;D、根据二次根式的性质即可判定.解:A、×==,故选项正确;B、==,故选项正确;C、2+3=5,故选项正确;D、=π﹣3.14,故选项错误.故选D.点评:此题主要考查了实数的运算,解题时根据二次根式的加减乘除的运算法则计算,要注意,二次根式的结果为非负数.20.下列各数与相乘,结果为有理数的是()A.B.C.D.【答案】A【解析】分别计算(+2)(2﹣)、(2﹣)(2﹣)、(﹣2+)(2﹣)、(2﹣),然后由计算的结果进行判断.解:A、(+2)(2﹣)=4﹣3=1,结果为有理,所以A选项正确;B、(2﹣)(2﹣)=7﹣4,结果为无理数的,所以B选项不正确;C、(﹣2+)(2﹣)=﹣7+4,结果为无理数的,所以,C选项不正确;D、(2﹣)=2﹣3,结果为无理数的,所以,D选项不正确.故选A.点评:本题考查了实数的运算:先算乘方或开方,再进行乘除运算,最后进行实数的加减运算;有括号或绝对值的,先计算括号或去绝对值.。
初一实数试题及答案
![初一实数试题及答案](https://img.taocdn.com/s3/m/697d4546492fb4daa58da0116c175f0e7cd119dc.png)
初一实数试题及答案一、选择题(每题2分,共20分)1. 下列各数中,是实数的是()A. √2B. πC. 0.3333…D. √-4答案:ABC2. 两个数的和为-5,其中一个加数是-3,另一个加数是()A. -2B. -8C. 2D. 8答案:B3. 有理数-3,-2,-1,0,1,2,3中,是负数的有()A. 3个B. 4个C. 5个D. 6个答案:A4. 一个数的相反数是-3,则这个数是()A. 3B. -3C. 0D. 1答案:A5. 一个数的绝对值是3,则这个数是()A. 3或-3B. 3C. -3D. 0答案:A6. 下列各数中,是无理数的是()A. 0.5B. √2C. 0.3333…D. √9答案:B7. 下列各数中,是实数的是()A. √2B. πC. 0.3333…D. √-4答案:ABC8. 一个数的相反数是-3,则这个数是()A. 3B. -3C. 0D. 1答案:A9. 一个数的绝对值是3,则这个数是()A. 3或-3B. 3C. -3D. 0答案:A10. 下列各数中,是无理数的是()A. 0.5B. √2C. 0.3333…D. √9答案:B二、填空题(每题2分,共20分)1. 一个数的相反数是-5,则这个数是______。
答案:52. 一个数的绝对值是4,则这个数是______。
答案:4或-43. 一个数的相反数是它本身,则这个数是______。
答案:04. 一个数的绝对值是它本身,则这个数是______。
答案:非负数5. 两个数的和为0,则这两个数互为______。
答案:相反数6. 一个数的相反数是-3,则这个数是______。
答案:37. 一个数的绝对值是3,则这个数是______。
答案:3或-38. 一个数的相反数是它本身,则这个数是______。
答案:09. 一个数的绝对值是它本身,则这个数是______。
答案:非负数10. 两个数的和为0,则这两个数互为______。
七年级数学 计算专题4--实数(含答案)
![七年级数学 计算专题4--实数(含答案)](https://img.taocdn.com/s3/m/bab76048fc4ffe473268ab31.png)
计算专题4——实数1.计算(1)2|6|(1)2--+ (2|1(3)22(1)0x -=求x 的值2.计算(12 (2)1-;3.计算:4101221()()20163π---++-.402018π)(1)--+-5.(12-(2)求()21=4-x 中x 的值.6.计算:()214--7.计算:(1 (22.8.计算:(1)(-2)2-5)2×(;(2)|1|;9(1|3|--102(317)0x y -+=的值.11.计算:(-1)2020+(-12)2-)0-1|.12.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭ (2313.计算:()1015 3.12π-⎛⎫-+--+ ⎪⎝⎭14.计算:|﹣12|﹣2﹣1﹣(π﹣4)0.15.计算:(1)﹣12﹣(﹣2) (2)2|16.计算(1 (2212⎛⎫- ⎪⎝⎭17.计算:(1)- (218.(142 (2219.计算:12033⎛⎫÷- ⎪⎝⎭20.计算:11()22--21.计算:31(2)()2--22()20201-23.计算(1 (2|5|+-24.已知:2m +2的平方根是±4,3m +n +1的算术平方根是5,求m +3n 的算术平方根.25.已知某正数的两个平方根为3a +和215a -,求这个数是多少?26.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.41 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a,b求a b-的值.27.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a3的整数部分,b﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2的平方根,提示:2=17.28﹣1(1;(21=;(3+.29.阅读下面的文字,解答问题.的小数部分我们不可能全部地写出来,于是小明用1的小数部分,你同意小明的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1a,小数部分为b,求2a b+-的值.(2)已知:10x y =+,其中x 是整数,且01y <<,求x y -的值.30.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.参考答案1.(1)1125;(2)172;(3)3x =-或1x =-2.(1)7;(233.20004.1.5.(1)4-(2)3x =或1x =-6.07.(1)1-;(2)58.(1)-2;(2)43-9510.611.12.(1)-34;(2)313.6.14.﹣1.15.(1)2;(2)516.(1)7;(2)-117.(1)-1;(2)0.18.(1) (2)-219.2.20.21.-3322.1923.(1)-2.1;(2)4-+24.425.49本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
[数学]-专题 实数的运算计算题(共45小题)(带答案)
![[数学]-专题 实数的运算计算题(共45小题)(带答案)](https://img.taocdn.com/s3/m/55ed995d54270722192e453610661ed9ac515563.png)
七年级下册数学《第六章 实 数》 专题 实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算: (1)(√5)2+√(−3)2+√−83;(2)(﹣2)3×18−√273×(−√19).【分析】(1)原式利用平方根及立方根定义计算即可求出值; (2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值. 【解答】解:(1)原式=5+3+(﹣2) =8﹣2 =6;(2)原式=(﹣8)×18−3×(−13) =(﹣1)﹣(﹣1) =﹣1+1 =0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 2.(2022•庐江县二模)计算:√0.04+√−83−√1−925. 【分析】先计算被开方数,再开方,最后加减. 【解答】解:原式=0.2﹣2−√1625 =0.2﹣2−45 =0.2﹣2﹣0.8 =﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键. 3.(2022春•上思县校级月考)计算: (1)−12+√16+|√2−1|+√−83; (2)2√3+|√3−2|−√643+√9. 【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案. 【解答】解:(1)−12+√16+|√2−1|+√−83; =﹣1+4+√2−1﹣2 =√2;(2)原式=2√3+2−√3−4+3 =√3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算: (1)√16+√(−3)2+√273; (2)√−33+|1−√33|﹣(−√3)2.【分析】(1)先计算平方根和立方根,再计算加减; (2)先计算平方根、立方根和绝对值,再计算加减; 【解答】解:(1)√16+√(−3)2+√273=4+3+3 =10;(2)√−33+|1−√33|﹣(−√3)2=−√33+√33−1﹣3 =﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算: (1)√−83+√4−(−1)2023;(2)(−√9)2−√643+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√−83+√4−(−1)2023=﹣2+2﹣(﹣1) =0+1 =1;(2)(−√9)2−√643+|−5|−(−2)2 =9﹣4+5﹣4 =6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算: (1)−12−√0.64+√−273−√125;(2)√3+√(−5)2−√−643−|√3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算; (2)先计算平方根、立方根和绝对值,再进行加减运算. 【解答】解(1)−12−√0.64+√−273−√125 =﹣1﹣0.8﹣3﹣0.2 =﹣5;(2)√3+√(−5)2−√−643−|√3−5| =√3+5+4+√3−5 =2√3+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:√16−(−1)2022−√273+|1−√2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案. 【解答】解:原式=4﹣1﹣3+√2−1 =√2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−√643+|√3−2|.【分析】这里,先算﹣12022=﹣1,√643=4,|√3−2|=2−√3,再进行综合运算.【解答】解:﹣12022−√643+|√3−2|=﹣1﹣4+2−√3 =﹣3−√3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)√1253+√(−3)2−√1−35273.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√1253+√(−3)2−√1−35273=5+3−√−8273=5+3﹣(−23) =5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:√−273+12√16+|−√2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:√−273+12√16+|−√2|+1=﹣3+12×4+√2+1 =﹣3+2+√2+1 =√2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+√−83+√(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+√−83+√(−3)2=﹣1+2+(﹣2)+3 =﹣1+2﹣2+3 =2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|√2−2|+√49+√(−3)33. 【分析】按照实数的运算顺序进行运算即可. 【解答】解:原式=1+2−√2+7−3 =7−√2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|√3−2|+√−83×12+(−√3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减. 【解答】解:原式=2−√3+(﹣2)×12+3 =2−√3−1+3 =4−√3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+√(−4)2+√83+10√925.【分析】先算乘方、开方,再算乘法,最后算加减. 【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6 =11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键. 15.(2021秋•峨边县期末)计算:|√5−3|+√(−2)2−√−83+√5. 【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案. 【解答】解:原式=3−√5+2+2+√5【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:√(−3)2−2×√94+52×√−0.0273.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案. 【解答】解:原式=3﹣2×32+52×(﹣0.3) =3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+√9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可. 【解答】解:原式=1+3﹣(﹣1)×2 =4+2 =6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算: (1)√643−√81+√1253+3; (2)|−3|−√16+√83+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案; (2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:(1)原式=4﹣9+5+3 =3;(2)原式=3﹣4+2+4【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算: (1)﹣23+√−273−(﹣2)2+√1681; (2)(﹣3)2×(﹣2)+√643+√9.【分析】(1)先计算乘方、立方根和平方根,再计算加减; (2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减. 【解答】解:(1)﹣23+√−273−(﹣2)2+√1681=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+√643+√9=﹣9×2+4+3 =﹣18+4+3 =﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算: (1)(√3)2−√16+√−83;(2)(﹣2)3×√1214+(﹣1)2013−√273;(3)√(−4)2+√214+√3383−√32+42.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答; (3)先化简各式,然后再进行计算即可解答. 【解答】解:(1)(√3)2−√16+√−83=3﹣4+(﹣2)(2)(﹣2)3×√1214+(﹣1)2013−√273=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)√(−4)2+√214+√3383−√32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−√16+√−83+(−2)2;(2)√−273+|2−√3|−(−√16)+2√3.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−√16+√−83+(−2)2=3﹣4+(﹣2)+4=1.(2)√−273+|2−√3|−(−√16)+2√3=﹣3+(2−√3)﹣(﹣4)+2√3=﹣3+2−√3+4+2√3=3+√3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:√(−3)2×√−183−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减. 【解答】解:原式=3×(−12)−14+1 =−32−14+1 =−12−14 =−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|. 【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可. 【解答】解:√−83+√9−√1916+(−1)2022+|1−√2|. =﹣2+3−54+1+√2−1 =−14+√2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题: (1)√1−19273+√(14−1)2; (2)√53−|−√53|+2√3+3√3.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√1−19273+√(14−1)2=√8273+√(−34)2=23+34=1712; (2)√53−|−√53|+2√3+3√3 =√53−√53+2√3+3√3 =5√3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(√3−1)−|√3−2|−√643. 【分析】先去括号,化简绝对值,开立方,再计算加减即可. 【解答】解:原式=2√3−2﹣(2−√3)﹣4 =2√3−2﹣2+√3−4 =3√3−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−√−643−√169×|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答. 【解答】解:﹣22×(﹣112)2−√−643−√169×|﹣3| =﹣4×94−(﹣4)−43×3 =﹣9+4﹣4 =﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算: (1)|7−√2|﹣|√2−π|−√(−7)2;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273.【分析】(1)先化简绝对值和平方根,再计算加减; (2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−√2|﹣|√2−π|−√(−7)2=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273 =﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:√0.01×√121+√−11253−√0.81. 【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(√7−2)+√−83+|√3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣2√7+4﹣2+2−√3=9﹣2√7−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:√(−3)2+(﹣1)2020+√−83+|1−√2| 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√(−3)2+(﹣1)2020+√−83+|1−√2|=3+1+(﹣2)+√2−1=3+1﹣2+√2−1=1+√2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:√16+√−273−√3−|√3−2|+√(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−√3−2+√3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•仁寿县校级月考)计算:√−8 273+√(−4)2×(−12)3−|1−√3|.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√−8 273+√(−4)2×(−12)3−|1−√3|=−23+4×(−18)﹣(√3−1)=−23+(−12)−√3+1=−76−√3+1=−16−√3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:√81+√−273−2(√3−3)−|√3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣2√3+6﹣(2−√3)=6﹣2√3+6﹣2+√3=10−√3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:√(−1)33+√−273+√(−2)2−|1−√3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(√3−1)=﹣1﹣3+2−√3+1=﹣1−√3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+√(−2)2−√643+|√3−2|. 【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−√3=﹣1−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)√1+√−273−√14+√0.1253+√1−6364(2)|7−√2|﹣|√2−π|−√(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178; (2)原式=7−√2−π+√2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:√0.0083×√1916−√172−82÷√−11253. 【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:√0.0083×√1916−√172−82÷√−11253=0.2×54−15÷(−15)=14+75=7514 【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:3√3−2(1+√3)+√(−2)2+|√3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=3√3−2﹣2√3+2+2−√3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)√(−2)2×√214−23×√(−18)23(2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)√16+√32+√−83=4+3﹣2=5(2)√(−2)2×√214−23×√(−18)23=2×32−8×14=3﹣2=1(3)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|=3+√2−1−53×3+2−√2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×√14+|√−83|+√2×(﹣1)2022 【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+√2=4+√2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+√16+√83+1014×934. 【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−√273+(﹣2)2+4÷(−23). 【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13; (2)√(−3)2+(−1)2022+√83+|1−√2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3+3+14×4√3−9×√33 =2√3+3+√3−3√3=3;(2)原式=3+1+2+√2−1=5+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:√49−√273+|1−√2|+√(1−43)2. 【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+√2−1+13=103+√2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|√2−3|−√(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−√2−3,=−34−√2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。
初中数学实数综合运算综合题目含答案word版
![初中数学实数综合运算综合题目含答案word版](https://img.taocdn.com/s3/m/366abfcdfad6195f302ba66b.png)
初中数学实数综合运算综合题一、单选题(共9道,每道11分)
1.的结果是()
A.176
B.88
C.368
D.294
答案:A
试题难度:三颗星知识点:化成最简二次根式
2.的结果是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:无理数乘法
3.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:根号下含有分母
4.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:分母有理化
5.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:无理数去绝对值
6.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:二次根式的非负性
7.的结果是()
A. B.
C. D.
答案:D
试题难度:三颗星知识点:化简求值综合
8.解方程的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:含无理数系数的方程
9.如图,在等腰△ABC中,AC=BC,∠C=120°,AC=1,则AB的长为
()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:含特殊角(15°的倍数)的三角形
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。
实数计算题带答案
![实数计算题带答案](https://img.taocdn.com/s3/m/030d612beff9aef8941e0662.png)
实数计算题带答案篇一:实数计算题专题训练(含答案)专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+3.6.9.计算题:10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2); 11. |12. ﹣1+2322)+0. 2.计算题:﹣12009+4×(﹣3)+(﹣6)÷(﹣2) 2 4 . ||﹣.5..; 7..8. .﹣|+﹣×﹣213. .114. 求x的值:9x2=121. 15. 已知16. 比较大小:﹣2,﹣(要求写过程说明)18. .19. 已知m<n,求+的值;20.已知a<0,求+的值.参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.2 ,求xy的值.求x的值:(x+10)2=1617.3.4. ||﹣. 200925.计算题:.6.7.;.38.(精确到).9.计算题:.10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);3222 413..14求x的值:9x=121.15已知,求x的值.16比较大小:﹣2,﹣(要求写过程说明)2y17. 求x的值:(x+10)=1618.. 25篇二:第十三章实数计算题专题训练(含答案)专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+2.计算题:﹣13.4 . ||﹣. 2009)+0. +4×(﹣3)+(﹣6)÷(﹣2) 2 5.计算题:6.计算题:(1)78.9.计算题:(精确到).;...10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);11.|﹣|+﹣12. ﹣1+2322×﹣213.14. 求x的值:9x=121.15. 已知16. 比较大小:﹣2,﹣22.,求x的值. y(要求写过程说明) 17.求x的值:(x+10)=1618.19. 已知m<n,求20.已知a<0,求+的值. +的值;.保沙中学专题一计算题训练参考答案与试题解析一.解答题(共13小题)200923.4. ||﹣. 5.计算题:.6.7.;.保沙中学8.(精确到).9.计算题:.10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);322保沙中学.14求x的值:9x=121.15已知,求x的值.16比较大小:﹣2,﹣(要求写过程说明)2y17. 求x的值:(x+10)=1618.保沙中学2.篇三:实数练习题(含答案)实数练习题一一.选择题1.下列说法不正确的是()A.1是1的平方根 B.-1是1的平方根 C.±1是1的平方根的平方根是1 2.9的平方根是()A.±9 B.± 3.4的算术平方根是()A.±2 C.±24.下列各数:π,(?2)2,-∣-3∣,-(-5),π-,2,0,-1,其中有平方根的有()A.3个个个个 5.下列几种说法:()①任何数的平方根都有两个②只有正数才有平方根;③因为负数没有平方根,所以平方根不可能为负;④不是正数的数都没有平方根. 其中正确的有()A.3个个个个 6.下列计算正确的是()A.(?2)2=2 ? =?5D.?(?2)2??2 7.一个正整数的算术平方根是a,则比这个正整数大2的数的算术平方根是() A.a+2B. a2?2 C. a2?2 D. a?2 8.已知?n是正整数,则整数n的最大值为() A.12 19.下列各数中,-2,,,72,-π,无理数的个数是()A.2个个个个10.下列说法正确的是() A.无理数都是实数,实数都是无理数B.无限小数都是无理数; C.无理数是无限小数 D.两个无理数的和一定是无理数二.填空题1.平方根等于本身的数是,算术平方根等于本身的数是 .立方根等于它本身的数是.2.(1)一个数的平方是49,这个数是,它叫做49的 .(2)()2=99(3)(?25)2开平方的结果是,的平方根是,64643.13是m的一个平方根,则m的另一个平方根是,m= . 4.的整数部分为,小数部分为 . 5.若x+1是36的算术平方根,那么x=. 6.∣?517∣的平方根是2的算术平方根是1697.绝对值最小的实数是,a和它的相反数的差是 . 8.若无理数a满足2<a<5,请写出两个你熟悉的无理数a为 . 9.在两个连续整数a和b之间,即a<<b,则a,b的值分别是 . 10.一个数的算术平方根是x,那么比它大1的数的立方根是. 三.计算题1.求下列各数的平方根:(1)144 (2)121(3) 4(4)(?)2 (5)?(4)2 (6)?(?(7)2?122(8)2.求下列各数的立方根:92) 16(1)- (2)3 (3)(-4)3383.计算:(1)??(精确到)(2)7??π?(3)23?(2?)(精确到)(4)四.问答题1.某农场有一块长30米,宽为20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?2.若球的半径为R,则球的体积V与R的关系式为V=4πR3 .已知一个足球的体积为31(保留4个有效数字); 4?2?23(保留3个有效数字). 36280cm3,试计算足球的半径.(π取,精确到)3.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截取8个大小相同的小正方体,使截后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?答案; 一、选择题1、D;2、B;3、B;4、D;5、D;6、A;7、B;8、B;9、A; 10、C;二、填空题; 0,1; 0,1,-1;3932、①、±7;平方根;②、(±)2=;±;③、±5;86483、-13;169;4、5;-5;5、5或﹣7;956、±;;437、0;2a; 8、;4; 9、a=3;b=4; 10、(x2+1)371三、1①、=±12;②=±;③.0625=;④;;⑤;-4;24⑥;﹣9;⑦;±5;⑧;0; 162、①、﹣;②、;③、﹣64;3、计算:1、10;2、≈;3、4;实数练习题二一.选择题11.下列说法不正确的是()A.0是整数是有理数是无理数是实数512.?,?2,?,-π/2四个数中,最大的数是()3A.? B.-2C.?3 D.-π/2 13.下列说法正确的是() A.带根号的数是无理数53B.无限小数是无理数 C.分数都不是无理数D.不能在数轴上表示的数是无理数 14.(?3)2的相反数是()A.6 B.- D.-9 15.设?a,则下列结论正确的是()A.<a< <a<<a<<a<16.下列四个结论:①绝对值等于它本身的实数只有零;②相反数等于它本身的实数只有零;③算术平方根等于它本身的实数只有1;④倒数等于它本身的实数只有1.其中正确的有()A.0个个个个 17.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.负数没有立方根 D.一个数有立方根,它也有平方根 D.立方根的符号与被开立方数的符号相同 18.下列计算不正确的是()A.(?3)2??3 (?3)3??3 C..001? D.(?2)3??2 19.下列说法正确的是()A.一个数总大于它的立方根 B.非负数才有立方根 C.任何数和它的立方根的符号相同 D.任何数都有两个立方根 20.下列各式:3(?()二.填空题A.0个个个个 9.因为()3=-27,所以?2710.的立方根是.272311)?,?(?27)3??27,31?1,64??4,计算正确的有8264411/ 11。
七年级实数测试题及答案
![七年级实数测试题及答案](https://img.taocdn.com/s3/m/24da0b88185f312b3169a45177232f60dccce774.png)
七年级实数测试题及答案一、选择题(每题2分,共20分)1. 下列选项中,哪一个是实数?A. √2B. πC. √-1D. 1/0答案:A2. 计算下列表达式的值:(-3) × (-5) = ?A. 15B. -15C. 3D. 5答案:B3. 以下哪个选项不是实数?A. 0B. 3.14C. -2.5D. i答案:D4. 计算下列表达式的值:2^3 - 3^2 = ?A. 2B. 1D. 3答案:C5. 以下哪个选项是实数的平方根?A. √4B. √(-4)C. √0D. √1答案:D6. 计算下列表达式的值:(-2)^2 = ?A. 4B. -4C. 2D. -2答案:A7. 以下哪个选项是实数的立方根?A. ∛8B. ∛(-8)C. ∛0D. ∛(-27)答案:C8. 计算下列表达式的值:(-3)^3 = ?A. -27B. 27C. -9答案:A9. 以下哪个选项是实数的倒数?A. 1/2B. 0C. 1D. -1答案:B10. 计算下列表达式的值:(-1/2) × (-1/3) = ?A. 1/6B. -1/6C. 2/3D. -2/3答案:A二、填空题(每题3分,共30分)1. √9 = ______答案:32. ∛27 = ______答案:33. (-2)^4 = ______答案:164. √(-4) = ______答案:2i5. ∛(-27) = ______答案:-36. 1/√2 = ______答案:√2/27. (-1/3)^2 = ______答案:1/98. √(1/4) = ______答案:1/29. ∛64 = ______答案:410. (-2)^3 = ______答案:-8三、解答题(每题10分,共50分)1. 计算下列表达式的值:(-3) × (-4) + √(9) - ∛(-8) 答案:12 + 3 + 2 = 172. 解方程:x^2 - 4x + 4 = 0答案:x = 23. 计算下列表达式的值:(-2)^3 × (-3)^2 / √(4)答案:(-8) × 9 / 2 = -364. 求方程 2x - 3 = 7 的解。
实数计算题专题训练题(含答案)
![实数计算题专题训练题(含答案)](https://img.taocdn.com/s3/m/14d6a378bcd126fff7050bb6.png)
专题实数计算题训练一.计算题 _ _1. |-2|-( 1+ ~) 0+ ;20PP 22. - 1 +4X(- 3) + (- 6) -(- 2)3 1 一「. 一;j-匚5. 「| 】o 26. (1) ■;;7「•"8. 「■:(精确到0.01).9 . ■- I . :■■- ■- -■■- ■■- _ _■.3 2 210. (- 2) + (- 3)H (- 4) +2] -(- 3) r-2);11|二-灵亍一斤12. - 12+ X :-213((-引* - 昭(-2)彳-听-4|+ (-1)°.214. 求G 的值:9G =121.15. 已知. ,求G P的值.16•比较大小:-2,- (要求写过程说明)217. 求G 的值:(G+10 ) =1618. . _ . — | - 4 : . . - ' - L i19. 已知m v n,求j (m [门)2 + —忌的值;20. 已知a v 0,求■+,「的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1 计算题:2|-( 1+ 匚)0+ :解答:解:原式=2 - 1+2 ,=3.20PP 2 2.计算题:-1 +4 X (- 3) + (-6) +(- 2)解答: 解:-120PP +4 X (- 3) 2+ (- 6) - (- 2),=-1+4 X 9+3,=38.3•丁- .E | -- j-匚原式=14 - 11+2=5 ;(2)原式=逅-!+V2= - 1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是熟练掌握 二次根式、绝对值等考点的运算. 5 .计算题: 一 •丁一 ▼匚 ,一 一]考点:有理数的混合运算。
分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可. 解答:解:原式=-4+8-( - 8)-( - 1)=-17=「点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.打 7. 考点:实数的运算;立方根;零指数幕;二次根式的性质与化简。
【汇总】初中数学专项练习《实数》100道计算题包含答案
![【汇总】初中数学专项练习《实数》100道计算题包含答案](https://img.taocdn.com/s3/m/4a21b570814d2b160b4e767f5acfa1c7aa008269.png)
初中数学专项练习《实数》100道计算题包含答案一、解答题(共100题)1、计算:| -2|+2cos45°- + .2、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.3、已知且与互为相反数,求的平方根.4、如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.5、一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.6、如图:已知点A、B表示两个实数﹣、,请在数轴上描出它们大致的位置,用字母标示出来;O为原点,求出O、A两点间的距离.求出A、B两点间的距离.7、填表:相反数等于它本身绝对值等于它本身倒数等于它本身平方等于它本身立方等于它本身平方根等于它本身算术平方根等于它本身立方根等于它本身最大的负整数绝对值最小的数8、已知2a-1的平方根是±3,b-1的立方根是2,求a-b的值.9、求下列各式中的x值.(1)25x2﹣196=0(2)(2x﹣1)3=8.10、若|x|=7,y2=9,且x>y,求x+y值11、在数轴上表示下列各数,并用“<”连接起来。
, , , , , 。
12、把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3. ,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…}.13、计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.14、己知:2m+2的平方根是±4;3m+n的立方根是-1,求:2m-n的算术平方根15、一个正数x的平方根是3a﹣4和1﹣6a,求x的值.16、求下列式中的x的值:3(2x+1)2=27.17、解下列方程:(1)(x+5)2+16=80(2)﹣2(7﹣x)3=250.18、已知25x2﹣144=0,且x是正数,求代数式的值.19、规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.20、若5a+1和a﹣19是数m的平方根,求m的值.21、已知的平方根是,的立方根是2,是的整数部分,求的值..22、若5a+1和a﹣19是数m的平方根.求a和m的值.23、已知2a-7的平方根是±5,2a+b-1的算术平方根是4,求- +b的值.24、把下列各数填在相应的集合内:100,﹣0.82,﹣30 ,3.14,﹣2,0,﹣2011,﹣3.1 ,,﹣,2.010010001…,正分数集合:{ …}整数集合:{ …}负有理数集合:{ …}非正整数集合;{ …}无理数集合:{ …}.25、+3﹣5.26、已知a、b是有理数且满足:a是-8的立方根,=5,求a2+2b的值.27、求下列各式中x的值.(1)9x2﹣4=0(2)(1﹣2x)3=﹣1.28、(1)已知:(x+1)2﹣9=0,求x的值;(2)已知a﹣3的平方根为±3,求5a+4的立方根.29、计算:(﹣)﹣2﹣|﹣1+|+2sin60°+(π﹣4)0.30、计算:()﹣2﹣(π﹣3.14)0+﹣|2﹣|.31、已知和互为相反数,且x-y+4的平方根是它本身,求x、y 的值.32、在数轴上表示下列各数:0,﹣2.5,3 ,﹣2,+5,1 ,并用“<”号连接。
初中数学专项练习《实数》100道计算题包含答案
![初中数学专项练习《实数》100道计算题包含答案](https://img.taocdn.com/s3/m/0704f9cd162ded630b1c59eef8c75fbfc77d94bb.png)
初中数学专项练习《实数》100道计算题包含答案一、解答题(共100题)1、已知x,y都是有理数,且满足方程:2x﹣y=6y+ ﹣20,求x与y 的值.2、求下列各式中x的值:(1)(x﹣1)2=9(2)(x﹣1)3=8.3、把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来:3 ,﹣2.5,|﹣2|,0,,(﹣1)2.4、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.5、计算:..6、任意找一个非零数,利用计算器对它不断进行开立方计算,你发现了什么?7、已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.8、计算:.9、已知a+3的立方根是2,3a+b﹣1的平方根是±6,则a+2b的算术平方根是多少?10、座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为,其中T表示周期(单位:秒),h表示摆长(单位:米),g=10米/秒.假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分内该座钟大约发出了多少次滴答声?(已知≈2.236,π取3)11、交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16 ,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦因数.在某次交通事故中,测得d=6m,f=1.5,求肇事汽车的车速.12、求下列各式中的x.(1)4x2﹣16=0(2)27(x﹣3)3=﹣64.13、计算:()﹣1+(+1)2﹣.14、计算:.15、某小区有一块面积为196m2的正方形空地,开发商计划在此空地上建一个面积为100m2的长方形花坛,使长方形的长是宽的2倍.请你通过计算说明开发商能否实现这个愿望?(参考数据:≈1.414,≈7.070)16、已知实数、、在数轴上的对应点为、、,如图所示:化简:.17、计算:﹣12011++()﹣1﹣2cos60°.18、对于任意数a,一定等于a吗?请举例说明.19、已知正数x的两个不同的平方根分别是a+3和2a﹣15,且=4.求x﹣2y+2的值.20、已知a+7的立方根是2,一个正数b的平方根分别是5x﹣2和4﹣6x,求3b+4a的平方根.21、解方程或方程组:(1)(1﹣2x)2﹣36=0(2)2(x﹣1)3=﹣.22、把下列各数填在相应的大括号里:,﹣2,﹣,3.020020002…,0,,﹣(﹣3),0.333正数集合:{ …}分数集合:{ …}有理数集合:{ …}无理数集合:{ …}.23、小丽想在一块面积为640cm2的正方形纸片中,沿着边的方向裁出一块面积为420cm2的长方形的纸片,使它的长与宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?请简要说明理由.24、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件;若前面每人分4件,则最后一人能得到的玩具不足3件,求小朋友的人数及玩具数.25、求式中x的值:3(x﹣1)2+1=28.26、已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根。
七年级数学 实数 练习题及答案
![七年级数学 实数 练习题及答案](https://img.taocdn.com/s3/m/d21fce9633687e21ae45a924.png)
实数练习题
1 / 5
解析:. 该瓶的容积相当于底面与瓶底面相同,高为25 cm的圆柱体的体积答案:10002)解:1L=1000cm3,由题意得瓶子的底面积为(cm40?253)×20=800(cm瓶内溶液的体积是(1)40 r,则2)设圆柱形杯子的内底面半径为(2 r,×10=800 π
80(cm)∴r=5.0≈?小结:. 解此类等积变形问题的关键是根据体积不变确定数量关系或建立等量关系
6 规律探究:观察例333279?33284?2222=3332-??2=2??3=3??2??. ,即即,;1010105510101055555?5)猜想(1 等于什么,并通过计算验证你的猜想;26. (2)写出符合这一规律的一般等式解析:从给出的运算过程中找出规律,然后依规律计算555?5?, )(答案:126263 / 5
3333 C. -2+D. 1+ A. -2- B. -1-
3+1,
解析:∵AB=33A
+1)=-2-. ∴C点表示的数为-1-(选.;立方根为;算术平方根为的平方根是3. (1)1
.(2)平方根是它本身的数是
.(3)立方根是其本身的数是
.
算术平方根是其本身的数是(4)解析:思考平方根和立方根的含义,注意特殊的数字。
1
1 1 答案:(1)±0
2)(0 ,3()±10
,14()x.
. 解析:注意每一个字母所代表的含义h=0.02 km, 答案:解:由R=6 400 km,6 400?22hR?0.02=16(km). 得d==16 km. 的值为d答:此时
5 / 5。
初一数学实数计算题专题训练(含答案)
![初一数学实数计算题专题训练(含答案)](https://img.taocdn.com/s3/m/d05b853c77c66137ee06eff9aef8941ea76e4b8a.png)
初一数学实数计算题专题训练(含答案) 专题一计算题训练一1.计算题:| -2 | - (1+) 0+.解答:原式 = 2 - 1 + 2 = 3.2.计算题:- + 4 × (-3)² + (-6) ÷ (-2).解答:原式 = - + 4 × 9 + 3 = 38.5.计算题:(-4)³ - 8 ÷ (-8) - (-1).解答:原式 = -64 + 1 - (-1) = -64 + 2 = -62.10.(-2)³ + (-3) × [(-4)² + 2] - (-3)² ÷ (-2).解答:原式 = -8 + (-3) × [16 + 2] - 9 ÷ (-2) = -8 + (-3) × 18 + 4.5 = -8 - 54 + 4.5 = -57.5.11.| -| -1 | - 2 |.解答:原式 = | -1 - 2 | = 1.14.求 x 的值:9x² = 121.解答:x² = 121 ÷ 9 = 13 1/3,x = ± √13 1/3.15.已知 2x + 3y = 10,3x - y = 2,求 xy 的值(精确到0.01)。
解答:将第二个式子变形为 y = 3x - 2,代入第一个式子得到 2x + 9x - 6 = 10,解得 x = 1,代入 y = 3x - 2 得到 y = 1,所以 xy = 1,精确到 0.01.16.比较大小:-2,-(-2)(要求写过程说明)。
解答:-(-2) = 2,所以 -2 < -(-2).17.求 x 的值:(x + 10)² = 16.解答:x + 10 = ± 4,解得 x = -6 或 -14.19.已知 m < n,求 (m + n) ÷ 2 和 (n - m)²的大小关系。