第二章时频分析与连续小波变换资料
MATLAB中的时频分析方法与小波变换
MATLAB中的时频分析方法与小波变换引言时频分析是一种将信号在时间和频率域上进行联合分析的方法。
在很多实际应用中,信号的频谱随时间的变化是非常重要的信息。
为了从信号中获得这种信息,人们已经开发了许多时频分析方法。
在MATLAB中,有许多工具和函数可以用于实现时频分析,其中小波变换是最常用和有效的方法之一。
本文将介绍MATLAB 中的时频分析方法和小波变换的原理以及如何在MATLAB中实现时频分析。
一、时频分析的概述时频分析是一种联合分析信号在时间和频率域上的方法。
传统的傅里叶变换只能提供信号的频谱信息,不能提供信号的时间信息。
而时频分析方法可以通过将信号分解为一系列窄带频率分量,在时间和频率上进行联合分析,从而获得信号的时频信息。
时频分析主要用途包括:信号处理、通信系统、音乐分析和地震学等领域。
在信号处理领域中,时频分析可以用来分析非平稳信号,在图像处理领域中,可以用于提取图像的纹理特征。
在音频处理领域中,时频分析可以用来分析不同乐器的音色特征。
在地震学领域中,时频分析可以用来分析地震信号的频谱和震级。
二、时频分析的方法时频分析方法有很多种。
常用的时频分析方法包括:短时傅里叶变换(STFT)、维纳-辛钦(Wigner-Ville)分布、光谱平均、希尔伯特-黄变换(HHT)等。
这些方法在不同的应用场景中有不同的适用性和性能。
在MATLAB中,有许多工具和函数可以用于实现时频分析。
其中,smallft函数可以用于计算信号的短时傅里叶变换。
spectrogram函数可以用于计算信号的谱图。
wvd函数可以用于计算信号的维纳-辛钦分布。
这些函数都可以通过设置一些参数来调整分析的精度和效果。
三、小波变换的原理小波变换是一种将信号分解为一系列小波基函数的方法。
小波基函数是带有局部特征的小波函数,通常在时域上具有紧凑支持和带通特性。
小波变换可以将信号分解为不同频率、不同时间的小波系数,从而实现时频分析。
小波变换具有许多优点,例如可以提供更好的时频局部化能力、提取信号中的瞬态特征和边缘信息等。
小波变换与时频分析方法的比较与选择
小波变换与时频分析方法的比较与选择引言:在信号处理领域,时频分析是一项重要的技术,它可以帮助我们了解信号在时间和频率上的变化规律。
而小波变换作为一种常用的时频分析方法,也备受关注。
本文将对小波变换和其他常见的时频分析方法进行比较,并探讨在不同应用场景下的选择。
一、小波变换的基本原理小波变换是一种将信号分解成不同尺度和频率的技术。
它通过将信号与一组母小波进行卷积运算,得到不同尺度和频率的分量。
小波变换具有时频局部化的特性,可以较好地捕捉信号的瞬态特征。
二、时频分析方法的分类除了小波变换,时频分析方法还包括傅里叶变换、短时傅里叶变换(STFT)和Wigner-Ville分布等。
这些方法在不同的应用场景下有着各自的优势和局限性。
1. 傅里叶变换傅里叶变换是一种将信号分解成频域成分的方法。
它可以精确地得到信号的频谱信息,但无法提供时间信息。
因此,在需要同时获得时间和频率信息的场景下,傅里叶变换并不适用。
2. 短时傅里叶变换(STFT)STFT是一种将信号分解成时频域成分的方法。
它通过将信号分段,并对每个段进行傅里叶变换,得到不同时间段的频谱信息。
STFT可以提供一定的时间和频率分辨率,但对于非平稳信号,其时间和频率分辨率无法同时达到最优。
3. Wigner-Ville分布Wigner-Ville分布是一种时频分析方法,它可以提供较好的时间和频率分辨率。
然而,Wigner-Ville分布的主要缺点是会产生交叉项,使得分析结果难以解释。
三、小波变换与其他时频分析方法的比较小波变换相对于其他时频分析方法具有以下优势:1. 时频局部性:小波变换可以根据信号的局部特征调整分辨率,对信号的瞬态特征有较好的捕捉能力。
2. 多分辨率分析:小波变换可以通过选择不同的小波基函数,实现对不同频率范围的分析,具有多尺度分析的能力。
3. 压缩性:小波变换可以将信号分解成不同尺度和频率的分量,有助于提取信号的重要特征并进行压缩。
然而,小波变换也存在一些限制:1. 选择适当的小波基函数是一个挑战。
连续小波变换
0
10 20
30 40
50 60 70
80 90 100
sin(5.89t),
f
t
sin(8.83t), sin(5.89t)
sin(8.83t),
0,
0t 1 1t 2 2t3 t 3
连续小波变换与离散小波变换在分析信号时的优缺点
2, 4, 8, 16 , 32 1,2,…, 32
和频率窗 * gˆ , * gˆ 内的局部化信息。
时间-频率窗 t* b g ,t* b g * gˆ , * gˆ 的特性:不变的宽度 2g 和固定的窗面积 4ggˆ
测不准原理:
g gˆ
1 2
应用上的局限性:不太适合分析非平稳信号。
小波时频分析
小波分析能够提供一个随频率改变的时间-频率窗口。
2
sin 4
4
1 2sin2 4
1
2 3
sin 2
4
3
8 sin 2
4
8 sin 4
4
t Battle-Lemarie线性样条小波及其频域函数的图形
时频分析
1. Fourier分析简介
Fourier变换没有反映出随时间变换的频率,也就是说,对于 频域中的某一频率,我们不知道这个频率是在什么时候产生的。 因此,Fourier分析缺乏信号的局部化分析能力 。
Morlet小波是Gabor 小波的特例。
g
t
1
t2 2
2
e 2 1/ 4
1, 5
Gabor 小波
t g t eit
Morlet小波
常用的基本小波
5. 高斯小波
t 1 tet2 /2
信号的时频分析与小波分析PPT
其调用格式为: [cA,cD] = dwt(x, 'wname') [cA,cD] = dwt(x, 'wname', 'mode', MODE) 返回变量cA:信号DWT对应的近似(Approximation)展开系数 cJ [k ] 返回变量cD:信号离散小波变换对应的细节(Detail)展开系数 d J [k] 调用参数x:表示信号序列,相当于 cJ1[k] 调用参数wname:表示小波名称,参见函数wfilters 调用参数MODE:表示信号DWT延拓模式。
[CXD, LXD] = wavedec(XD, N, ‘wname’) 调用参数TPTR:表示阈值规则,主要有'rigrsure', 'heursure', 'sqtwolog', 'minimaxi'规则 调用参数SORH:表示是soft阈值(‘s’)还是hard阈值(‘h’) 调用参数SCAL:表示是否需要设置多重阈值 调用参数N:表示信号离散小波变换的级数,为正整数。
8
实验六 信号的时频分析与小波分析
(6) 函数wden实现一维信号的去噪,小波名称以及阈值都可以设定。 调用格式为
[XD, CXD, LXD] = wden(x, TPTR, SORH, SCAL, N, 'wname') [XD, CXD, LXD] = wden(C, L, TPTR, SORH, SCAL, N, 'wname') 返回变量XD:表示由噪声信号x的DWT经过阈值去噪后得到的信号; 返回变量CXD与LXD:表示信号XD的小波变换,即
第二章-连续小波变换
2.2 连续小波变换的概念与性质2.2. l 连续小波变换的概念将任意)(2R L 空间中的函数)(t f 在小波基下进行展开,称这种展开为函数)(t f 的连续小波变换(CWT ),其表达式为 ()⎰⎪⎭⎫⎝⎛-==-R 2/1,d )()(),(,t a t t f a t t f a WT a f τψψττ (2.9)由CWT 定义可知,小波变换与傅里叶变换的相同之处:(1) 一种积分变换。
(2) 称()τ,a WT f 为小波变换系数。
小波变换与傅里叶变换的不同之处:(1) 小波基具有尺度和平移两个参数。
(2) 函数在小波基下展开,意味着将一个时间函数投影到二维的时间—尺度相平面上。
由于小波基本身所具有的特点,将函数投影到小波变换域后,有利于提取函数的某些本质特征。
从时频分析角度来看,小波变换具有如下特点:若令tj a e t g t a t a ωττψτψ)()(,21-==⎪⎭⎫ ⎝⎛--则CWT 可视作STFT 。
CWT :任意函数在某一尺度a 、平移点τ上的小波变换系数,实质上表征的是在τ位置处,时间段t a ∆上包含在中心频率为a0ω、带宽为aω∆频窗内的频率分量大小。
随着尺度a 的变化,对应窗口中心频率a0ω、窗口宽度aω∆也发生变化(根据式(2.6),(2.7))。
STFT :窗口固定不变(即不随ω的变化而变化)。
二者不同之处:CWT 是一种变分辨率的时频联合分析方法。
低频(大尺度),对应大时窗;高频(小尺度),对应小时窗。
举例说明。
信号)207(5.1)165(5.1)10002sin()5002sin()(-+-+⨯+⨯=t t t t t f δδππ,在不同时窗下的STFT 和CWT 的展开系数图,如图2.1所示。
与傅里叶基不同,尺度和位移均连续变化的连续小波基函数形成了一组非正交的过度完全基。
这意味着其任意函数的小波展开系数之间有一个相关关系。
若用),;,(ττψ''a a K 描述两个基函数)(,t a τψ和)(,t a τψ''的相关度的大小,则dt t t C a a K a Ra )()(),;,(,,1ττψψψψττ''-⎰⋅='' (2.11)ψK 表征了连续尺度、时移半平面),(τa (由于0>a 所以称半平面)的两个不同点之间的CWT 系数的相关关系,也称它为再生核或重建核(再生和重建的含义是指由尺度—平移相平面上的已知点,根据再生核公式可再生和重构出某一点),其结构取决于小波选取。
第3.2连续小波变换的性质2014修正2
* * 1 * 1 * ^ ^ , (t b) , a ^ a ^ a (t b) * a a a a a
a2
2 *^
4 ^
a 1
*
^
2 ^ ^
a 1/ 2
( )2 d 0 a ,
2 1 2
a ,
ˆ ( ) ,根据 设母小波为 (t ) ,其傅里叶变换为 上公式计算出母小波 (t ) 对应的波形参量 , t, 0 , 分别为 t0 ,经过伸缩平移后的 小波基函数 a, (t ) 对应的波形参量分别为 t0 , t , 0 , ,则存在以下的结论: (1)能量守恒 :
x 2 2
2 a2
WT a , 的完全准确恢复需要 a 平面 那么, 上无数个类似于的点的共同贡献才能完成,即 把这种贡献的累积就归结为平面上的二维积分:
x 1 1
WTx a1 ,1 da2
0
WTx a2 , 2 K a1 ,1 , a2 , 2 a WTx a, K a1 , 1 , a,
§2.3 连续小波变换的性质
1.小波基的自适应时频窗及其度量 小波基的时窗、频窗的波形参量如下: (1)时窗中心:实质上信号在时域的一阶 矩,即
t0
t a , t dt
2
a , t
2
t
[
1 * ^ 2
1
2
t
2.连续小波变换的性质 假设信号矢量 x(t ) 和 y(t ) 为能量有限信号, 即 x(t ), y(t ) L (R) ,其连续小波变换(CWT)分别 k2 为任意常 表示为 WTx a, 和 WTy a, ,令 k1 , 数。 (1)线性叠加性 若 z t k1x(t ) k2 y(t ) ,则 z t 的连续小波变换 为 WTz a, k1WTx a, k2WTy a, 。 (2)时不变性 令原信号 x(t ) 的延时信号表示为 z t x t t 则其连续小波变换为 WTz a, WTx a, t0
利用小波变换进行时频分析的方法与步骤
利用小波变换进行时频分析的方法与步骤时频分析是一种将信号在时间和频率上进行联合分析的方法,可以揭示信号的时变特性和频域特征。
而小波变换是一种非平稳信号分析的有效工具,具有良好的时频局部化特性。
本文将介绍利用小波变换进行时频分析的方法与步骤。
一、小波变换的原理和基本概念小波变换是一种将信号分解成不同频率的子信号,并通过缩放和平移小波函数来实现的。
小波函数具有局部化特性,可以在时间和频率上同时提供较好的分辨率。
小波变换的基本概念包括小波基函数、尺度和平移。
小波基函数是一组用于分析信号的基本函数,常用的小波基函数有Morlet小波、Haar小波等。
尺度表示小波函数的频率特性,尺度越大,频率越低;平移表示小波函数在时间上的位置。
二、小波变换的步骤1. 选择合适的小波基函数:根据信号的特点和需求,选择适合的小波基函数。
不同的小波基函数对信号的分析效果有所差异,因此选择合适的小波基函数对于时频分析的准确性至关重要。
2. 进行小波分解:将待分析的信号进行小波分解,得到不同尺度和平移下的小波系数。
小波分解可以通过快速小波变换(Fast Wavelet Transform)等算法来实现。
3. 选择合适的分解层数:分解层数的选择决定了时频分析的精度和分辨率。
较浅的分解层数可以提供较粗糙的时频分析结果,而较深的分解层数可以提供更详细的时频信息。
根据信号的特点和需求,选择合适的分解层数。
4. 重构信号:根据小波系数,进行小波重构,得到时频分析的结果。
小波重构可以通过逆小波变换来实现,逆小波变换是小波分解的逆过程。
5. 分析时频特性:利用重构的信号进行时频分析,可以得到信号在不同时间和频率上的能量分布。
常用的时频分析方法包括小波包分析、短时傅里叶变换等。
三、小波变换的应用领域小波变换在信号处理领域有广泛的应用。
其中,时频分析是小波变换的重要应用之一。
时频分析可以用于音频信号处理、图像处理、振动信号分析等领域。
1. 音频信号处理:小波变换可以用于音频信号的时频分析,可以提取音频信号的谱线轮廓、共振峰等特征,用于音频信号的压缩、降噪等处理。
连续小波变换核心知识
2.1.1 连续小波变换(1)连续小波基函数所谓小波(Wavelet),即存在于一个较小区域的波。
小波函数的数学定义是:设)(t ψ为一平方可积函数,即)()(2R L t ∈ψ,若其傅立叶变换)(ˆw ψ满足: ∞<=⎰dw w w C R 2)(ψψ (2-1)时,则称)(t ψ为一个基本小波或小波母函数,并称式(2-1)是小波函数的可容许条件。
根据小波函数的定义,小波函数一般在时域具有紧支集或近似紧支集,即函数的非零值定义域具有有限的范围,这即所谓“小”的特点;另一方面,根据可容许性条件可知0)(0==w w ψ,即直流分量为零,因此小波又具有正负交替的波动性。
将小波母函数)(t ψ进行伸缩和平移,设其伸缩因子(亦称尺度因子)为a ,平移因子为b ,并记平移伸缩后的函数为)(,t b a ψ,则: 0;,,)(21,≠∈⎪⎭⎫ ⎝⎛-=-a R b a a t a t b a τψψ (2-2) 并称)(,t b a ψ为参数a 和b 小波基函数。
由于a 和b 均取连续变换的值,因此又称为连续小波基函数,它们是由同一母函数)(t ψ经伸缩和平移后得到的一组函数系列。
定义小波母函数)(t ψ的窗口宽度为t ∆,窗口中心为0t ,则可以求得连续小波基函数)(,t b a ψ的窗口中心及窗口宽度分别为:t a t b at t a b a ∆=∆+=τ,0,, (2-3) 设)(ˆw ψ是)(t ψ的傅立叶变换,频域窗口中心为0w ,窗口宽度为w ∆,)(t ψ的傅立叶变换为)(,w b a ψ,则有:)()(,aw e a w jwb b a φψ-= (2-4) 所以此时频域窗口中心及窗口宽度分别为:w aw w a w b a b a ∆∆1,1,0,== (2-5) 由此可见,连续小波的时、频窗口中心和宽度均是尺度因子a 的函数,均随着a 的变化而伸缩,并且还有w t w t b a b a ∆⋅∆=∆⋅∆,, (2-6)即连续小波基函数的窗口面积是不变的,这正是Heisenberg 测不准原理。
小波变换与时频分析的关系与比较
小波变换与时频分析的关系与比较时频分析是一种常用的信号处理方法,用于研究信号在时间和频率上的特性变化。
而小波变换则是一种数学工具,可以将信号分解成不同尺度的成分,从而更好地理解信号的局部特性。
本文将探讨小波变换与时频分析之间的关系与比较。
一、小波变换的基本原理小波变换是一种基于多尺度分析的信号处理方法。
它采用一组称为小波基函数的函数族,通过与信号进行内积运算,将信号分解成不同频率和时间尺度的成分。
小波基函数具有局部性和可调节性的特点,可以更好地适应信号的局部特性。
二、时频分析的基本原理时频分析是一种通过研究信号在时间和频率上的特性变化,来揭示信号的时域和频域特性的方法。
时频分析方法有很多种,常见的有短时傅里叶变换(STFT)、Wigner-Ville分布(WVD)和Cohen类分布等。
这些方法都是通过对信号进行时域和频域的联合分析,来得到信号的时频特性。
三、小波变换与时频分析的关系小波变换与时频分析都是用来研究信号的时域和频域特性的方法,它们之间存在一定的关系。
小波变换可以看作是时频分析的一种特殊形式,它通过将信号分解成不同尺度的成分,实现了对信号的时频分析。
而时频分析方法则是通过对信号在时间和频率上的特性变化进行联合分析,来得到信号的时频特性。
可以说,小波变换是一种更加灵活和可调节的时频分析方法。
四、小波变换与时频分析的比较虽然小波变换和时频分析都可以用来研究信号的时频特性,但它们在某些方面有所不同。
1. 分辨率:小波变换具有可调节的分辨率,可以根据需要选择不同的小波基函数,从而实现对信号的局部特性进行更精细的分析。
而时频分析方法的分辨率通常是固定的,无法根据需要进行调节。
2. 窗宽效应:时频分析方法通常采用窗函数来实现对信号的局部分析,但窗函数的选择会引入窗宽效应,导致时频分辨率的折衷。
而小波变换通过选择不同尺度的小波基函数,可以避免窗宽效应的问题。
3. 计算复杂度:小波变换的计算复杂度较高,特别是在高分辨率时频分析中,计算量更大。
小波变换与信号的时频分析
小波变换与信号的时频分析
小波变换(Wavelet Transform)是一种在统计学、信号处
理等领域中使用的一种时频分析技术,它可以将复杂的信号分解,并用基于时间的小波函数来表示这些分解的信号。
小波变换可以更好地提取信号的时频特征,并且可以帮助我们更好地理解信号的特点。
小波变换是一种基于小波函数的时频分析技术,它可以将原始信号进行分解,并用小波函数来表示分解的信号。
这种分解的信号可以用来表示信号的时频特征,并且可以更好地提取信号的特征。
小波变换的原理是基于小波函数,它可以将一个信号按照时间和频率进行分解,提取其时频特征,最终得到一系列小波系数,用来表示信号的时频特征。
小波变换的优点在于它可以将信号分解成若干个小波系数,这些小波系数可以表示信号的时频特征,从而可以更好地提取信号的特征。
小波变换在信号处理领域中有广泛的应用,它可以用来提取信号的时频特征,更好地理解信号的特点,从而进行信号处理。
同时,它也可以用来检测信号中的噪声,从而达到降噪的目的。
总之,小波变换是一种基于小波函数的时频分析技术,它可以将复杂的信号分解,并用基于时间的小波函数来表示这些分解的信号,以更好地提取信号的时频特征。
信号的时频分析与小波分析
灵活性
计算效率
小波变换具有高度的灵活性,可以选择不 同的小波基函数,以满足不同类型信号和 不同应用场景的需求。
相对于傅里叶变换,小波变换的计算复杂 度较低,使得在实时信号处理中更为高效 。
缺点
选择合适的小波基
选择合适的小波基是进行小波分析的关键步骤,但选择过 程具有一定的主观性和经验性,需要依据具体应用场景和 信号特性进行判断。
小波变换可以用于特征提取和降 维,为机器学习算法提供有效的 特征表示。
模式识别
小波变换可以用于信号分类和模 式识别,例如在声音、图像和文 本识别等领域。
数据挖掘
小波变换可以用于数据挖掘和聚 类分析,例如在时间序列数据、 金融数据和社交网络分析等领域。
THANKS
感谢观看
时频分析通过将信号表示为时间和频 率的联合函数,提供了一种同时观察 信号在不同时间和频率下表现的方式。
短时傅里叶变换
短时傅里叶变换是一种常用的时频分析方法,通过使用滑动窗口函数对信号进行加 窗处理,并对每个窗口内的信号进行傅里叶变换。
窗口函数的选择对短时傅里叶变换的性能有很大影响,常见的窗口函数包括高斯窗、 汉明窗等。
小波变换的分类与应用
总结词
小波变换可以分为连续小波变换和小波离散变换两种类型,它们在信号处理、图像处理、语音识别等 领域有蛇形广泛应用。
详细描述
连续小波变换能够对信号进行连续某种的时频分析,能够同时获得信号在时间域和频率域的信息。而 小迷离变换 则是基于离散傅里叶变换的一种改进,可以对信号进行快速变换分析。在应用方面,连续 小矶碎变换摸摸可以应用于信号处理、图像处理、语音识别等领域某种。
小波分析在大数据时代的应用
信号处理
01
在通信、雷达、声呐等领域,小波分析用于信号降噪、压缩感
sjs2-第二章 连续小波变换(6课时)
第二章连续小波变换13小波母函数(及小波函数)特点:,0)(∫∞∞−=dt t ψ语言描述为:(1)小波具有“小”,具有时、频域紧支集,包络衰减快;(2)小波具有“波动性”,正负交替,与水平轴上下围成的面积相等,直流分量为零;(3)小波具有带通滤波器特性,ψ(t )可理解为一个带通滤波器的冲激响应。
(小波的Fourier 变换是带通),0)0(ˆ=ψ示。
图2-3ω∆2ω∆2/ω∆ωt 0ω02ω2/0ω)(ˆωψa )(ˆωψa )(ˆωψa19母小波可以是实函数,也可以是复函数。
•具有带通特性,即在频域,围绕着中心频率是有限支撑的也将反映在窗口中心频率处的局部性质,从而实现所期望的频率定位功能。
)(ˆ,ωψb a )(ˆ,ωψb aMorlet小波ψ (t ) = e− t 2 / 2 iω0teˆ (ω ) = 2π e− (ω −ω0 ) ψ2/2(a)小波母函数;(b)Fourier变换Morlet小波不存在尺度函数; 快速衰减但非紧支撑. Morlet小波是Gabor 小波的特例。
g (t ) =(σ π )211/ 4e−t2 2σ 2σ = 1,η = 5Gabor 小波 Morlet小波21ψ ( t ) = g ( t ) eiηtMorlet小波morl(x) = exp(-x^2/2) * cos(5x) No Orthogonal, No Biorthogonal,No Compact Support Effective support=[-4 4], SymmetryM orlet W avelet 1 0.8 12 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 2 -0.8 -1 -5 0 -5 6 10 14 FFT of M orlet W avelet84-4-3-2-1012345-4-3-2-1012345Morlet小波是一种复数小波,时频均具有很好的局部性。
第二章时频分析与连续小波变换资料
时频原子基本概念
时频原子
具有时频局部化特性的基本信号分析单元
短时傅里叶时频原子
(t ) gu, (t ) g (t u)eit
1 t u (t ) u ,s (t ) s s
短时傅里叶原子是通过平移和调制形成的; 小波原子是通过平移和伸缩得到的。
2 t2
2
tf (t ) dt
'
2
fˆ d
2
1
4 f
tf (t ) dt
f (t ) dt..... (Parseval定 理 及 傅 里 叶 变 换 的质 性)
再根据 Schwarz 不等式,有:
2 t2
1 f
再 考 虑 到 许 瓦 兹 不 等成 式立 的 条 件 , 有 : 存b, 在 使得: f ' (t ) 2btf (t ) 进一步推出存在 C , 使 得f (t ) a exp(bt 2( ) 得证)
时频不可能同时有限长
尽管有了Heisenberg测不准原理的限制,可能仍然有人认为存在 某个信号在时间-频率域上可以同时是有限长的,但这个结论也是 不成立的。
如果时频原子在时间上是集中于某个时刻点u周围,根 据(1)式,则 Tf ( ) 仅与信号f(t)在该邻域的值有关。 如果时频原子在频率上是集中于某个频率点 周围, 根据(2)式,则 Tf ( ) 仅与信号f(t)的频谱在该邻域的值 有关。
“最高的时频分辨率 ”
如果所选择的时频原子的能量在时间上集中在某个时 刻点,同时在频率上集中在某个频率点,则线性时频变 换的结果必然精确反映原始信号在某个时刻点和某个 频率点上的信息-具有最高的时频分辨率。 问题:上述时频原子存在否?
【优】连续小波变换最全PPT资料
对小波变换频域窗口的分析:
宽的时间窗口则有利于对信号低频特性的分析。
Gaobor变换的缺点在于其时频“窗若口”的ˆ 的宽时度域不随中频心率在的变化而变化* ,。时域半径为
对小波变换时域窗口的分析:
ˆ , 则 ( a 0 ):
宽的时间窗口则有利于对信号低频特性的分析。
由 ˆ a e 对“容许性”条件的分析:
对小波变换时频窗口的分析:
2 a a a 对小波变换时频窗- 口的 分- 析 :
2
对小波变换时频窗口的分析:
对小波变换时频窗口的分析:
Gaobor变换的缺点在于其 时频“ 窗口 ”的 宽度不随频率的变化而变化。
对“容许性”条件的分析:
1 (e ( t b ) d ) ( a b f ˆ ()ˆ( a)g ( t)dd at d 对小波变换频域窗口的分析:
ib
2
___ __ __ __ __ __
2 对小波变换时域窗口的分析:
对小波变换时频窗口的分- 析 : -
a
对“容许性”条件的分析:
1 a e i tˆ(a)a 2 f ˆ()_ ˆ(a _)_ g _ ( t_ ) _ d _ __ a _ d _ _d t_ 2- -
小波重构定理的证明:
c1 - - [W (f)b (,a) l i0(m _ _ g_,__ b,_ a_ __ )_d a __ 2_d _ a__b c1- - [W(f)b(,a)b,ada2adb
t
小波变换的重构定理:
令是一个基小波,了 它一 定个 义连续小波 W(变 f )换 (b,a),则:
-
[W(
-
f
)(b,a)W ___(_g__)_(b____,_a__)_da_2adbc
连续小波变换
mk t (t )dt
k
d
k
0
(重新审视)
连续小波变换
小波及连续小波变换 常用的基本小波 时频分析 连续小波变换的计算 小波变换的分类
小波及连续小波变换
设函数 ,则称
ˆ (0) 0 ,即 (t )dt 0 t L1 (R) L2 (R) ,并且
(5)(奇偶性) WP [ Pf ](a, b) (W f )(a,b) 其中P是反射算子(奇偶算子) ( Pf )(t ) f (t ) (6)(反线性性)
(7)(小波平移) (8)(小波伸缩)
(W f )(a, b) (W f )(a, b) (W f )(a, b)
1
2
3
D6尺度函数与小波
常用的基本小波
3、双正交小波 双正交B样条小波(5-3)、 (9-7)小波滤波器 (7-5)小波滤波器:
4 q2 3 p 0 8 q2 2 2 4 q2 5 q2 1 p1 8 q2 2 4 q2 1 p2 16q2 4 2 4 q q2 2 p 3 2 8 q2 q0 1 2q2 1 q1 2
bior2.2, bior4.4
h
1 1 1 3 1 1 , , , , 2 8 2 4 2 8
1 3 3 5 5 5 3 3 , , , , , , 2 16 4 16 2 16 4 16
h
常用于图形学中。其中尺度函数是一 个三次B样条。
pn 2 hn , qn 2hn
ˆ (0) 0 几乎是等价条件. 允许条件与
1 f (t ) c
连续小波时频分析实验
连续小波时频分析实验-、实验目的通过实验理解小波时频关系,认识小波时频分析的特点,掌握小波时频分析matlab 实现,为小波分析应用打下基础。
二、连续小波变换原理()()R L t f 2∈∀,()t f 的连续小波变换(有时也称为积分小波变换)定义为:()()0,,2/1≠⎪⎭⎫⎝⎛-=⎰∞∞--a dt a b t t f ab a WT f ψ (1) 或用内积形式:()ba f fb a WT ,,,ψ= (2)式中()⎪⎭⎫ ⎝⎛-=-a b t at b a ψψ2/1,。
要使逆变换存在,()t ψ要满足允许性条件:()∞<=⎰∞∞-ωωωψψd C 2ˆ (3)式中()ωψˆ是()t ψ的傅里叶变换。
这时,逆变换为()()()2,1,ada dbb a WT t C t f f b a ⎰⎰∞∞-∞∞--=ψψ(4)ψC 这个常数限制了能作为“基小波(或母小波)”的属于()R L 2的函数ψ的类,尤其是若还要求ψ是一个窗函数,那么ψ还必须属于()R L 1,即()∞<⎰∞∞-dt t ψ故()ωψˆ是R 中的一个连续函数。
由式(3)可得ψˆ在原点必定为零,即()()00ˆ==⎰∞∞-dt t ψψ(5)从式(5)可以发现小波函数必然具有振荡性。
三、连续小波时频图绘制(一)连续小波时频图绘制需要用到的小波工具箱中的三个函数 COEFS = cwt(S,SCALES,'wname')说明:该函数能实现连续小波变换,其中S 为输入信号,SCALES 为尺度,wname 为小波名称。
FREQ = centfrq('wname')说明:该函数能求出以wname 命名的母小波的中心频率。
F = scal2frq(A,'wname',DELTA) 说明:该函数能将尺度转换为实际频率,其中A 为尺度,wname 为小波名称,DELTA 为采样周期。
北航时间频率(2017L3)资料
▪ 连续小波变换的定义
➢
其中
(t)称为基本小波或母小波,而
a ,b
(t)
|a
| 1/2
t (
b )
a
称为由基本小波 (t) 生成的依赖于参数的连续小波。 ()
是 (t)的Fourier变换。
➢ 如果满足
C | ( ) | 2 | | 1 d (3.2)
则称为允许小波(Admissible Wavelet),而式(3.2)称为允许 条件。
f ( t ) 1 C,
CWTf
(
a
,
b
)
a, b
(
t
)
da a
db
2
连续小波变换
▪ 基本性质:
➢ (1)线性性 设 g(t) a1 f1(t) a2 f2 (t) ,则有
CWTg (a,b) a1CWTf1 (a,b) a2CWTf2 (a,b)
➢ (2)时移不变性 设 g(t) f (t t0 ) ,则有
连续小波变换
▪ 连续小波变换的定义
➢ 定义:设 (t) L2 L1 , (0 ) 0 信号 f (t) 的连续小 波变换定义为:
CWTf (a,b)
f , a,b
1 |a|
f (t) (t b)dt
a
1
2ห้องสมุดไป่ตู้
fˆ, ˆ a,b
a
2 | a |
fˆ()eibˆ (a)d
(3.1)
连续小波变换
➢ 1987年,Mallat巧妙地将计算机视觉领域内的多尺度分 析的思想引入到小波分析,并与Meyer共同提出了多分辨 率分析理论,从而成功地统一了在此以前提出的各种具 体小波函数的构造,研究了小波变换的离散化情形,给 出了被称为Mallat算法的分解与重构算法。
时频分析与连续小波变换
从滤波的观点看
4.5 子波变换与短时傅里叶变换的比较
例:信号
演讲完毕,感谢聆听
CLICK HERE TO ADD A TITLE
单击此处添加文本具体内容
演讲人姓名
满足此件的子波称为容许小波。
(4-2)
3
正则性条件 频域表示
(4-3)
01
02
01
重构核
02
(4-4a)
03
(4-4b)
重构(建)核方程
子波变换的时频窗特性 4.3.1 时窗 中心 令 半窗宽
4.3.2 频窗
中心
半窗宽
4子波变换的工程理解
系统响应 将 看成是输入某系统的信号,该系统的单位脉冲响应为
第4章 时频分析与连续小波变换
CLICK HERE TO ADD A TITLE
单击此处添加文本具体内容
演讲人姓名
4.1.1 非平稳信号的时变特征与傅里叶变换的局限性
时频特征与时频分析
鲸鱼鸣叫的声信号
4.1 非平稳信号与时频分析
滑动轴承的干摩擦信号
傅里叶变换的局限性
例1:
例2:
2短时傅里叶变换STFT
4.2.1 定义 式中: —时移步长; —窗函数; —积分核; —表示 的复共轭。
4.2.2 STFT的时频特性及其局限性
01
窗口参数表示 如果窗函数 ,且
01
窗中(重)心
01
窗半径
Heisenberg 不确定性 不失一般性,设 , ,则
故
1
2
自适应时频窗特性
4.3 连续小(子)波变换
4.3.1 定义 具有有限能量的函数 的子波变换定义为 以函数族 为积分核的积分变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换不容易提供信号局部奇异性信息:
不容易从傅里叶变换系数在高频的分布规律分析出原始信号在特定点 上的奇异性(局部的变化)…..然而,小波变换可以做到这一点。
傅里叶变换在高频处的衰减性依赖于信号的整体奇异性。
傅里叶变换的衰减性与信号的全局正则性之间的关系:
ˆ ( )满足: 定理:如果信号f (t )的傅里叶变换f
小波分析导论
第二章 时频分析与连续小波变换
时频联姻(Time Meets Frequency)
傅里叶分析回顾 联合时频分析的基本原理 短时傅里叶分析:STFT 连续小波变换:CWT 时频分析的应用
瞬时频率
基于短时傅里叶脊和小波脊的瞬时频率检测
本章小结
一、傅里叶分析回顾
F F ˆ e jt0 f (t ) f 0
t F ˆ s f ( ) s f s F ˆ f ( p ) (t ) ( j ) p f
傅里叶变换的重要缺陷:难于获得信号的“局部变化”规律
从频率分析角度看: 傅里叶变换不能提供频率随时间局部变化的规律。 从信号奇异性分析角度看:
p ˆ f ( ) (1 )d ,
则:f (t )是有界的,并且f (t )具有p阶导数。 K ˆ 推论:如果存在常数K 及 0使得: f ( ) , p 1 1 则:f (t )具有p阶导数。
傅里叶变换的快速算法:FFT
1965年库利和图基提出FFT算法
k N
jk0 n a e k
k N
jk ( 2 / N ) n a e k
n N
x[n]e
jk0n
1 N
n N
jk ( 2 / N ) n x [ n ] e
四种傅里叶变换的关系:
连续时间傅立叶级数 CFS
x(t ) Ak
连续时间傅立叶变换 CTFT
离散时间傅立叶变换 DTFT
连续、非周期 连续、非周期
x(t ) X ( j) X ( jt ) 2 x()
x(n) X (e )
离散、非周期 连续、周期
j
信号时域和频域特性之间关系:
本课程中傅里叶变换的记号:
ˆ ( ) f
傅里叶变换(分析)的定义
•根据信号的不同,傅里叶变换有四种定义: •CTFT: •CFS: 连续时间傅里叶变换 连续时间傅里叶级数
•DTFT: 离散时间傅里叶变换 •DFS: 离散时间傅里叶级数
CTFT:连续时间傅里叶变换
适用信号:连续时间信号 变换公式:
X ( j ) x(t )e jt dt
1 x(t ) 2
X ( j )e
jt
d
CFS: 连续时间傅里叶级数
适用信号:连续时间周期信号 变换公式:
x(t )
k
a ekΒιβλιοθήκη jk0tk
a e
k
jk ( 2 / T ) t
1 1 jk0t jk ( 2 / T ) t ak x(t )e dt x(t )e dt TT TT
概述 定义 性质 实现
傅里叶分析概述
傅里叶分析可以分析信号中的“频率成分”。 它是一个全局的分析。 它有很多好的性质:如其所选择的基本分析单元是LTI 系统的特征函数,可将其方便地用于分析线性时不变 系统-利用傅里叶分析可以将时域卷积运算转化成频域 相乘运算。 傅里叶分析数字实现时常常采用FFT进行快速实现。
FFT不是一种新的傅里叶变换,它仅仅是计算DFS 的一种快速算法.
FFT的出现极大地促进了傅里叶变换在工程 中的应用.
二、联合时频分析 联合时频分析引入的动机: 具有时变频率结构的信号在自然界中随处可见: 语音/音频信号 颜色变化的光线 雷达信号 地震信号 ……
1946年,Dennis Gabor(1971年 Nobel奖获得者) : “迄今为止,通信理论的基础一 直是信号分析的两种方法组成的: 一种将信号号描述成时间的函数, 另一种将信号描述成频率的函数 (Fourier分析)。这两种方法 都是理想化的……。然而,我们 每一天的经历-特别是我们的听 觉-却一直是用时间和频率来描 述的。”
连续、周期 离散、非周期
1 2 Ak X ( j k ) T T
DTFT j
离散时间傅立叶级数 DFS 1 x(n) Ak An x(k )
N
离散、周期 离散、周期
2 j k 1 Ak X (e N ) N
x(n) X (e )
CFS X (e jt ) x(k )
f (t )e
it
dt
1 f (t ) 2
it ˆ f ( )e d
连续时间傅里叶变换性质 F ˆ f (t ) f
F ˆ f ˆ f1 * f 2 (t ) f 1 2
1 ˆ ˆ f1 (t ) f 2 (t ) f1 * f 2 ( ) 2 jt0 F f (t t0 ) f e
DTFT:离散时间傅里叶变换
适用信号:离散时间信号 变换公式:
1 x ( n) 2
2
X (e
j
)e
jn
d
X (e )
j
n
x ( n )e
jn
DFS:离散时间傅里叶级数
适用信号:离散时间周期信号 变换公式:
x[n] 1 ak N
为了分析信号中时变的频率结构,需要引入 一些时频分析的新工具:短时傅里叶变换和 小波变换就是其中的代表。 短时傅里叶变换和小波变换的差别在于采用 了不同的时频原子
不同时频原子具有不同的时频特性。
时频原子
时频原子的基本概念 线性时频变换的定义 时频原子的时频局部化描述 Heisenberg测不准原理 时频原子的时频结构-Heisenberg-box 时频能量密度