初一数学下第六章实数计算题复习

合集下载

新人教版七年级下册第六章实数计算专题训练

新人教版七年级下册第六章实数计算专题训练

实数计算专题训练1.求下列各式中未知数的值:(1)|x﹣2|=;(2)x2=3;2.(3)8(x+1)3﹣27=0.2.计算:.3.计算:+++.4.计算:(1)﹣6;(2)×+(2﹣)2.5.计算:(1)+﹣;(2)﹣2(﹣1)+|1﹣|.6.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的值.7.(1)计算:.(2)解方程:9(x﹣3)2=64(3)解方程:(2x﹣1)3=﹣8.8.计算:(1);(2).9.计算:.10.计算:(1);(2).11.阅读并解答下列问题,例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)的整数部分是,小数部分是.(2)已知:小数部分是m,小数部分是n,请求出m+n的值.12.计算:(1);(2).13.计算:(﹣2)3×﹣×(﹣).14.求下列各式中的x:(1)4x2=25;(2)(x+1)3﹣8=0.15.(1)计算:﹣+;(2).16.计算:.17.计算:(1)﹣12022﹣|﹣2|+;(2)(﹣2)3﹣24×(﹣).18.把下列各数在数轴上表示出来,并将它们从大到小排列.﹣|﹣1.5|,﹣3,0,+2,(﹣2)²,.19.计算:.20.计算:﹣22+﹣+.21.已知实数a、b互为相反数,c、d互为倒数,x的绝对值为,求代数式(a+b+cd)x+﹣的值.22.已知=3,3a﹣b+1的平方根是±4,c是的整数部分,求a+b+2c的平方根.23.已知2a﹣1的算术平方根是3,a﹣b+2的立方根是2,求a﹣4b的平方根.24.计算:(1)﹣+|﹣|;(2)2×÷4.25.计算:.26.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.。

七年级数学下册第六章实数知识集锦(带答案)

七年级数学下册第六章实数知识集锦(带答案)

七年级数学下册第六章实数知识集锦单选题1、如图,若数轴上的点A,B,C,D表示数−1,1,2,3,则表示数4−√11的点应在()A.A,O之间B.B,C之间C.C,D之间D.O,B之间答案:D分析:先估算出4−√11的值,再确定出其位置即可.解:∵9<11<16,∴3<√11<4,∴−4<−√11<−3,∴4−4<4−√11<4−3,即0<4−√11<1∴表示数4−√11的点应在O,B之间.故选:D.小提示:本题考查的是实数与数轴.熟知实数与数轴上各点是一一对应关系,能够正确估算出√11的值是解答此题的关键.2、若一个正方形的面积是12,则它的边长是()A.2√3B.3C.3√2D.4答案:A分析:根据正方形的面积公式即可求解.解:由题意知:正方形的面积等于边长×边长,设边长为a,故a²=12,∴a=±2√3,又边长大于0∴边长a=2√3.故选:A.小提示:本题考查了正方形的面积公式,开平方运算等,属于基础题.3、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x-(y-z)-m-n=x-y+z-m-n;第3种:x-(y-z)-(m-n)=x-y+z-m+n;第4种:x-(y-z-m)-n=x-y+z+m-n;第5种:x-(y-z-m-n)=x-y+z+m+n;第6种:x-y-(z-m)-n=x-y-z+m-n;第7种:x-y-(z-m-n)=x-y-z+m+n;第8种:x-y-z-(m-n)=x-y-z-m+n;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.4、已知min {a,b,c }表示取三个数中最小的那个数,例加:min{−1,−2,−3}=−3,当min{√x,x 2,x}=181时,则x 的值为( )A .181B .127C .13D .19 答案:D分析:根据题意可知√x,x 2,x 都小于1且大于0,根据平方根求得x 的值即可求解.解:∵min{√x,x 2,x}=181∴√x,x 2,x 都小于1且大于0∴x 2<x <√x∴x 2=181∴x =19(负值舍去)故选D小提示:本题考查了求一个数的平方根,判断√x,x 2,x 的范围是解题的关键.5、定义:若10x =N ,则x =log 10N ,x 称为以10为底的N 的对数,简记为lgN ,其满足运算法则:lgM +lgN =lg(M ⋅N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2⋅lg5+lg5的结果为( )A .5B .2C .1D .0答案:C分析:根据新运算的定义和法则进行计算即可得.解:原式=lg2⋅(lg2+lg5)+lg5,=lg2⋅lg10+lg5,=lg2+lg5,=1,故选:C.小提示:本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.6、在四个实数−2,0,−√3,−1中,最小的实数是()A.−2B.0C.−√3D.−1答案:A分析:根据实数比较大小的方法直接求解即可.解:∵−2<−√3<−1<0,∴四个实数−2,0,−√3,−1中,最小的实数是−2,故选:A.小提示:本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.7、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.8、按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1答案:D分析:逐项代入,寻找正确答案即可.解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m+1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;小提示:本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.9、−√64的立方根等于()A.−8B.−4C.−2D.±2答案:C分析:先求出−√64=−8,再求出-8的立方根即可得.3=−2,解:∵−√64=−8,√−8∴−√64的立方根等于-2,故选:C.小提示:本题考查了立方根的意义,解题的关键是掌握立方根.10、下列说法正确的是()A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.√16的平方根是-2D.-2是√16的一个平方根答案:D分析:根据算术平方根、平方根的定义逐项判断即可得.A、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;B、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;C、√16=4,4的平方根是±2,则此项错误,不符题意;D、√16=4,4的平方根是±2,则−2是√16的一个平方根,此项正确,符合题意;故选:D.小提示:本题考查了算术平方根、平方根,掌握理解定义是解题关键.填空题11、根据图中呈现的运算关系,可知a=______,b=______.答案:-2020 -2020分析:根据立方根和平方根的定义进行求解即可.解:∵2020的立方根是m,a的立方根是-m,∴m3=2020,∴(−m)3=−m3=−2020,∴a=−2020;∵n的两个平方根分别为2020、b,∴b =−2020,所以答案是:-2020,-2020.小提示:本题主要考查了平方根和立方根,熟知二者的定义是解题的关键.12、比较大小:√22______√33(填写“>”或“<”或“=”).答案:>分析:比较两者平方后的值即可.解:∵(√22)2=12,(√33)2=13,∵12>13, ∴ √22>√33. 所以答案是:>.小提示:本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.13、写出一个比√2大且比√15小的整数______.答案:2(或3)分析:先分别求出√2与√15在哪两个相邻的整数之间,依此即可得到答案.∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数是2或3.所以答案是:2(或3)小提示:本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出√2与√15在哪两个相邻的整数之间是解答此题的关键.14、若√a +13与√a 2−53互为相反数,则a 3+5a 2﹣4的值为 _____.答案:12分析:先根据相反数的定义得√a +13+√a 2−53=0,再利用立方根的意义进行整理,最后利用整体代入的方法即可求得答案 .解:由题意得:√a +13+√a 2−53=03∴√a+13=−√a2−5∴a+1=﹣(a2﹣5).∴a2+a=4.∴a3+a2=4a.∴a3=﹣a2+4a.∴a3+5a2﹣4=﹣a2+4a+5a2﹣4=4a2+4a﹣4=4(a2+a)﹣4=4×4﹣4=12.所以答案是:12.小提示:本题考查的相反数的应用,立方根的应用,解题的关键是在于整理出所需形式,利用整体代入求解.15、若实数a的立方等于27,则a=________.答案:3分析:根据立方根的定义即可得.3=3,解:由题意得:a=√27所以答案是:3.小提示:本题考查了立方根,熟练掌握立方根的运算是解题关键.解答题16、据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是______;∴x=______.(2)y3=614125,且y为整数,按照以上思考方法,请你求出y的值.答案:(1)2#,2#,22#(2)y=85分析:(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.(1)解:∵x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是2;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是2;∴x=22.所以答案是:2,2,22.(2)∵1000=103<614125<1003=100000,∴y一定是两位数;∵614125的个位数字是5,∴y的个位数字一定是5;划去614125后面的三位125得614,∵512=83<614<93=729,∴y的十位数字一定是8;∴y=85.小提示:本题考查立方根,灵活运用立方根的计算是解题的关键.17、如图,把图(1)中两个小正方形纸片分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到如图(2)的大正方形.问题发现若大正方形的面积为32cm2,则小正方形的面积是__________cm2,边长为___________cm;知识迁移某兴趣小组想将图(1)中的一个小正方形纸片,沿与边平行的方向剪裁出面积为12cm2,且长宽之比为3∶2的长方形纸片.兴趣小组能否剪裁出符合要求的长方形纸片?请说明理由.拓展延伸如图(3)是由5个边长为1的小正方形组成的纸片,能否把它剪开并拼成一个大正方形?若能,请画出示意图,并写出边的长度,若不能,请说明理由.答案:问题发现:小正方形的面积为16cm2,边长为4cm知识迁移:不能裁出符合要求的长方形纸片拓展延伸:能把它剪开并拼成一个大正方形,示意图见解析,大正方形边长为√5分析:问题发现:先求出小正方形的面积,再根据正方形的面积等于边长的平方求边长;知识迁移:设长和宽分别为3x、2x,利用面积列方程,最后检验即可;拓展延伸:新的大正方形面积为5,则边长为√5,可以把它剪开并拼成一个大正方形.问题发现:小正方形的面积为32÷2=16cm2,∴小正方形的边长为4cm.所以答案是:16;4.知识迁移:设长和宽分别为3x、2x,由题意得:3x⋅2x=12,整理得:x2=2,∵实际问题x为正数,∴x=√2,∴长方形的长为3x=3√2≈5.19>4,即裁剪后的长方形的长大于小正方形的边长,∴不能裁出符合要求的长方形纸片.拓展延伸:能把它剪开并拼成一个大正方形,裁剪示意图如图所示:∵原图形的面积是5,∴裁剪后的正方形面积也是5,∴大正方形边长为√5.小提示:本题考查了算术平方根的实际应用、正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.18、求下列式子中的x :(1)25(x ﹣35)2=49;(2)12(x +1)2=32. 答案:(1)x 1=2,x 2=−45(2)x 1=7,x 2=﹣9分析:(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解: 25(x ﹣35)2=49,(x ﹣35)2=4925, x ﹣35=±75,x ﹣35=75或x ﹣35=﹣75,解得:x 1=2,x 2=−45;(2)12(x +1)2=32, (x +1)2=32×2,(x +1)2=64, x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.小提示:此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键.。

安徽师大附中七年级数学下册第六章【实数】经典复习题(含答案解析)

安徽师大附中七年级数学下册第六章【实数】经典复习题(含答案解析)

一、选择题1.若15的整数部分为a ,小数部分为b ,则a-b 的值为() A .615- B .156- C .815- D .158- 2.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A .0个B .1个C .2个D .3个3.16的算术平方根是( )A .2B .4C .2±D .-44.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .85.下列各数中比3-小的数是( )A .2-B .1-C .12-D .06.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 7.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4078.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n 9.若53a =,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间10.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定 11.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数.A .1个B .2个C .3个D .4个二、填空题12.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(212a +的平方根和立方根.13.计算:(1)2323615---(2)12233414.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值. 15.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.16.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 17.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当x=2时,()()1*-3*=x x x ______18.计算:2(3)216--⨯.19.8的相反数是_______,平方得9的数是________.20.若4<a <5,则满足条件的整数 a 分别是_________________. 21.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.三、解答题22.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.23.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=24.计算:(1223168(2)(3)--(2)22(2)8x -= 25.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=一、选择题1.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个2.16的算术平方根是( )A .2B .4C .2±D .-43.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( )A .1B .2C .3D .44.在0、3、0.536、39、227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( ) A .3 B .4 C .5 D .6 5.下列实数中,是无理数的为( )A .3.14B .13C .5D .96.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n7.设,A B 均为实数,且33,3A m B m =-=-,A B 的大小关系是( ) A .A B > B .A B =C .A B <D .A B ≥ 864 )A .8B .8-C .22D .22± 9.下列有关叙述错误的是( )A 2B 2是2的平方根C .122<<D .22是分数 10.在1.414,3213,5π,23-中,无理数的个数是( ) A .1 B .2C .3D .411.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9二、填空题12.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.13.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 14.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.15.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),2π,0.6,127,0.101001000… 整数集合:{_____________…};分数集合:{_____________…};无理数集合:{_____________…};非负有理数集合{_____________…}.16.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.17.3189124--+. 18.比较3、4 350_______________.(用“<”连接)19.3x -+(y +2)2=0,那么xy 的值为___________.20.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<,确定359319是______位数; (2)由59319的个位数字是9,确定359319的个位上的数是______; (3)如果划去59319后面的319得到数59,而3327=,3464=,确定359319的十位上的数是______.21.已知实数,x y 满足()2380x y -++=,求xy -的平方根.三、解答题22.计算:31891224-++-+. 23.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.24.观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20000=141.4…0.03=0.1732,3=1.732,300=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2)已知5=2.236,50=7.071,则0.5= ,500= ;(3)31=1,31000=10,31000000=100…小数点变化的规律是: .(4)已知310=2.154,3100=4.642,则310000= ,30.1-= .25.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.一、选择题1.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个2.81的平方根是( )A .9B .-9C .9和9-D .813.下列计算正确的是( ) A .11-=- B .2(3)3-=- C .42=± D .31182-=- 4.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n5.下列实数中,属于无理数的是( )A .3.14B .227C .4D .π6.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与67.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .48.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - 9.在1.414,3213,5π,23中,无理数的个数是( ) A .1 B .2 C .3 D .410.下列等式成立的是( )A .±1B =±2C 6D 3 11.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π二、填空题12.先化简,再求值:()222233a ab a ab ⎛⎫---⎪⎝⎭,其中|2|a + 13.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.14.(22-15.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0) 正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.16. ________0.5.(填“>”“<”或“=”) 17.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.18.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.计算:(1)﹣12﹣(﹣2)(21)+2|20.设a ,b 是两个连续的整数,若a b <<,是,则a b =____.21.比较大小:三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接: 1.5-,38,0,13-,4-23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.24.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.25.设26+x 、y ,试求x 、y 的值与1x -的立方根.。

人教版七年级下册数学第六章 实数含答案完整版

人教版七年级下册数学第六章 实数含答案完整版

人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④ 是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A.1B.2C.3D.42、下面四个实数中,是无理数的为()A.0B.C.﹣2D.3、下列命题:①两直线平行,内错角相等;②如果m是无理数,那么m是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a是实数,那么是无理数.其中正确的有()A.1个B.2个C.3个D.4个4、设,则的取值范围是()A. B. C. D.无法确定5、给出四个数0,,3,-1,其中最大的是( )A.0B.C.3D.-16、如图,数轴上与对应的点是()A.点B.点C.点D.点7、在下列式子中,正确的是()A. =﹣B.﹣=﹣0.6C. =﹣13D.=±68、下列运算正确的是( )A.a 2•a 3=a 6B.|-6|=6C. =±4D.-(a+b)=a+b9、若a=﹣0.32, b=(﹣3)﹣2, c=(﹣)﹣2, d=(﹣)0,则( )A.a<b<c<dB.a<b<d<cC.a<d<c<bD.c<a<d<b10、若x、y都是实数,且+ +y=4,则xy的算术平方根为()A.2B.±C.D.不能确定11、下列各数中,无理数为()A. B. C. D.12、估算的值在()A. 和之间B. 和0之间C.0和1之间D.1和2之间13、若a2=4,b2=9,且ab<0,则a﹣b的值为()A.±5B.±1C.5D.﹣114、4的平方根是()A.2B.-2C.±2D.1615、下列运算正确的是()A. =B. =-2C. =3D.3 -2 =1二、填空题(共10题,共计30分)16、的算术平方根是________,﹣2的相反数是________,的绝对值是________17、阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么的平方根是________.18、比较大小:9________ .19、计算:﹣22+()﹣1+= ________20、写出一个大于3的无理数:________.21、18的算术平方根是________,的平方根是________,-0.064的立方根是________.22、如图,在数轴上A点表示数,B点示数,C点表示数,是最小的正整数,且、满足.若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.23、如果一个数的平方根等于这个数的立方根,那么这个数是________.24、利用计算器计算(精确到0.001):-≈________.25、设的小数部分为b,那么(4+b)b的值是________.三、解答题(共6题,共计25分)26、如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.27、将下列各数填入相应的括号里:,,,8,,,0.7,- ,-1.121121112…,,.正数集合… ;负数集合… ;整数集合… ;有理数集合… ;无理数集合… .28、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.29、+|﹣2|﹣(﹣)﹣1.30、将下列各数填入相应的集合内.﹣7,0.32,, 0,,,,π,0.1010010001…①有理数集合{…}②无理数集合{…}③负实数集合{…}.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、A5、C6、C7、A8、B9、B10、C11、D12、D13、A14、C15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。

第六章 实数复习题含答案

第六章 实数复习题含答案

第六章 实数复习题含答案一、选择题1.对于实数a ,我们规定,用符号a ⎡⎤⎣⎦表示不大于a 的最大整数,称a ⎡⎤⎣⎦为a 的根整数,例如:93⎡⎤=⎣⎦,103⎡⎤=⎣⎦.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5B .10C .15D .162.如图,网格中的每个小正方形的边长为1,则图中正方形ABCD 的边长是( )A .2B .5C .6D .33.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 4.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个5.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣16.若a 16b 64a+b 的值是( ) A .4B .4或0C .6或2D .67.330x y =,则x 和y 的关系是( )A .0x y ==B .0x y -=C .1xy =D .0x y +=8.2的平方根为( )A .4B .±4CD .9.在实数13-,0.734π )个. A .1B .2C .3D .410.下列运算中,正确的是( )A 3=±B 2=C 2=-D 8=-二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______ 12.若()2320m n ++-=,则m n 的值为 ____.13.与0.5_____0.5.(填“>”、“=”、“<”)14.已知,x 、y 是有理数,且y 4,则2x +3y 的立方根为_____. 15.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.16.若()22110a c --=,则a b c ++=__________. 17.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).18. 1.105≈ 5.130≈≈________.19________.20.44.9444≈⋯14.21267≈⋯(精确到0.01)≈__________.三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ .(2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ;( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.23.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++24.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (1)111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 25.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 26.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= .(3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对各选项中的数分别连续求根整数即可判断得出答案. 【详解】 解:当x=5时,5221,满足条件; 当x=10时,10331,满足条件; 当x=15时,15331,满足条件; 当x=16时,16442,不满足条件;∴满足条件的整数x 的最大值为15, 故答案为:C . 【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂2.B解析:B【分析】由图可知;正方形面积为5.再由正方形的面积等于边长的平方依据算术平方根定义即可得出答案.【详解】解:由图可知,正方形面积=133-421=52⨯⨯⨯⨯,∴正方形边长故选:B.【点睛】本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.B解析:B【解析】根据数轴的意义,由图示可知b<0<a,且|a|<|b|,因此根据有理数的加减乘除的法则,可知a+b<0,a-b>0,ab<0,ab<0.故选B.4.B解析:B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.5.B解析:B分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A、0的平方根为0,所以A选项为真命题;B、无限不循环小数是无理数,所以B选项为假命题;C、算术平方根最小的数是0,所以C选项为真命题;D、最大的负整数是﹣1,所以D选项为真命题.故选:B.【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.6.C解析:C【分析】由a a=±2,由b b=4,由此即可求得a+b的值.【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.7.D解析:D【分析】根据立方根的性质得出x+y=0即可解答.【详解】+=,∴x+y=0故答案为D.【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.8.D解析:D利用平方根的定义求解即可.【详解】解:∵2的平方根是.故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.9.B解析:B【分析】根据无理数的定义判断即可.【详解】1-,0.716π是无理数,3故选:B.【点睛】本题主要考查无理数的定义,熟练掌握定义是关键.10.B解析:B【分析】根据平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项运算错误,=,故该选项运算正确,2=,故该选项运算错误,2=,故该选项运算错误,8故选:B.【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题11..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.12.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2, 所以,m n =(-3)2=9. 故答案为9. 【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.-2. 【分析】根据二次根式有意义的条件可得x =2,进而可得y 的值,然后计算出2x+3y 的值,进而可得立方根. 【详解】 解:由题意得:, 解得:x =2, 则y =﹣4, 2x+3y =2×2+3×(解析:-2. 【分析】根据二次根式有意义的条件可得x =2,进而可得y 的值,然后计算出2x +3y 的值,进而可得立方根. 【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,解得:x =2, 则y =﹣4,2x+3y =2×2+3×(﹣4)=4﹣12=﹣8.2=-. 故答案是:﹣2. 【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.17.①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]解析:①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]+[-x]=2-3=-1,故②错误;③中,若[x+1]=3,则x+1要满足x+1≥3,且x+1<4,解得x≥2,且x<3,故③正确;④中,当-1≤x<1时,在取值范围内验证此式的值为1,2.故④错误;所以正确的结论是①③.18.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】5.130≈≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.三、解答题21.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.22.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可; (2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解; (3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+ =111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知: 193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭ 故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯= 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭ 111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.24.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.25.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.26.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯…1100102⨯ =12×(111122334++⨯⨯⨯+…+15051⨯)=12×5051=25 51.点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.。

人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、8的立方根等于()A. 2B.-2C.±2D.2、的算术平方根是()A. B. C.± D.3、下列实数是无理数的是A. B. C. D.4、估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间5、下列说法正确的是()A.a的平方根是±B.a的立方根是C. 的平方根是0.1 D.6、下列等式正确是A. B. C. D.7、下列实数中的无理数是()A.1B.0C.D.π8、下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8),A.2个B.3个C.4个D.5个9、由图可知,a、b、c的大小关系为()A.a < b < cB.a < c <bC.c < a <bD.c < b < a10、给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.11、实数π,,﹣3. ,,中,无理数有()个.A.1B.2C.3D.412、下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个&nbsp;C.4个D.5个13、下列说法正确的是()A. =±3B. 的立方根是2C.D.的算术平方根是214、在实数范围内,下列判断正确的是()A.若|a|=|b|,则a=bB.若|a|=()2,则a=bC.若a>b,则a 2>b 2D.若= ,则a=b15、如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点AB.点BC.点CD.点D二、填空题(共10题,共计30分)16、实数a、b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为________.17、设的小数部分为b,那么(4+b)b的值是________.18、比较下列实数的大小(在横线填上>、<或=)①2 ________ 3 ;② ________ ;③﹣________﹣.19、16的平方根是________,算术平方根是________.20、如果实数a、b在数轴上的位置如图所示,那么化简=________.21、若x3=﹣,则x=________.22、若=0.7160,=1.542,则=________,=________.23、比较大小:________1(填“ ”“ ”或“ ”)24、若|x|=3,y2=4,且x>y,则x﹣y=________.25、计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________ .三、解答题(共6题,共计25分)26、已知的立方根是2,的算术平方根是4,的整数部分是,求的值.27、将下列各数填入相应的集合内:,1.010010001,,0,,…(相邻的两个2之间的3一次增加1个),.有理数集合{ …}无理数集合{ …}28、在数轴上作出表示的点.29、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.30、计算:9×(﹣)+ +|﹣3|参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、B6、D7、D8、B9、C10、D11、B12、B13、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

第六章实数复习课(作业)-七年级数学下册同步备课系列(人教版)

第六章实数复习课(作业)-七年级数学下册同步备课系列(人教版)

第六章复习作业一、选择题1.4的算术平方根是()A .±2B .2C .D .)A .6B .±6C D .3.若=a 的值是()A .78B .78-C .78±D .343512-4.若225,3,a b ==则a +b =()A .–8B .±8C .±2D .±8或±25)A .3B .–3C .13D .13-6.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

其中正确的说法的个数是()A .1B .2C .3D .4770.7070070007... 3.1415926122---,,中,无理数的个数是()A .3个B .4个C .5个D .6个8.已知a ,b 为两个连续整数,且a <b ,则a +b 的值为()A .9B .8C .7D .69.已知实数a 在数轴上的位置如图所示,则化简a 21a +--的结果为()A .–2a –1B .2a +1C .–3D .310.某数的绝对值的算术平方根等于它本身,这个数必是()A.1或–1B.1或0C.–1或0D.1,–1或0二、填空题11.在3,0,–2四个数中,最小的数是_________.12.的点是________.=13_____.14.一个正数的平方根是2a–1和3–a,则这个正数是_______.2的相反数是_____________;绝对值是_____________.16.在数轴上表示的点离原点的距离是__________.三、解答题17.计算:(1;(2(3;(4)+18.计算:(1;(2)3p p-+ 2.236, 3.142)参考答案一、选择题12345678910B D B D B B BC B D二、填空题11.–212.B13.014.2515.2-2-16三、解答题17.解:(1)原式=5–45=215;(2)原式=3=(3)原式=230228=-=;(4)原式325--=-.18.解:(1)原式=4682555 -+-=-;(3)原式=3.464–2.236+9.426=10.654≈10.7.。

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=4+3+3=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−125(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−27=5+3﹣(−23)=5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×+52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+1681(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×+(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(11+−1);(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=27+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−×|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.−(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×−172−82÷=0.2×54−15÷(−15)=14+75=7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)(−2)2×3(−8)(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×23×=2×32−8×14=3﹣2=1(3)9+|1−2|−27×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−913(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

精选人教版初中数学七年级下册第六章《实数》单元测试及答案

精选人教版初中数学七年级下册第六章《实数》单元测试及答案

精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。

包头市第一中学七年级数学下册第六章【实数】经典复习题(培优专题)

包头市第一中学七年级数学下册第六章【实数】经典复习题(培优专题)

一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥C .④⑤⑥D .③④⑤2.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1B .2C .3D .43.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .104.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②5.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个6.64的算术平方根是( ) A .8B .±8C .22D .22±7.下列实数中,是无理数的为( ) A .3.14B .13C .5D .98.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间9.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2B .28.72C .13.33D .133.310.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .111.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A .21n -B .22n -C .23n -D .24n -二、填空题12.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-13)11163532-⎛⎫-+︒ ⎪⎝⎭14.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 15.已知103x ,小数部分是y ,求x ﹣y 的相反数_____.16.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)17.将1236按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.18.(1)求x 的值:2490x -=; (2()2325227-19.计算:(1)﹣12327-﹣(﹣2)9(2331)+32| 20.3189124--+. 21.-64的立方根是____,9的平方根是_____,16的算术平方根是_____81_____.三、解答题22.计算:(132125(2)(10)4---⨯- (2)2325(24)27-⨯--÷23.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2. (1)求a 与b 的值;(2)求2a +4b 的平方根. 24.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +3b - 25.(1)小明解方程2x 1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值.一、选择题1.若227(7)0x y z -+++-=,则x y z -+的平方根为( ) A .±2B .4C .2D .±42.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40 B .﹣32C .18D .103.-18的平方的立方根是( ) A .4 B .14C .18D .1644.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .65.在0、3、0.536、39、227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .66.我们定义新运算如下:当m n ≥时,m22n m n =-;当m n <时,m3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-687.下列各数中,属于无理数的是( ) A .227B .3.1415926C .2.010010001D .π3-8.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定9.在 -1.414216π,3 3.212212221…,227,3.14这些数中,无理数的个数为( ) A .2B .3C .4D .510.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±911.511的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题12.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.13.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值. 14.求下列各式中的x 的值. (1)4x 2=9; (2)(2x ﹣1)3=﹣27. 15.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、2等,而常用“……”或者“≈”212的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,2的整数部分是1,将这个数减去其整数部分,差就是小数部分.459<<,即253<<,5252也就是说,任何一个无理数,都可以夹在两个相邻的整数之间. 根据上述信息,请回答下列问题:(113______,小数部分是_______;(2)107+107a b <+<,则a b +=_____;(3)若404x y -=+,其中x 是整数,且01y <<.求:x y -的相反数. 16.已知10+3的整数部分是x ,小数部分是y ,求x ﹣y 的相反数_____. 17.请你写出一个比3大且比4小的无理数,该无理数可以是:____. 18.若已知()21230a b c -+++-=,则a b c -+=_____.19.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.20.比较大小:3_______ -1.5 21.已知实数,x y 满足()2380x y -+=,求xy -的平方根.三、解答题22.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(42231131227-+-23.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)24.2 1.414≈,于是我们说:2的整数部分为1,小数部分则可记为21”.则:(121的整数部分是__________,小数部分可以表示为__________; (232的小数部分是a ,73-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根. 25.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.一、选择题1.下列各式计算正确的是( )A B = ±2C = ±2D .2.下列各数中,无理数有( )3.14125,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个3.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1334.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是45.下列实数220.010*******;; (相邻两个1之依次多一个0)2,其中无理数有( ) A .2个B .3个C .4个D .5个6.下列说法正确的是( )A .2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D 5 7.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .18.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数9.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .410.下列有关叙述错误的是( )AB 是2的平方根C .12<<D .2是分数 11.若1a >,则a ,a -,1a的大小关系正确的是( ) A .1a a a>->B .1a a a>-> C .1a a a>>- D .1a a a->>二、填空题12.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a + 14.求出x 的值:()23227x +=15.计算:3011(2)(200422-+---16.已知()253|53|0x y -++--=.(1)求x ,y 的值; (2)求xy 的算术平方根. 17.求下列各式中的x 的值 (1)21(1)82x +=;(2)3(21)270x -+= 18.已知21a -的平方根是17±,31a b +-的算术平方根是6,求4a b +的平方根. 19.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______. 20.比较大小,填“>”或“<”号:12_________512- 21.已知1a -的平方根是2±,则a 的值为_______.三、解答题22.求下列各式中x 的值.(1)4(x ﹣3)2=9; (2)(x +10)3+125=0.23.已知213a -=,31a b -+的平方根是4±,c 是43的整数部分,求3a b c ++的平方根.24.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-25.求下列各式中x 的值 (1)21(1)64x +-=; (2)3(1)125x -=.。

人教版七年级数学下册第六章《实数》同步单元复习题及答案

人教版七年级数学下册第六章《实数》同步单元复习题及答案

人教版七年级下册第六章《实数》单元同步练习题一.选择题(共10小题)1.下列各数3.14,,0.,,2.131 331 333 1…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为()A.2个B.3个C.4个D.5个2.在如图所示的数轴上表示﹣2的点在()A.点A和点B之间B.点B和点C之间C.点C和点D之间D.点D和点E之间3.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a4.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.15.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.6.已知,则的平方根为()A.1B.C.±1D.7.,,则1720的平方根为()A.13.11B.±13.11C.41.47D.±41.478.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③﹣3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个9.若把﹣写成整数a与正的纯小数x的和,那么整数a的值为()A.﹣3B.﹣4C.﹣5D.﹣610.如图,O为原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论正确的是()A.ac<bc B.c2<ac C.b2<bc D.ab<bc二.填空题(共5小题)11.若一个数x的平方根是m﹣3和m﹣7,那么这个数x是.12.已知2x+1的平方根是±3,则﹣5x﹣7的立方根是.13.若k<<k+1(k是整数),则k=.14.当x取时,代数式2﹣取值最大,并求出这个最大值.15.小亮求的近似值,下面是他的草稿纸上的部分内容:3.52=12.25,3.82=14.44,3.92=15.21,3.852=14.8225,3.872=14.9769,3.882=15.0544,3.8752=15.015625依据以上数据,可以得到的近似值(精确到0.01)是.三.解答题(共6小题)16.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.17.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.18.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.阅读理解∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.20.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.21.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共10小题)1.B.2.C.3.D.4.B.5.C.6.C.7.D.8.C.9.C.10.A.二.填空题(共5小题)11.412.﹣3.13.9.14.5,2.15.3.87.三.解答题(共6小题)16.解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9,0};无理数:{π,2.5353353335…},故答案为:3.1415926,,0.275,﹣,﹣0.25;8,9,0,;π,2.5353353335…,17.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.18.解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.19.解:∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.20.解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.21.解:(1)∵,∴的整数部分是7,小数部分是﹣7.故答案为:7;﹣7.(2)∵,∴,∵,∴b=2,∴|a﹣b|+===5.(3)∵,∴11<9+<12,∵9+=x+y,其中x是整数,且0<y<1,∴x=11,y==,∴x﹣y==,∴x﹣y的相反数是:.。

第六章 实数复习题及答案

第六章 实数复习题及答案

第六章 实数复习题及答案一、选择题1.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④(*)(*2)aa b c b c c+=+. A .①②③B .①②④C .①③④D .②④ 2.已知4a ++(b ﹣3)2=0,则(a +b )2019等于( ) A .1B .﹣1C .﹣2019D .20193.下列计算正确的是( ) A .42=±B .1193±= C .2(5)5-= D .382=±4.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个B .2个C .3个D .4个5.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( ) A .1B .﹣1C .5D .﹣56.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个7.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 228.在实数227-911π38中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 9.4的平方根是( ) A .±16B .2C .﹣2D .±210.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;333的立方根;④无理数是带根号的数;⑤2的算术平方根是2. A .2个 B .3个 C .4个 D .5个 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 13.如果一个数的平方根和它的立方根相等,则这个数是______.14.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___. 15.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.16.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____.17.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____. 18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:10=100=,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤. (2=__________. 22.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文.23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究: 操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与 表示的点重合; 操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题: ①3表示的点与数 表示的点重合;②若数轴上A 、B 两点之间距离为8(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数分别是__________________; 操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.24.已知32x y --的算术平方根是3,26x y +-的立方根是37的整数部分是z ,求42x y z ++的平方根.25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由; ②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】①中(*)2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b ca b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B.2.B解析:B 【分析】根据非负数的性质,非负数的和为0,即每个数都为0,可求得a 、b 的值,代入所求式子【详解】根据题意得,a +4=0,b ﹣3=0, 解得a =﹣4,b =3,∴(a +b )2019=(﹣4+3)2019=﹣1, 故选:B . 【点睛】本题考查了非负数的性质,以及-1的奇次方是-1,理解非负数的性质是解题关键.3.C解析:C 【分析】A 、根据算术平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据平方根的性质计算即可判定;D 、根据立方根的定义即可判定. 【详解】A 2=,故选项错误;B 、13=±,故选项错误;C 、2(=5,故选项正确;D 2,故选项错误. 故选:C . 【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.4.C解析:C 【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解 【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。

七年级数学下册第六章实数知识点归纳总结(精华版)(带答案)

七年级数学下册第六章实数知识点归纳总结(精华版)(带答案)

七年级数学下册第六章实数知识点归纳总结(精华版)单选题1、下列等式:①√116=18,②√(−2)33=−2,③√(−2)2=2,④√−83=−√83,⑤√16=±4,⑥−√4=−2;正确的有( )A .4个B .3个C .2个D .1个答案:A分析:根据算术平方根定义及立方根定义解答.解:√116=14,故①错误; √(−2)33=−2,故②正确;√(−2)2=2,故③正确;√−83=−√83,故④正确; √16=4,故⑤错误;−√4=−2,故⑥正确;故选:A .小提示:此题考查求一个数的算术平方根及立方根,正确掌握算术平方根定义及立方根定义是解题的关键.2、-2019的相反数是( )A .2019B .-2019C .12019 D .−12019答案:A分析:根据只有符号不同的两个数互为相反数解答即可.解:-2019的相反数是2019.故选:A .小提示:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义.3、如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y 为√3时,输入值x 为3或9;②当输入值x为16时,输出值y为√2;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是()A.①②B.②④C.①④D.①③答案:D分析:根据运算规则即可求解.解:①x的值不唯一.x=3或x=9或81等,故①说法错误;②输入值x为16时,√16=4,,√4=2,y=√2,故②说法正确;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y,如输入π2,故③说法错误;④当x=1时,始终输不出y值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①③.故选:D.小提示:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4、估计√6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间答案:C分析:根据无理数的估算方法估算即可.∵√4<√6<√9∴2<√6<3故选:C .小提示:本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.5、实数−23的倒数是( )A .23B .−23C .123D .−123答案:D分析:根据倒数的意义可直接进行求解.解:实数−23的倒数是−123; 故选D .小提示:本题主要考查实数与倒数的意义,熟练掌握倒数的意义是解题的关键.6、对于数字-2+√5,下列说法中正确的是( )A .它不能用数轴上的点表示出来B .它比0小C .它是一个无理数D .它的相反数为2+√5答案:C分析:根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可.A .数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B .−2+√5>0,故该说法错误,不符合题意;C .−2+√5是一个无理数,故该说法正确,符合题意;D .−2+√5的相反数为2−√5,故该说法错误,不符合题意;故选:C .小提示:本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键.7、定义a *b =3a ﹣b ,a ⊕b =b ﹣a 2,则下列结论正确的有( )个.①3*2=7.②2⊕(﹣1)=﹣5.③(13*25)⊕(72⊕14)=﹣29125.④若a *b =b *a ,则a =b .A .1个B .2个C .3个D .4个答案:C分析:先按照定义书写出正确的式子再进行计算就可解决本题.①、3∗2=3×3-2=7,故计算正确,符合题意;②、2⊕(−1)=(﹣1)-22=−5,故计算正确,符合题意;③、(13∗25)⊕(72⊕14)=(3×13−25)⊕[14−(72)2]=35⊕(−12)=(−12)−(35)2=−30925,故计算错误,不符合题意;④、a ∗b =3a −b ,b ∗a =3b −a ,∵a *b =b *a ,3a −b =3b −a ,解得:a =b ,故计算正确,符合题意.综上所述,正确的有:①②④,共3个.故选:C .小提示:本题考查了按照定义运算的知识,严格按照定义书写出正确的式子,准确的计算是解决本题的关键.8、一般地,如果x n =a (n 为正整数,且n >1),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是±2C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为偶数时,2的n 次方根有n 个答案:C分析:根据新定义的意义计算判断即可.解:∵16的4次方根是±2,∴A选项的结论不正确;∵32的5次方根是2,∴B选项的结论不正确;∵当n为奇数时,2的n次方根随n的增大而减小,∴C选项的结论正确;∵当n为偶数时,2的n次方根有2个,∴D选项的结论不正确.故选:C.小提示:本题考查了实数的新定义问题,正确理解新定义的意义是解题的关键.9、运算后结果正确的是()A.2√3÷12=√3B.√43=2C.√8−2√2=0D.√2×√6=3√2答案:C分析:根据实数的运算法则即可求解;解:A.2√3÷12=4√3≠√3,故错误;B.√43≠2,故错误;C.√8−2√2=0,故正确;D.√2×√6=2√3≠3√2,故错误;故选:C.小提示:本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键.10、已知|a−5|+√b−3=0,那么a−b=()A.2B.3C.-2D.8答案:A分析:直接利用绝对值的性质以及算术平方根的性质得出a ,b 的值,进而求解即可.解:∵|a -5|+√b −3=0,∴a -5=0,b -3=0,解得:a =5,b =3,∴a -b =5-3=2,故选:A .小提示:本题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.填空题11、7是__________的算术平方根.答案:49分析:根据算术平方根的定义即可解答.解:因为√49=7,所以7是49的算术平方根.所以答案是:49小提示:本题主要考查的是算术平方根,属于基础题,要求学生认真读题,熟记概念.12、√−643的倒数是 ____,3﹣√10的绝对值是 ______.答案: ﹣14√10﹣3 分析:(1)先化简√−643再根据互为倒数的两个数积为1的概念进行求值即可.(2)根据若一个数小于0,那么它的绝对值为它的相反数,求出√3- 2的相反数即可.解:(1)化简√−643=√(−4)33=−4,又(−4)×(−14)=1, 所以答案是:−14.(2)√3- 2<0,则它的绝对值即为它的的相反数−(√3−2) =2−√3 ,所以答案是:2−√3故答案为−14,2−√3小提示:本题考查立方根,互为倒数和绝对值的概念,务必清楚的是互为倒数的的两个数积1,负数的绝对值等于它的相反数,掌握倒数和求绝对值的相关概念是解题的关键.13、如果√15=3.873,√1.5=1.225,那么√15000=___________.答案:122.5分析:根据算术平方根与被开方数的关系:“被开方数每向左或向右移动4个位数,则它的算术平方根就向左向右移动2个位数”可知答案.解:∵1.5×10000=15000,∴√15000=100√1.5=122.5,所以答案是:122.5.小提示:本题考查了算术平方根与被开方数的关系,关键在于知道它们之间有何关系.14、如图,A,B,C在数轴上对应的点分别为a,﹣1,√2,其中a<﹣1,且AB=BC,则|a|=_____.答案:2+√2分析:先根据数轴上点的位置求出AB=BC=√2−(−1)=√2+1,即可得到−1−a=√2+1,由此求解即可.解:∵A,B,C在数轴上对应的点分别为a,﹣1,√2,∴BC=√2−(−1)=√2+1,∴AB=BC=√2−(−1)=√2+1,∴−1−a=√2+1,∴a=−2−√2,∴|a|=2+√2,所以答案是:2+√2.小提示:本题主要考查了实数与数轴,解题的关键在于能够根据题意求出AB=BC=√2−(−1)=√2+1.15、观察下面的变化规律:2 1×3=1−13,23×5=13−15,25×7=15−17,27×9=17−19,……根据上面的规律计算:2 1×3+23×5+25×7+⋯+22019×2021=__________.答案:20202021分析:本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题.由题干信息可抽象出一般规律:2a•b =1a−1b(a,b均为奇数,且b=a+2).故21×3+23×5+25×7+⋯+22019×2021=1−13+13−15+15−17+⋯+12019−12021=1+(13−13)+(15−15)+⋯+(1 2019−12019)−12021=1−12021=20202021.故答案:20202021.小提示:本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解.解答题16、一个正数x的两个不同的平方根分别是4a﹣1和4﹣a,求a和x的值.答案:a和x的值分别为﹣1,25分析:根据一个正数的两个平方根互为相反数,得到4a﹣1+(4﹣a)=0,求出a=﹣1,再根据x=(4a﹣1)2求出x即可.解:∵一个正数的两个平方根互为相反数,∴4a﹣1+(4﹣a)=0,解得a=﹣1,∴x=(4a﹣1)2=(﹣5)2=25.答:a和x的值分别为﹣1,25.小提示:此题考查了已知一个数的平方根求参数,正确掌握一个正数的两个平方根是一对相反数的性质是解题的关键.17、已知长方形的长为72cm,宽为18cm,求与这个长方形面积相等的正方形的边长.答案:36cm分析:首先求出长方形面积,进而得出正方形的边长.因为长方形的长为72 cm,宽为18 cm,所以这个长方形面积为:72×18=1296(cm2),所以与这个长方形面积相等的正方形的边长为:√1296=36(cm),答:正方形的边长为36 cm.小提示:此题主要考查了算术平方根的定义以及矩形、正方形面积求法,正确开平方是解题关键.18、现有一块长为7.5dm、宽为5dm的木板,能否在这块木板上截出两个面积是8dm2和18dm2的正方形木板?答案:能截出两个面积是8dm2和18dm2的正方形木板.分析:根据正方形的面积可以分别求得两个正方形的边长是2√2和3√2,显然只需比较两个正方形的边长的和与7.5的大小即可.∵两个面积是8dm2和18dm2的正方形木板的边长是2√2和3√2,√8+√18=2√2+3√2=5√2;∵√2<1.5,∴5√2<1.5×5=7.5;答:能够在这块木板上截出两个分别是8dm2和18dm2的正方形木板.小提示:此题考查了算术平方根和估算无理数的大小,能够正确求得每个正方形的边长,然后再进行比较是本题的关键。

七年级数学下册第六章【实数】复习题(含答案)

七年级数学下册第六章【实数】复习题(含答案)

一、选择题1.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( ) A .1B .2C .3D .42.在实数﹣34,0,9,215中,是无理数的是( ) A .﹣34B .0C .9D .2153.下列各数中无理数共有( ) ①–0.21211211121111,②3π,③227,④8,⑤39.A .1个B .2个C .3个D .4个4.下列说法中,正确的是 ( ) A .64的平方根是8 B .16的平方根是4和-4 C .()23-没有平方根D .4的平方根是2和-25.下列说法正确的是( ) A .2的平方根是2 B .(﹣4)2的算术平方根是4 C .近似数35万精确到个位 D .无理数21的整数部分是56.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+7.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .48.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 139.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-10.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数11.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 42=±D .()515-=-二、填空题12.计算: (13168-. (2)()23540.255(4)8⨯--⨯⨯-.13.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+;(4)311()()(2)424-⨯-÷-.14.求满足条件的x 值:(1)()23112x -= (2)235x -=15.解方程:(1)24(1)90--=x (2)31(1)7x +-=-16.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.17.把下列各数填在相应的集合里: 4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …} 负有理数集合{ …} 非负整数集合{ …} 无理数集合{ …}.18.27-的立方根是___________;81的平方根是___________;| 3.14|π-的绝对值是___________. 19.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=20.已知21a -的平方根是17±,31a b +-的算术平方根是6,求4a b +的平方根. 21.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.三、解答题22.已知31a +的算数平方根是4,421c b +-的立方根是3,c 1322a b c +-的平方根.23.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值; (2)如果x y ,都是同一个数的平方根,求这个数.24.计算:()23143282--⨯--() 25.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.一、选择题1.16的算术平方根是( ) A .2 B .4C .2±D .-42.-18的平方的立方根是( ) A .4 B .14C .18D .1643.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .64.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S581 ) A .3B .﹣3C .±3D .66.下列选项中,属于无理数的是( ) A .πB .227-C 4D .0764 ) A .8B .8-C .22D .22±8.在 -1.414216π,3 3.212212221…,227,3.14这些数中,无理数的个数为( ) A .2B .3C .4D .59.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个B .2个C .3个D .4个10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字). 13.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立?(21-的值. 14.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.15.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.17.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)18.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.19.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +求23c d -的平方根.20.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.21.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎣=8→82⎡=⎣→2⎤⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-23.求x 的值:(1)2(3)40x +-= (2)33(21)240x ++=24.求下列各式中x 的值 (1)21(1)64x +-=;(2)3(1)125x -=.25.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值; (2)求3a b c -+的平方根.一、选择题1.27(7)0y z ++-=,则x y z -+的平方根为( ) A .±2B .4C .2D .±42.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等 3.下列实数中,是无理数的为( )A .3.14B .13C D 4.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( ) A .135B .220C .345D .4075.下列说法中,正确的是( ) A .正数的算术平方根一定是正数 B .如果a 表示一个实数,那么-a 一定是负数 C .和数轴上的点一一对应的数是有理数 D .1的平方根是16.1的值( ) A .在7和8之间 B .在6和7之间 C .在5和6之间D .在4和5之间7.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★ab b;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .① B .②C .①②D .①②③8.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个9.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .10.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .AB >B .A B =C .A B <D .A B ≥11.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个二、填空题12.解方程:(1)24(1)90--=x (2)31(1)7x +-=-13.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.14.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.15.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.16.<x 的所有整数x 的和是_____.17.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭18. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________; (22的小数部分是a,7-b ,那么a b +=__________;(3x的小数部分为y,求1(x y --的平方根. 19.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______20.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______.21.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.三、解答题22.计算:(1)﹣12﹣(﹣2)(21)+2| 23.1 24.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324) (1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.25.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.。

七年级初一数学 第六章 实数复习题附解析

七年级初一数学 第六章 实数复习题附解析

七年级初一数学 第六章 实数复习题附解析一、选择题1.若()2320m n -++=,则m n +的值为( )A .5-B .1-C .1D .52.在下列各数22 ,,3π⋯⋯ (两个1之间,依次增加1个0),其中无理数有( )A .6个B .5个C .4个D .3个3.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个B .2个C .3个D .4个4.下列数中π、227 3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个B .2个C .3个D .4个 5.下列一组数2211-8,3,0,2,0.010010001 (7)223π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( ) A .0个B .1个C .2个D .3个 6.如果-1<x<0,比较x 、x 2、x -1的大小 A .x -1<x<x 2 B .x<x -1<x 2C .x 2<x<x -1D .x 2<x -1<x 7.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23- D8.1是a 的相反数,那么a 的值是( )A .1B .1C . D9.在下列实数:2π、227、﹣1.010010001…中,无理数有( ) A .1个 B .2个 C .3个 D .4个10.下列说法:①±3都是27的立方根;②116的算术平方根是±142;±4;⑤﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.若x +1是125的立方根,则x 的平方根是_________.13.一个数的平方为16,这个数是 . 14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.15.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.16.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____. 18.已知31.35 1.105≈,3135 5.130≈,则30.000135-≈________.19.将2π,93,3-272这三个数按从小到大的顺序用“<”连接________. 20.已知:202044.9444≈⋯,20214.21267≈⋯,则20.2(精确到0.01)≈__________. 三、解答题21.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考)2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a ≠0)的圈n (n ≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ 23.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.24.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳25.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m-3=0,n+2=0,解得m=3,n=-2,所以,m+n=3+(-2)=1.故选:C .【点睛】此题考查非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.2.D解析:D【分析】由于无理数就是无限不循环小数,由此即可判定选择项.【详解】在下列各数22 , ,3π⋯⋯(两个1之间,依次增加1个0),其中有理数有:222,,63=-=-,π,0.1010010001……共3个.故选:D .【点睛】此题考查无理数的定义.解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.C解析:C【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。

第六章实数计算题好题精题训练(整理B4)

第六章实数计算题好题精题训练(整理B4)

第六章实数计算题好题精题训练(整理B4)第六章实数好题精题专项训练⼀.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3. 4 . ||﹣.5. (精确到0.01).6.计算题:.7. ﹣12+×﹣2 8.计算(1);9.10.计算题:11.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);12. .13.|﹣|+﹣14. 求x的值:9x2=121.15. 已知,求x y的值.16. ⽐较⼤⼩:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=16 20.已知a<0,求+的值.18.19. 已知m<n ,求+的值;三、解答题(共40分) 1.(6分)求下列各式中的x .(1)025)1(42=-+x ;(2)125.0)2(3-=-x .2.(6分)计算322312518171691008.0-÷-+?.3.(6分)已知⼀个数的平⽅根是13+a 和11+a ,求这个数的⽴⽅根.4.(7分)已知12-x 的平⽅根是6±,12-+y x 的算术平⽅根是5,求632--y x 的⽴⽅根.5.(7分)已知m 、n 是实数,且0|23|12=-++n m .求实数2n m +的相反数的倒数.6.(8分)如图,⼀个长⽅体的盒⼦,其底⾯的长和宽分别是2和2,内⾼为17,内装⼀⼯具棒,则此⼯具棒最长不能超过多少第6题7.(10分)8块同样⼤⼩的正⽅形⽅砖的⾯积之和是18002cm ,试求出⼀块⽅砖的周长.8. (8分) 已知9+13与9-13⼩数部分分别是a 和b ,求a+b 的值。

9.(9分)已知实数a 、b 、c 、d 、m ,若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,2的平⽅根.10.(6分)已知实数x ,y 满⾜0)532(322=--+--y x y x ,求x -8y 的平⽅根和⽴⽅根.四、创新题(共20分) 1.(10分)请你找出两个⽆理数来,要求满⾜以下两个条件:(1)它们的和仍是⽆理数;(2)它们的积不仅是整数,⽽且是完全平⽅数. 2.(10分)⽤48⽶长的篱笆在空地上围成⼀个绿化场地,现有两种设计⽅案:⼀种是围成正⽅形的场地,⼀种是围成圆形的场地,试问选⽤哪⼀种⽅案围成的⾯积较⼤?。

七年级初一数学 第六章 实数复习题及解析

七年级初一数学 第六章 实数复习题及解析

七年级初一数学 第六章 实数复习题及解析一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a --B .201911a a --C .20181a a-D .20191a -2.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则( ) A .132B .146C .161D .6663.下列说法正确的是( ) A .有理数是整数和分数的统称 B .立方等于本身的数是0,1 C .a -一定是负数D .若a b =,则a b =4.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个B .2个C .3个D .4个5.若23(2)0m n -++=,则m+n 的值为( ) A .-1B .1C .4D .76.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直 A .0个B .1个C .2个D .3个7.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个8的平方根是( )A B . C .±2 D .2 9.4的平方根是( )A .±16B .2C .﹣2D .±2 10.下列各数中,介于6和7之间的数是( )A B C D 二、填空题11.一个数的平方为16,这个数是 .12.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________. 13.若实数a 、b 满足240a b ++-=,则ab=_____. 14.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.15.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________.16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.17.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡=⎣→2=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________. 18.27的立方根为 .19.0.050.55507.071≈≈≈≈,按此规500_____________ 20.若实数x ,y (2230x y ++=,则22xy --的值______.三、解答题21.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N . (I )解方程:log x 4=2; (Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案) 22.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果:211-6= × ; 211-10= × ; (2)用你发现的规律计算: 22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 23.是无理数,而无理数是无限不循环小数,﹣1的小数部的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为2<3的整数部分为2﹣2)请解答:(1的整数部分是 ,小数部分是 ;(2a b ,求a +b24.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-,()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 . (3)求52014+52013+52012+…+52+5+1的值.25.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.26.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】首先根据题意,设M=1+a+a 2+a 3+a 4+…+a 2014,求出aM 的值是多少,然后求出aM-M 的值,即可求出M 的值,据此求出1+a+a 2+a 3+a 4+…+a 2019的值是多少即可. 【详解】∵M=1+a+a 2+a 3+a 4+…+a 2018①, ∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②, ②-①,可得aM-M=a 2019-1, 即(a-1)M=a 2019-1,∴M=201911a a --. 故选:B. 【点睛】考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.2.B解析:B 【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; 2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选:B.点睛本题考查了估算无理数的大小.3.A解析:A 【分析】根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可. 【详解】A. 有理数是整数和分数的统称,正确;B. 立方等于本身的数是-1,0,1,错误;C. a -不一定是负数,错误;D. 若a b =,则a b =或=-a b ,错误; 故答案为:A . 【点睛】本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.4.C解析:C 【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解 【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档