人教版八年级下册:二次根式导学案
二次根式的除法(导学案)-八年级数学下册(人教版)
学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学八年级下册16.2.2二次根式的除法导学案一、学习目标:1.了解二次根式的除法法则.2.会运用除法法则及商的算术平方根进行简单运算.3.能将二次根式化为最简二次根式.重点:掌握二次根式的除法法则和商的算术平方根的性质,会运用其进行相关运算.难点:能综合运用已学性质进行二次根式的化简与运算.二、学习过程:课前热身一、二次根式的乘法你都知道哪些核心知识?1.二次根式的乘法法则:______a b (a≥0,b≥0)即:二次根式相乘,________不变,________相乘.语言表述:_______________________________________________.2.积的算术平方根的性质:_______ab (a≥0,b≥0)语言表述:_______________________________________________.应用范围:_______________________________________________.二、练一练:1.计算:312 的结果是()学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________A.2B.6C.8D.162.计算:20•51的结果是____.3.等式162 x =4 x •4 x 成立的条件是__________.合作探究探究:计算下列各式,观察计算结果,你能发现什么规律?(1)94=(),94=();(2)2516=(),2516=();(3)4936=(),4936=().思考:你能用字母表示你所发现的规律吗?一般地,二次根式的除法法则是______ ba (a≥0,b>0)即:二次根式相除,________不变,________相除.语言表述:___________________________________________.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得_________(0,0,0).m a a b n n b典例解析例1.计算:24331(2);28342561111.226学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【针对练习】计算:(1)218 (2)aa 26(3)672(4)53123452 二次根式的商的算术平方根的性质:_____(0,0).aa b b语言表述:_______________________________________________.我们可以运用它来进行二次根式的_______和________.例2.化简:375(1)(2);100277(3)2;9281(4)0;25x x 0.09169(5).0.64196【针对练习】化简:学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________735;;1441251(3)2;4227(4)0.16x x <自主学习思考:前面我们学习了二次根式的除法法则,23这样的式子分母的根号吗?(请结合分式的基本性质,用多种方法尝试解决)2323【归纳】___________________________________________就叫做分母有理化.典例解析例3.计算:(1)53(2)2723(3)a28【归纳】最简二次根式22,33,103,515,36,aa 2.观察上面三道例题中各小题的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1)_________________________;学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)_________________________________________.我们把满足上述两个条件的二次根式,叫做___________________.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.【针对练习】把下列二次根式化成最简二次根式:(1)32(2)40(3)5.1(4)34例4.设长方形的面积为S,相邻两边长分别为a,b.已知S=32,b=10,求a.【针对练习】1.【章前引言】如果两个电视塔的高分别是h 1km,h 2km,那么它们的传播半径的比为2122Rh Rh .2.设长方形的面积为S,相邻两边长分别为a,b.已知S=16,b=10,求a.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例5.计算:1(1)2182;632(2)68(0).3m m m m>达标检测1.下列式子中,属于最简二次根式的是()13B.7C.9D.2022的倒数是()A.2B.2C.−22D.−2m+34−m=m+34−m成立,则m 的值可以是()A.-4B.2C.4D.5350时,最好将分子、分母都乘以()A.50B.10C.5D.25.下列计算正确的是()A.11515=355 B.332=255 C.0.50.50.25==20.25D.7733学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________6.二次根式222145,30,2,40,2a b a b 中,最简二次根式是______________.7.已知长方形的面积是48cm 2,其中一边的长是32cm ,则另一边的长是______cm.8.已知等式223344552=234=45=5338815152424,,,,,请你根据上述的规律,写出用正整数n(n>1)表示的式子___________________.9.把下列二次根式化成最简二次根式:48;(2)120;(3) 3.2;7.1210.化简.122x x 567(2)0.125;a b c 32(3)416.a a 11.计算.3903;52312a b222(3)2.335学习笔记记录区12.若a−12a+5与3b+a是被开方数相同的最简二次根式,求ab的值._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________。
新人教版八年级数学下册导学案(全册136页)
第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 是多少时,31x -在实数范围内有意义? 解:由 得: 。
当 时,31x -在实数范围内有意义.(3)注意:1、形如a (a ≥0)的式子叫做二次根式的概念;2、利用“a (a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x 是多少时,23x ++11x +在实数范围内有意义? 例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2)(2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25)三、巩固练习 教材练习. 四、课堂检测 (1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式? -7 37x x 4 16 8 1x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.若3x -+3x -有意义,则2x -=_______.3.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数4.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0). 学习目标:1、理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗? (二)学生学习课本知识 (三)、探究新知1、a (a ≥0)是一个 数。
人教版八年级数学下册《二次根式》导学案
二次根式(1)导学案(一)复习回顾:(1)已知a x =2,那么a 是x 的_____;x 是a 的______, 记为____,a 一定是_____数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____。
称为 。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解:72-x 4a 2-11(三)合作探究例:当x 是怎样的实数时,2-x 在实数范围内有意义?解:由02≥-x ,得2≥x当2≥x 时,2-x 在实数范围内有意义。
练习:1、x 取何值时,下列各二次根式有意义?①43-x ③ 2、(1有意义,则a 的值为___________. (2)若 在实数范围内有意义,则x 为( )。
新人教版八年级数学下册 第16二次根式章 导学案
二次根式的概念 (第1课时) 学生姓名:学习目标a ≥0)的意义解答具体题目重点:a ≥0)的式子叫做二次根式的概念;难点:a ≥0)”解决具体问题. 学习过程一、知识准备平方根的性质:正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。
思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为5的正方形的边长为 ;(2)要修建一个面积为3的圆形喷水池,它的半径为 m ;(3)一个位图从高处自由落下,落到地面所用的时间t (单位:s )与开始落下时的高度h(单位:m)满足关系h=t 2 如果用含有h 的式子表示t,则t= 。
(4)6的算术平方根的相反数为 ;(5)0的算术平方根为 。
二、探究在上面的问题中,结果分别是 ,它们都表示一些正数的算术平方根。
一般地,我们把形如 ( )的式子叫做二次根式,称为(二次)根号.注:开平方时,被开方数a 的取值范围 (为什么?) 例1.当x 是多少时,2-x 在实数范围内有意义?例2、当x 11x +在实数范围内有意义?例3,求a 2004+b 2004的值.三、练习(1)下列式子,哪些是二次根式,哪些不是二次根式:1x x>0)1x y+x ≥0,y•≥0) 是二次根式的有: 不是二次根式的有: (2)当a 是怎样的实数时,下列各式在实数范围内有意义?四、课堂小结二次根式的概念需注意:五、课后作业1、形如________ 的式子叫做二次根式.2有意义,则x =_______.3、下列式子中,是二次根式的是( )A .BCD .x 4、已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对5、当x 在实数范围内有意义?6、已知a 、b 为实数,且满足021=-++b a ,求ba的值.六、课后反思二次根式的性质(第2课时) 学生姓名:教学目标1、a ≥0)是一个非负数2、理解二次根式的两个性质2=a (a ≥0)=a (a ≥0)。
人教版八年级下册数学第十六章二次根式导学案
教师评价___
(4)x2-2 7 x +7
0 )2=_______.
2
(3) 若-3≤x≤2 时,试化简│x-2│+ (x 3)2 + x2 10x 25 9、先化简再求值:当 a=9 时,求 a+ 1 2a a2 的值
10、若│1995-a│+ a 2000 =a,求 a-19952 的值.
25
三、小结:1、二次根式的乘法法则。2、乘法的运算步骤。3、二次根式化简方法。
四、检测 1、下列各等式成立的是( ).A.4 5 ×2 5 =8 5 B.5 3 ×4 2 =20
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
新人教版八下二次根式导学案
22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥aa和)0()(2≥=aaa二、学习重点、难点:重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥aa和)0()(2≥=aaa。
三、学习过程(一)自主学习:1、已知x2 = a,那么a是x的______; x是a的________, 记为______,a一定是_______数。
2、的算术平方根为2,用式子表示为=__________;正数a的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥aa的意义是。
3、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,)0(3≥aa,12+x4、计算:(1) 2)4((2) (3)2)5.0((4)2)31(根据计算结果,你能得出结论:,其中0≥a,)0()(2≥=aaa是。
5、当a为正数时指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式中,字母a必须满足 ,才有意义。
(二)合作探究1、 x取何值时,下列各二次根式有意义?①43-x③2a的值为___________.3、若在实数范围内有意义,则x为()。
A.负数 C.非负数 D.非正数2)3(________)(2=ax--214(三)达标测评:见练习册(四) 归纳反思:我的收获与启示:二次根式(2)一、学习目标1、掌握二次根式的基本性质:a a =22、能利用上述性质对二次根式进行化简. 二、学习重点、难点重点:二次根式的性质a a =2.难点:综合运用性质a a =2进行化简和计算。
三、学习过程(一)自主学习:1、 是二次根式,它的性质有: 2x 。
3、在实数范围内因式分解:x 2-6= x 2- ( )2= (x+ ____)(x-____)4、计算:=24 =22.0 =2)54(=220 观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时5、计算:=-2)4( =-2)2.0( =-2)54( =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 6、计算:=20 当==2,0a a 时(二)合作探究1、归纳小结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<=>==等于时当等于时当等于时当,,,a a 0a 0a 0a 22、化简下列各式:______=______=_______=_____a 0=(<)3、请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。
人教八下第十六章 二次根式教学导学案
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念学习目标1.能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.2.能根据算术平方根的意义了解二次根式的概念,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.重点:二次根式的概念,二次根式有意义的条件.难点:二次根式概念的理解,综合运用性质)0(0≥≥a a .学习过程1、回忆旧知识(1)什么叫做算术平方根?什么叫做平方根?(2)正数有几个平方根?0的平方根是多少?负数有平方根吗?2、用带根号的式子填空.(1)3的算术平方根是 .(2)直角三角形的两直角边是1和2,则斜边是 .(3)正方形的面积为3-b ,则边长为 .(4)自主完成课本第二页思考题.观察所列式子,有何共同特点?3、思考下列问题:开平方时,被开方数只能是 和 ,为什么?4、请写出二次根式的概念:5、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 请同学们思考并总结一下,判断一个式子是否是二次根式,需要考虑哪些要点:6、根据开平方时,被开方数只能是 和 这一依据,完成下题:例1:当x 是怎样的实数时,6-x 在实数范围内有意义?7、做完以上例题,请填空:当a 为正数时,a 是a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根.所以,在二次根式a 中,字母a 必须满足 , a 才有意义.8、扩展思考:当a 是怎样的实数时,a 在实数范围内有意义?a 呢?9、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?10.达标测试1.在式子12x -,13x -x 可以取2和3的是( )A .12x -B .13x - C D2.x 必须满足( ) A .x ≤2 B .x ≥2 C .x >2 D .x <23.x 可以取的最小整数为( )A .0B .1C .2D .34.有意义,则x 的取值范围为_________.5.若y= 22-,则(x+y )y =_________.6.已知a 、b 是一等腰三角形的两边的长,且满足等式,求等腰三角形的周长.7.小组精彩讨论的镜头:你想一起参加讨论吗?若参加你怎么评价这四位同学的解答?并写出你解答的过程?第2课时 二次根式的性质学习目标:1.掌握二次根式的基本性质:)0(0≥≥a a 、)0()(2≥=a a a 和a a =2;2.能利用上述性质公式对复杂的二次根式进行化简. 重点:二次根式的性质a a =2. 难点:综合运用性质a a =2进行化简和计算.学习过程1、回忆旧知(1)什么是二次根式,它有哪些性质?(2)二次根式52-x 有意义,则x . 2、计算并总结公式(1)计算:2)4(= 、2)16(= 、2)3(= 、2)21(= 、2)0(= 观察其结果归纳得到:当=≥2)(,0a a 时(2)、计算:=24 、=22.0 、=2)54( 、=220 观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时(3)、计算:-2)4(= 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时(4)、计算:=20 ,所以当==2,0a a 时3、归纳总结 将上面做题过程中得到的结论综合起来,得到二次根式的两条非常重要的性质(公式):(1)当=≥2)(,0a a 时(2)=2a4、化简下列各式:(1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a = (0<a )5、请大家思考讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系.6、化简下列各式 (1))0(42≥x x (2) 4x (3))3()3(2≥-a a7、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?8、达标测试 1.要使ba 是二次根式,则应满足的条件是( ) A.a≥0且b≥0 B. a≥0且b >0 C.b a >0 D.ba ≥0且b≠0 2.把414写成一个正数平方的形式是( ) A.2212⎪⎭⎫ ⎝⎛ B. 2212⎪⎭⎫ ⎝⎛或2212⎪⎭⎫ ⎝⎛- C.2217⎪⎪⎭⎫ ⎝⎛ D. 2217⎪⎪⎭⎫ ⎝⎛或2217⎪⎪⎭⎫ ⎝⎛- 3.函数21-=x y 中自变量的取值范围在数轴上表示为( ) A. B. C. D.9.如图,实数a 、b 在数轴上的位置,化简:2a -2b -2)(b a -.10.已知x 、y 为实数,y=214422-+-+-x x x ,试求3x+4y 的值.11.甲同学和乙同学做一道相同的题目:化简a 1+2a a 122-+ ,其中a=51. 甲同学的做法是:原式=a 1+2)a a1(-=a 1+a 1-a=a 2-a =10-51=549;乙同学的做法是: 原式=a 1+2)a 1a (-=a 1+a-a 1=a=51. 到底谁错了?为什么?说明理由.16.2二次根式的乘除第1课时 二次根式的乘法学习目标1a ≥0,b ≥0)a ≥0,b ≥0),并利用它们进行计算和化简.2、通过学习和掌握知识目标的整个过程,培养学生对数学化简题目的敏锐度,同时培养学生的计算能力.重点:掌握二次根式乘法法则和积的算术平方根的性质.难点:会用积的算术平方根的性质对二次根式进行化简.学习过程1.填空:(1;(2=____;(3.2、学生交流活动总结规律.一般地,对二次根式的乘法规定为:反过来例1、计算(1(2(3)3(4例2、化简(1(3(4(53、巩固练习(1)计算: ①②55×215 ③312a ·231ay(2)化简4、判断下列各式是否正确,不正确的请予以改正:(1=(2=4请大家讨论:对于9×27的运算中不必把它变成243 后再进行计算,你有什么好办法?注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数.2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解.(2)分解后把能开尽方的开出来.5、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?6、.达标测试1.下列计算正确的是( ) A.912=912⨯=231 B.)4()9(-⨯-=49-⨯-=(-3)×(-2)=6 C.22y x +=y x y x +=+22 D.b a 224=ab a 642⋅=2|a|ab 62.如果232a a +=2+-a a ,则实数a 的取值范围是( )A.a≥0B.0≤a≤2C.-2≤a≤0D.a≤-23.把a a1-根号外的因式移入根号内的结果是( ) A.a - B.a -- C.a D.a -9.计算:(1)27×123×385(2)3031×2140×3222310.某公路规定行驶汽车的速度每小时不得超过70千米,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df ,其中v 表示车速(单位:千米/小时),d 表示刹车后车轮滑过的距离(单位:米),f 表示磨擦因数.经测量,d=20米,f=1.25,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度?11.小明在微机课上设计了一幅矩形图片,矩形的周长是π140cm ,宽是π35cm ,他又想设计一个面积与其相等的圆,请你帮助小明求出圆的半径.第2课时二次根式的除法学习目标1、掌握二次根式的除法法则和商的算术平方根的性质.2、通过学习和掌握知识目标的整个过程,使学生能熟练进行二次根式的除法运算及化简.3、培养学生的数学学习兴趣,感受实数的应用价值.重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质.难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简.学习过程1、计算: (1)38×(-46) (2)3612ab ab ⨯2、填空: (1; 规律:(2;(3;(4.一般地,对二次根式的除法规定:3、计算:(1(2(3(44、化简: (1(2(3(4注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数.2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式.5、阅读下列运算过程:==== 数学上将这种把分母的根号去掉的过程称作“分母有理化”.利用上述方法化简:(1)3=_____ ___ (4=___ ___ 6、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?7、达标测试1.如果6-x x =6-x x 成立,那么( ) A.x≥6 B.0≤x≤6 C.x≥0 D.x>62.下列各数中,与32的积为有理数的是( ) A.32+ B.32- C.32+- D.39.计算:32212332b b b ⋅÷10.(1A ..2E .0问题的答案是(只需填字母): ;(2.11.在进行二次根式化简时,我们有时会碰上如35,32,132+一样的式子,其实我们还可以将其进一步化简: 553535535=⨯⨯= (一) 32=363332=⨯⨯ (二) 132+=))(()-(1313132-+⨯=131313222---=)()( (三) 以上这种化简的步骤叫做分母有理化.132+还可以用以下方法化简:132+=1313+-=131)3(22+-=13)13)(13(+-+=13-.(四) (1)请用不同的方法化简352+. (2)①参照(三)式得 352+=____________;②参照(四)式得352+=__________. (2)化简:12121...571351131-+++++++++n n第3课时最简二次根式学习目标:1、理解最简二次根式的概念,把二次根式化成最简二次根式,熟练进行二次根式的乘除混合运算.2、使学生能熟练进行二次根式的乘除运算及化简.重点:最简二次根式的运用.难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算.学习过程1、化简(1)496x = (2=(3= (4= (5= 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1).被开方数不含分母; (2).被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2、化简:(1) 2083、比较下列数的大小(1)8.2与432 (2)7667--与 注:1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化.2、判断是否为最简二次根式的两条标准:(1)被开方数不含分母;(2)被开方数中所有因数或因式的幂的指数都小于2.4、知识应用:设长方形的面积为S,相邻两边长分别为a,b.已知S=23,b=5.求a 的长.5、计算:(1)6·a 3·b 31 (2)16141÷ (3)50511221832++-6、探究计算:(1)(38+)×6 (2)22)6324(÷-7、探究计算:(1))52)(32(++ (2)2)232(-8、练习计算:(1)12)323242731(-- (2))32)(532(+-(3)2)3223(+ (4)(9、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?10、达标训练2.下列二次根式中,是最简二次根式的是( )A.22xB.12+bC.a 4D.x1 3.下列判断正确的是( ) A .3<3<2 B .2<2+3<3 C .1<5-3<2 D .4<3·5<59.下列各式中,哪些是最简二次根式?哪些不是?为什么?15,24,ab 27,2235y x +,23,23,24m m +,2x10.把下列各式化成最简二次根式(1)500 (2)323b a (3)b a c abc 4322-(4)ay x 22-(x >y ) 11.比较下来各组数的大小(1)3与22 (2) 52与33 (3) 27与113 (4) 132-与63-(5) 3131-与7121- (6)3π与64216.3 二次根式的加减一、学习目标1、理解同类二次根式,并能判定哪些是同类二次根式.2、理解和掌握二次根式加减的方法.3、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重点:二次根式化简为最简根式.难点:会判定是否是最简二次根式.学习过程1、计算. (1)x x 32+; (2)222532x x x +-;(3)y x x 32++; (4)22223aa a +-2、学生活动:计算下列各式.(1)(2)(3(4)由此可见,二次根式的被开方数相同也是可以合并的,如(与整数中同类项的意义相类似我们把33与32-;a 3、a 2-与a 4这样的几个二次根式,称为同类二次根式)如: 所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将同类二次根式进行合并.例1.计算 (1(2例2.计算(1)( 2)+归纳: 第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.3、练习计算 (1) )27131(12-- (2) )512()2048(-++4、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?5、达标训练2.下列各组中,是同类二次根式的是( ) A.45.0与81.0 B. b a 23与22abC.2x 与32xD.x x 3与xx 122 3.计算12⎪⎪⎭⎫ ⎝⎛-+4831375的结果是( ) A .6 B .43 C .23+6 D .129.(1)计算:⎛÷ ⎝(202)10.(1)先化简,再求值: (a-3)(a+3)-a(a-6),其中a=5+21.(5)已知:a=2-1,求142--a a a ÷⎪⎭⎫ ⎝⎛--12a a 的值.11.有这样一道题:计算4422---+x x x x +4422-+--x x x x -2x (x >2)的值,其中x=1005,某同学把“x=1005”错抄成“x=1050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.。
人教版八年级数学下册第十六章 导学案 第1课时 二次根式的乘法
第十六章 二次根式16.2 二次根式的乘除第1课时 二次根式的乘法学习目标:1.理解二次根式的乘法法则;2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算.重点:理解二次根式的乘法法则:()0,0≥≥=⋅b a ab b a .难点:会运用二次根式的乘法法则和积的算术平方根的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子2有意义的条件是_________.一、要点探究探究点1:二次根式的乘法算一算 计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯ _____;2516____;_______2516)2(=⨯=⨯=⨯ ._____3625____;_______3625)3(=⨯=⨯=⨯思考 你发现了什么规律?你能用字母表示你所发现的规律吗?猜测)0,0______(≥≥=⋅b a b a ,你能证明这个猜测吗?要点归纳:二次根式的乘法法则:一般地,对于二次根式的乘法是)0,0(≥≥⋅=⋅b a b a b a一般地,二次根式相乘,_________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.例1计算:(1)(2)(3)0,k a b k a b ⋅⋅=⋅⋅⋅⋅≥≥(例2 计算: 37; 1(2)427-3.2⎛⎫⨯ ⎪⎝⎭n b =归纳总结:二次根式的乘法法则的推广:①多个二次根式相乘时此法则也适用,即000)k a b k a b k ⋅⋅=⋅⋅⋅⋅≥≥≥,,(②当二次根号外有因数(式)时,可以类比单项式乘单项式的法则计算,即根号外的因数(式)的积作为根号外的因数(式),被开方数(式)的积作为被开方数(式),即()00a n b mn a b =≥≥,例3 比较大小(一题多解):(2)--方法总结: 比较两个二次根式大小的方法:可转化为比较两个被开方数的大小,即将根号外的正数平方后移到根号内,计算出被开方数后,再比较被开方数的大小被开方数大的,其算术平方根也大.也可以采用平方法.1. ()A B .4C D .22.下面计算结果正确的是 ()A.=B. =C. =D.=3.=_________.探究点2:积的算术平方根的性质一般的()0,0≥≥=⋅b a ab b a ______0,0_a b 要点归纳:算术平方根的积等于各个被开方数积的算术平方根.例4 化简:(1(2()00a b ,≥≥ .1()()200x y ,()≥≥方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.例5 计算:1(⨯2()⨯ 3(⨯化简二次根式的步骤:1. 把被开方数分解因式(或因数) ;2. 把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3. 如果因式中有平方式(或平方数),应用关系式a2= | a | 把这个因式(或因数)开出来,将二次根式化简.1. 计算:2.,求出它的面积.a b a b0,0多个二次根式相乘时此法则也适用,即(0,⋅⋅⋅=⋅⋅⋅≥a b c n abc n a()=m a n b mn2.下列运算正确的是()A.=B532-=C(2)(4)8=-⨯-=D5315==⨯= 3.计算:(1)⨯______ ;(2)⨯_______ ;(3)_____.=4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):12()--8,12b,求250a,332b,求参考答案自主学习一、知识链接1.一般地,我们把形如)0a ≥的式子叫作二次根式.2. a ≥0 课堂探究一、要点探究证明:根据积的乘方法则,有222.ab =⋅= ∴b a ⋅就是 ab 的算术平方根.又∵ab 表示 ab 的算术平方根, )0,0(≥≥=⋅∴b a ab b a要点归纳:二次根式的乘法法则:一般地,二次根式相乘,根指数不变,被开方数相乘.例1: 解:(1)(2) 3.===探究点2:积的算术平方根的性质当堂检测。
[最新]人教版八年级数学下册第十六章《二次根式(1)》导学案
[最新]人教版八年级数学下册第十六章《二次根式(1)》
导学案
新人教版八年级数学下册第十六章《二次根式(1)》导学案
学习目标:
◇知识与能力:1、了解二次根式的概念,能判断一个式子是不是二
次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:a0(a0)和(a)2a(a0)
◇过程与方法:1、经历观察、比较、概括二次根式的定义。
2、通过
探究
一二a和
2a2所含运算、运算顺序、运算结果分析,归纳并掌握性质。
◇情感与价值:培养学生观察、猜想、探究、归纳的习惯和能力,体
验数学发现的乐趣。
【学习重点】:二次根式有意义的条件。
二次根式的
性质。
【学习难点】:综合运用性质a0(a0)和(a)2a(a0)。
2、4的算术平方根为2,用式子表示为=__________;正数a的算术
平方根为_______,0的算术平方根为_______;式子a0(a0)的意义是二1、定义:一般地我们把形如
a(a0)叫做二次根式,a叫做_____________。
2、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16,34,5,a(a0),某21
根据算术平方根意义计算:(1)(4)2(2)((3)(0.5)2(4)(3)2 12)3。
人教版八年级数学下册 16.1.1二次根式的定义 导学案
16.1.2二次根式的性质教学目标1、经历二次根式的性质的发现过程,体验归纳、猜想的思想方法。
2、了解二次根式的上述两个性质。
3、会运用上述两个性质进行有关计算。
教学重点是理解二次根式的上述两个性质;教学难点:是灵活运用上述两个性质进行有关计算。
教学过程一、 回顾与引入1、 平方根的概念:一个数的平方等a (a ≥0),则这个数叫做a 的平方根,记做a ±,则()a a =±22、()a a =23、大家抢答 填空()=22 ()=213 =⎪⎪⎭⎫ ⎝⎛271二、新课讲解从熟悉的知识出发先练习、再观察发现总结规律得出性质一 4、性质一:()()02≥=a a a5、能用几何图形作出直观解释吗?用正方形的面积启发诱导数形结合思想6、填空 课本6页7、比较 2a 和a 有何关系?当a ≥0时,2a = 和a ﹤0,2a = 先练习、再观察发现总结规律得出性质二8、性质二:9、课内练习(()(()(()(()()()(2222322211_____,2______,33_____,5141_____,54____,62____.3⎛⎫-=-= ⎪⎝⎭=---=梳理知识使条理清楚,及时练习巩固10、例1 计算(1)()()221317-- (2)()323332+•⎥⎦⎤⎢⎣⎡--规范书写,知道运算程序、强调性质运用的条件,二次根式运算顺序11、课本7页课内练习第2题(领悟方法,会正迁移)12、计算:217375212-+⎪⎭⎫ ⎝⎛- 要求比较先算括号里与直接利用二次根式性质的优劣;强调先判断2a 中a 的符号三、引申与提高例4 化简:(1)(2) (3) (a <0,b >0) (4)(a >1 ) 四、分享与体会你能说出这节课你的收获和体验与大家分享吗?五、作业1.课本作业题;2.预习下节课。
最新初中人教版数学八年级下册16.1二次根式导学案.
16.1二次根式1一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0=aaa)(2≥≥a(0≥a和)0(二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(2≥=a)a。
a(0≥(≥aa和)0三、学习过程(一)自学导航(课前预习)(1)已知a2,那么a是x的______;x是a的______, 记为_____,ax=4一定是____数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a的算术平方根为_______,0的算术平方根为_______;式子)0a≥a(0≥的意义是。
(二)合作交流(小组互助)(1)16的平方根是;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式25th=。
如果用含h的式子表示t,则t= ;(3)圆的面积为S,则圆的半径是;(4)正方形的面积为3-b,则边长为。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征. 定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么? 3,16-,34,5-,)0(3≥a a ,12+x 2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 : (1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解72-x 4a 2-11 (三)展示提升(质疑点拨)________)(2=a 2)3(例:当x 是怎样的实数时,2-x 在实数范围内有意义? 解:由02≥-x ,得2≥x当2≥x 时,2-x 在实数范围内有意义。
最新课标RJ人教版 八年级数学 下册第二学期(导学案)第十六章 二次根式(第16章全单元 导学案)
第十六章二次根式16.1 二次根式第1课时二次根式的概念第十六章 二次根式16.1 二次根式第2课时 二次根式的性质一、学习目标:1.掌握二次根式的基本性质:(a )2=a (a ≥0);a a =2;2.能利用上述性质对二次根式进行化简. 二、学习重点、难点重点:二次根式的性质(a )2=a (a ≥0);a a =2.难点:综合运用性质对二次根式进行化简和计算。
三、学习过程(一)自学导航(课前预习)(1)什么是二次根式,它有哪些性质? (2)二次根式52-x 有意义,则x 。
(3)在实数范围内因式分解:-=-226x x ( )2=(x + )(y - ) (二)合作交流(小组互助) 1、计算(1) 2)4(= (2)()=23(3)2)5.0( = (4)2)31(= 根据计算结果,能得出结论: (0≥a ) 2.计算:(1)=24 =22.0 =2)54(=220 观察其结果与根号内幂底数的关系,归纳得到:当a ﹥0时,=2a(2) =-2)4( =-2)2.0( =-2)54( =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当a<0时,=2a (3)=20 得到:当a=0时,=2a________)(2=a3.归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的非常重要的性质: 性质一:(a )2=a (a ≥0);性质二:⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2a a 4. (1)阅读课本思考:什么是代数式?我们前面还学过那些代数式吗?(2)思考、讨论:二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。
四.精讲点评利用a a =2可将二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确确定“a ”的取值。
五.当堂达标1、化简下列各式(1)(5.1)2 (2)(52)2(3)22)33()10(-+--计算:(4))0(42≥x x (5)4x2、化简下列各式 (1))3()3(2≥-a a (2)()232+x (x <-2)六.拓展延伸(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________.(2) 把(2-x)21-x 的根号外的(2-x )适当变形后移入根号内,得( ) A 、x -2 B 、2-x C 、x --2 D 、2--x(3) 已知2<x <3,化简:3)2(2-+-x x七.教后反思16.2 二次根式的乘除第1课时 二次根式的乘法一、学习目标a ≥0,b ≥0)(a ≥0,b ≥0),并利用它们进行计算和化简二、学习重点、难点重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。
二次根式(1)导学案人教版数学八年级下册
1.下列式子中哪些是二次根式?哪些不是?为什么?
, , , , (a≠-3), (x <0),
2.当a是怎样的实数时,下列各式在实数范围内有意义?
(1)呢?
四、当堂检测
1.下列式子,哪些是二次根式:
、 、 、 (x>0)、 、 、 、 、 (x≥0,y≥0).
科目
数学
课型
新授课
年(班)级
八年级
印刷时间
主备人
同伴
初二年级备课组
组长签字
授课时间
课题:16.1二次根式(1)
学习目标:1、了解二次根式概念;理解被开方数必须是非负数的原因
2、会确定开方数中字母的取值范围
学习重点
掌握确定开方数中字母的取值范围的方法
学习难点
理解被开方数必须是非负数的原因
学习过程(学案)
师生活动
一.温故知新:
平方根的性质:在实数范围内,正数有个平方根,它们;0的平方根是;负数平方根.
二、自主探究
1.用带有根号的式子填空,看写出的结果有什么特点:
(1)面积为3的正方形的边长为____面积为S的正方形的边长为_________。
(2)一个长方形的围栏,长是宽的2倍,面积为130m2,则它的宽为m.
二次根式。
2.x是怎样的实数时,下列式子在实数范围内有意义?
(1) (2) ;(3) ;
(4) (5) (6)
(7) (8)
反思:解决此类问题需考虑什么限制条件?
3.下列式子中,x的取值范围是x>2的是。
4.若 + =0,则a2004+b2004=。
5.已知y= + + 5,求 的值
人教版八年级下册:二次根式导学案
16.2二次根式的乘除法二次根式的乘法一、温故互查1、计算:(1)4×9=______94⨯=______ (2)16×25 =_______2516⨯=_______(3)100×36 =_______36100⨯=_______二、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
三、设问导读1、根据上题计算结果,用“>”、“<”或“=”填空:(1)4×9_____94⨯(2)16×25____2516⨯(3) 100×36____36100⨯由此可得二次根式的乘法法则是2、自学例13、把b ab=反过来,就得到______________.利用它可以进行二次根式的化简.4、自学例2、例3化简二次根式达到的要求:(1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
四、自学检测1、下列各等式成立的是().A.45×25=85B.53×42=205C.43×32=75D.53×42=2062、二次根式6)2(2⨯-的计算结果是()A.26 B.-26C.6 D.123、下列各式的计算中,不正确的是()=(-2)×(-4)=8 A.2222442)(244aaaa=⨯=⨯=C.5251694322==+=+D.)1213)(1213(121322-+=-12512131213⨯=-⨯+=5=五、巩固训练1、计算:(1)9×27(2)25×32(4)5·a3·b312、化简:②2212ba(a>0,b>0)六、拓展延伸1、判断下列各式是否正确并说明理由。
=68)2(6⨯-⨯=4812- 七、归纳总结1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
新人教版八年级下册数学第十六章二次根式导学案
第十六章二次根式学习目标:1、理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习重点:形如a(a≥0)的式子叫做二次根式的概念。
学习难点:利用“a(a≥0)”解决具体问题。
学习内容:一、创设情境独立思考(课前20分钟)1、阅读课本P 2~3 页,思考下列问题:(1)理解二次根式的概念(2)找出二次根式有意义的条件(3)二次根式的双重非负性是什么?2、独立思考后我还有以下疑惑:(课前写在小黑板上)二、答疑解惑我最棒(约8分钟)(同伴互助答疑解惑)甲:乙:丙:丁:三、合作学习探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题(1)一个长方形长和宽分别为13cm和 5cm,则与它面积相等的正方形边长为_____cm。
(2)若正方形的面积3,则正方形的边长是______(3)圆形的面积为2 ,则半径为 _______.(4)h=5t 2,则t=_______(5)你认为所得的各式有哪些共同点?(6)什么叫做平方根?如何表示? 答:一般地,若一个数的平方等于a ,则这个数就叫做a 的平方根。
根据定义可知a 的平方根是 ±a ≥0 (7)什么叫做一个数的算术平方根?如何表示?答: 表示为: (a ≥0) (8)形如 (a ≥0) 的式子叫做二次根式. (9)定义包含三个内容:Ⅰ必需含有二次根号 “ ”. 四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:(1)二次根式的概念形如 的式子叫做二次根式.(2)二次根式有意义的条件(3)二次根式的性质:2、运用新知解决问题:(重点例习题的强化训练)例1.下列式子中,是二次根式的有 _______(填序号)(1)32 (2)6 (3)12- (4)m -(m >0)(5)xy (6)12+a (7) 35例2.当x 是怎样的实数时,下列式子在实数范围内有意义?※二次根式中字母的取值范围的基本依据:65235h aaa1)5(31)4(31)3(238)2(2)1(2+--+---x x x x x x x(1)开方数不小于零;(2)分母中有字母时,要保证分母不为零。
16.1二次根式 1课时 导学案-人教版八年级数学下册
16.1 二次根式 1课时导学案-人教版八年级数学下册一、知识回顾在前面的学习中,我们学习了根式的概念和性质,了解了根式的化简、加减乘除等基本运算法则。
本节课我们将学习二次根式的相关知识。
请回顾以下问题:1.什么是根式?2.根式有哪几种运算法则?3.如何对根式进行化简操作?二、学习目标1.理解二次根式的概念;2.掌握二次根式的化简;3.能够利用二次根式的化简规律进行计算。
三、学习内容1. 二次根式的定义在代数中,我们把形如√a(a≥0)的式子称为二次根式,其中a称为被开方数,√称为二次根号。
2. 二次根式的化简对于二次根式的化简,我们可以利用一些化简规律来简化表达式。
(1)同底合并如果两个二次根式的底数相同,那么可以将它们合并为一个二次根式。
例如:√2 + √2 = 2√2(2)相乘化简如果二次根式与非二次根式相乘,可以移动根号进行化简。
例如:2√2 * 3 = 6√2(3)理数根号化简对于能整除被开方数的完全平方数,可以进行化简。
例如:√36 = 63. 二次根式的运算(1)加减运算相同底数的二次根式可以进行加减运算。
例如:√3 + √5 = √3 + √5(2)乘法运算二次根式的乘法运算仍然适用分配律。
例如:(√2 + √3)* (√2 + √3) = √2 * √2 + √2 * √3 + √2 * √3 + √3 * √3 = 2 + 2√6 + 3 = 5 + 2√6(3)除法运算对于二次根式的除法,可以利用有理化分母的方法进行运算。
例如:√6 / √2 = (√6 / √2) * (√2 / √2) = √12 / 2 = 2√24. 二次根式的化简综合运用将以上所学知识综合运用,化简以下二次根式:(1)3√6 + 2√8(2)√12 * √27(3)(√5 + √3)* (√5 - √3)(4)(√3 + √7)/ (√3 - √7)四、学习总结本节课我们学习了二次根式的概念和性质,掌握了二次根式的化简和运算法则。
人教版数学八年级(下)导学案设计:16.1二次根式(无答案)
§16.1二次根式(1)学案课型:新授时间:年月日姓名学号【学习目标】1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。
【学习重点】二次根式的概念和基本性质【学习难点】:二次根式的基本性质的灵活运用。
【学习方法】尝试学习、小组合作一、快乐回顾1、实数平方根性质:正数有两个平方根且互为相反数;0有一个平方根就是0;负数没有平方根。
2、求下面式子的值:二、合作探究1、知识:3104 6我们就把它称二次根式.因此,一般地,我们把形如•的式子叫做二次根式,”称为.例如:形如、、是二次根式。
形如、、不是二次根式。
2、应用举例例12331xx x>0)042、2、1x y+x y+(x≥0,y•≥0).解:二次根式有:;不是二次根式的有:。
例2.当x31x-解:由得:。
当时,31x-(3)注意:1a a≥0)的式子叫做二次根式的概念;2a a≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
三、尝试练习一(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?x1 x(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.四、尝试练习二1.下列式子中,是二次根式的是()A.BCD.x2.下列式子中,不是二次根式的是()ABCD.1x3.已知一个正方形的面积是5,那么它的边长是()A.5 BC.15D.以上皆不对五、师生合作例3.当x11x+在实数范围内有意义?例4(1)已知,求xy的值.(答案:25)(2)=0,求a2004+b2004的值.(答案: 2)六、尝试练习三1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.七、学生课堂反思、小结本节课要掌握:1(a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.八、快乐小测1.求下列二次根式中字母k的取值范围:(1(2(3(42.当x分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围:(1) 4-x (2)12+x (3)25+x (4)x x -42。
人教版八年级下册数学16.1 二次根式的概念导学案
第十六章二次根式东宫白庶子,南寺远禅师。
——白居易《远师》枫岭头学校张海泉16.1 二次根式第1课时二次根式的概念学习目标:1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题重点:理解二次根式的概念及有意义的条件.难点:利用二次根式的有意义的条件及其非负性解题一、知识链接1.什么叫做平方根?2.什么叫做算术平方根?什么数有算术平方根?二、新知预习1. 用带根号的式子填空:(1)如图①的海报为正方形,若面积为2m2,则边长为 m面积为S m2,则边长为______ m.自主学教学备注学生在课前完成自主学习部分问题2 这些式子有什么共同特征?要点归纳:一般地,我们把形如)0a ≥的式子叫作二次根式._______.例1 下列各式中,哪些是二次根式?哪些不是?))(1)(2)6;(3)0(5),;(6)m x y ≤;异号例2 (教材P2例1变式题)当x 是怎样的实数时,下列各式在实数范围内有意义?1(方法总结:要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等式求解即可.若式子为分式,应同时考虑分母不为零.【变式题】当x 是怎样的实数时,下列各式在实数范围内有意义?方法总结:被开方数是多项式时,需要对组成多项式的项进行恰当分组凑成含完全平方的形式,再进行分讨论.1.下列各式)1x ≥( )A .3个 B.4个 C.5个 D.6个2.(1)x 的取值范围是___________;(2)若式子12x -在实数范围内有意义,则x 的取值范围是___________.探究点2:二次根式的双重非负性问题1:当x问题2a 的取值范围是什么?它本身的取值范围又是什么?要点归纳:二次根式的实质是表示一个非负数(或式)的算术平方根.对于任意我们知道:(1)a 为被开方数,为保证其有意义,可知a ____0; (2例3 若22(4)0a c -+-=,求a -b +c 的值.方法总结:多个非负数的和为零,则可得每个非负数均为零.初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.例4 已知y8+,求3x +2y 的算术平方根.【变式题】已知a ,b 为等腰三角形的两条边长,且a ,b满足4b =,求此三角形的周长.已知|3x-y-1|和x+4y 的平方根.DA.B.2.()A.x>2B.x≥2C.x<2D.x≤23.当x=____取最小值,其最小值为______.(2)无论x取任何实数,代数式【素材积累】1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.2二次根式的乘除
法
二次根式的乘法
一、温故互查 1、计算:
(1)4×9=______
94⨯=______ (2)16 ×25 =_______ 2516⨯=_______ (3)100 ×36 =_______ 36100⨯=_______ 二、学习目标
1、掌握二次根式的乘法法则和积
的算术平方根的性质。
2、熟练进行二次根式的乘法运算
及化简。
三、设问导读
1、根据上题计算结果,用“>”、“<”
或“=”填空:
(1)4×9_____94⨯
(2)16×25____2516⨯
(3) 100×36____36100⨯
由此可得二次根式的乘法法则是 2、自学例1
3、把=反过来,就得到______________.利用它可以进行二次根式的化简.
4、自学例2、例3
化简二次根式达到的要求:
(1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
四、自学检测
1、下列各等式成立的是( ).
A .45×25=85
B .53×42=205
C .43×32=75
D .53×42=206
2、二次根式6)2(2⨯-的计算结果是
( )
A .26
B .-26
C .6
D .12
3、下列各式的计算中,不正确的是
( )
=(-2)×(-4)=8
A .2222442)(244a a a a =⨯=⨯=C .5251694322==+=+ D.
)
1213)(1213(121322-+=-12512131213⨯=-⨯+= 5= 五、巩固训练 1、计算:
(1)9×27
(2)25×32 (4)5·a 3·b 3
1 2、化简:
②2
2
12b a (a >0,b >0)
六、拓展延伸
1、判断下列各式是否正确并说明理由。
(2)6
=68)2(6⨯-⨯=4812- 七、归纳总结
1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
2、化简二次根式达到的要求: (1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
答案:
四、自学检测
1、D
2、A
3、A 五、巩固训练
1、(1
) (2
) (3
) (4
2、
①
② ③35 ④80
六、1、(1)不对 因为2a 为非负数,则3
b 也为非负数,所以b 为非负数,而 a 的正负不定,所以应该分情况讨论. (2)不对。