概率论与数理统计-章节总结-华南理工大学 (4)

合集下载

概率论与数理统计各章重点知识点汇总--最新版

概率论与数理统计各章重点知识点汇总--最新版

第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2 (n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率论与数理统计知识点总结(免费超详细版)-概率论与数理统计知识汇总

概率论与数理统计知识点总结(免费超详细版)-概率论与数理统计知识汇总

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii)若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii)设A,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A ,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

(完整)概率论与数理统计知识点总结!,推荐文档

(完整)概率论与数理统计知识点总结!,推荐文档

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“排列组合”的方法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:nn n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n nn A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A P A 2所含样本点数: 363423=⋅⋅C1696436)(2==∴A P A 3所含样本点数:4433=⋅C161644)(3==∴A P 注:由概率定义得出的几个性质: 1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:n n A A A A A A ⋂⋂⋂=⋃⋃⋃......2121 n n A A A A A A ⋃⋃⋃=⋂⋂⋂ (2121)§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计知识点总结(详细)

概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件..................................... 2..§4 等可能概型(古典概型)................................... 3..§5.条件概率.............................................................. 4.. .§6.独立性.............................................................. 4.. .第二章随机变量及其分布 (5)§1随机变量.............................................................. 5.. .§2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7)§1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)§1.数学期望............................................................ 1..0 .§2 方差............................................................ 1..1 .§3协方差及相关系数 (11)第五章大数定律与中心极限定理 (12)§1.大数定律.............................................. 1.2§2中心极限定理 (13)第一章概率论的基本概念§ 2 .样本空间、随机事件1•事件间的关系 A B 则称事件B包含事件A,指事件A发生必然导致事件B发生A」B ={x|x E A或x € B}称为事件A与事件B的和事件,指当且仅当A , B中至少有一个发生时,事件 A 一 B发生Ac B ={x|x乏A且X乏B}称为事件A与事件B的积事件,指当A , B同时发生时,事件A^B发生A —B ={x|x E A且x更B}称为事件A与事件B的差事件,指当且仅当A发生、B不发生时,事件A —B发生B =,则称事件A与B是互不相容的,或互斥的,指事件A与事件B不能同时发生,基本事件是两两互不相容的A _•B =S且 B =•,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件2.运算规则交换律A -• B = B -• A AB = B - A结合律(A B) C = A (B C) (A - B)C = A(B - C)分配律A _( B - C) (A 一B) - (A 一C)A - (B C) =(A - B)(A - C)徳摩根律A B = A - B A - B = A 一B§ 3.频率与概率定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值n A.. n称为事件A发生的频率概率:设E是随机试验,S是它的样本空间,对于E的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P(A)满足下列条件:(1)非负性:对于每一个事件 A Q <P(A)叮(2)规范性:对于必然事件S P(S) =1n n(3)可列可加性:设A,A2,…,A n是两两互不相容的事件,有P( A k)=» P(A k) ( n可k占kV以取::)2.概率的一些重要性质:(i)P( ) =0n n(ii)若A,A2,…,A n是两两互不相容的事件,则有P( A k)八P(A k) ( n可以取::)(iii )设A, B 是两个事件若A B,贝U P(B - A)二P(B) - P( A) , P(B) _ P(A)(iv)对于任意事件A, P(A)乞1(v)p(A)=1-P(A) (逆事件的概率)(vi)对于任意事件A, B 有P(A_. B)二P(A) P(B)-P(AB)§ 4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即A二6]}{勺}…{飢}, 里i“ i 2,…,i k 是1,2, n 中某k 个不同的数,则有 kk A 包含的基本事件数P(A) = 了纟卩貯卫二匚二s 中基本事件的总数§ 5 .条件概率(1) 定义:设A,B 是两个事件,且P(A) . 0,称P(B | A)二P(AB)为事件A 发生的条P(A)件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计各章重点知识整理.pptx

概率论与数理统计各章重点知识整理.pptx
1.定义 如果试验 E 满足:(1)样本空间的元素只有有限个,即 S={e1,e2,…,e n};(2)每一个基本事
件的概率相等,即 P(e1)=P(e2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.
2.计算公式 P(A)=k / n 其中 k 是 A 中包含的基本事件数, n 是 S 中包含的基本事件总数.
P(A)=0 .
(2)有限可加性 对于 n 个两两互不相容的事件 A1,A2,…,An , P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An) (有限可加性与可列可加性合称加法定理)
(3)若 A B, 则 P(A)≤P(B), P(B-A)=P(B)-P(A) .
(4)对于任一事件 A, P(A)≤1, P(A)=1-P(A) .
y
fX
hyhy
0
y
其它
其中h(y)是 g(x)的反函数 , = min (g (-),g ()) = max (g (-),g ()) .
如果 f (x)在有限区间[a,b]以外等于零,则 = min (g (a),g (b)) = max (g (a),g (b)) .
第三章 二维随机变量及其概率分布
n PB
PA
i
B
i
.
i 1
六.事件的独立性
2
学海无 涯
1.两个事件 A,B,满足 P(AB) = P(A) P(B)时,称 A,B 为相互独立的事件.
(1)两个事件 A,B 相互独立 P(B)= P (B|A) .
(2)若 A 与 B,A 与 B , A与 B, , A 与 B 中有一对相互独立,则另外三对也相互独立.

(完整版)概率论与数理统计知识点总结(免费)

(完整版)概率论与数理统计知识点总结(免费)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B A ⊂ 称为事件A 与事件B 的和事件,指当且仅B}x x x { ∈∈=⋃或A B A 当A ,B 中至少有一个发生时,事件发生B A ⋃称为事件A 与事件B 的积事件,指当B}x x x { ∈∈=⋂且A B A A ,B 同时发生时,事件发生B A ⋂ 称为事件A 与事件B 的差事件,指当且仅B}x x x { ∉∈=且—A B A 当A 发生、B 不发生时,事件发生B A —,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事φ=⋂B A 件B 不能同时发生,基本事件是两两互不相容的,则称事件A 与事件B 互为逆事件,又称事件且S =⋃B A φ=⋂B A A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃ 结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律)()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律BA B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数称为A n 事件A 发生的频数,比值称为事件A 发生的频率n n A 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率满足下列条件:)(A P (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设是两两互不相容的事件,有n A A A ,,,21 (可以取)∑===nk k n k k A P A P 11)()( n ∞2.概率的一些重要性质:(i )0)(=φP (ii )若是两两互不相容的事件,则有(可以取)n A A A ,,,21 ∑===nk knk kA P A P 11)()(n ∞(iii )设A ,B 是两个事件若,则,B A ⊂)()()(A P B P A B P -=-)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P (v ) (逆事件的概率))(1)(A P A P -=(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A 包含k 个基本事件,即,里}{}{}{2]1k i i i e e e A =个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1)定义:设A,B 是两个事件,且,称为事件A 发生的0)(>A P )()()|(A P AB P A B P =条件下事件B 发生的条件概率(2)条件概率符合概率定义中的三个条件1。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()((n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk knk kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计总结

概率论与数理统计总结

第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。

3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。

5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。

(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。

(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。

(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。

用交并补可以表示为。

(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。

8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。

具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。

概率论与数理统计习题解答 华南理工大学出版社

概率论与数理统计习题解答  华南理工大学出版社
习题解答
第一章
1-7 已知10个电子管中有7个正品和3个次品,每次任意抽
取1个来测试,测试后不再放回去,直至把3个次品都找到为 止,求需要测试7次的概率。

p
C31P62 P74 P170

1 8
1-10 房间中有4个人,试问没有2个人的生日在同一个月
份的概率是多少?

p

P142 12 4
1-13 将3个球放置到4个盒子中去,求下列事件的概率:(1)
P( AC BC ) P( AC) P(BC ) P( ABC) P( A)P(C) P(B)P(C) P( A)P(B)P(C) P(C)[P( A) P(B) P( A)P(B)] P(C)P( A B) A B与C相互独立。
7、解:(1)
A={点数之和为偶数} B={点数之和等于8}
rA 18 B {(2,6) , (6,2) , (3,5) ,(5,3) ,(4,4)} P(B A) P( AB) P(B) 5 / 36 5
P( A) P( A) 18 / 36 18
8、解:设Ai={第i人破译出密码} i=1,2,3
100
100
0.9524
P(C) P(A1)P(A2)P(A3) 0.95243 0.8639
22、解: Ai={产品来自第i箱}
B={产品是合格品} C={产品经检验为合格品}
3
(1) P(B) P(B Ai )P( Ai ) i 1 20 1 12 1 17 1 20 5 3 12 4 3 17 5 3 0.775
P(C) P(C B)P(B) P(C B )P(B )

(完整版)概率论与数理统计知识点总结(免费超详细版)

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计知识点总结!

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“排列组合”的方法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:nn n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n nn A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A P A 2所含样本点数: 363423=⋅⋅C1696436)(2==∴A P A 3所含样本点数:4433=⋅C161644)(3==∴A P 注:由概率定义得出的几个性质: 1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:n n A A A A A A ⋂⋂⋂=⋃⋃⋃......2121 n n A A A A A A ⋃⋃⋃=⋂⋂⋂ (2121)§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计课程总结

概率论与数理统计课程总结


EX xf ( x )dx

i 1

E ( a i X i ) a i EX i
i 1 i 1
n
n
X , Y 不相关 EXY EXEY .
目 录 前一页 后一页 退 出
2)会求随机变量函数的数学期望; 设 Y =g( X ), g( x ) 是连续函数,
则 EY pk g( x k )
e f x 0
x
x0 x0
目 录 前一页 后一页 退 出
10)掌握正态分布及其性质:理解一般正态分布函
数与标准正态分布函数的关系,会查表求概率,正 态变量的线性变换仍然是正态变量.
m , s : X ~ N
2
f x
1
2 s
e

x m 2
2s 2
G
目 录
前一页
后一页
退 出
3)掌握二维均匀分布的定义及性质;
A
G
D
1 f x, y A 0
x, y D x, y D
y
P{( X , Y ) G }
G
B f ( x , y )dxdy . A
B
x
4)会求边缘分布率和边缘概率密度;
( 3) P B P Ak P B Ak ;
P( A )P(B | A ) P( A B) k k k ( 4) P ( A | B ) , k n P( B) P( A )P( B | A ) j j j 1
(5) P AB P A P B.
5)理解贝努里试验,掌握两点分布及其概率背景;
X ~ B ( 1, p ), 6)掌握二项分布的概率背景,即会把实际问题中 服从二项分布的随机变量构设出来,运用有关公式 求概率. 若 X 表示n重贝努里试验中成功出现的次数, 则 X ~ B ( n , p ),

华南理工大学概率论与数理统计课件 (4)

华南理工大学概率论与数理统计课件 (4)

一、全概率公式

一个盒子中有6只白球、4只黑球,从中不放回 地每次任取1只,连取2次,求第二次取到白球 的概率 A={第一次取到白球} B={第二次取到白球} ,且AB与 AB

因为 B=AB∪ AB
互不相容,所以
P( B) P( AB) P( AB)
P( A) P( B A) P( A) P( B A)
P( AB) P( B A) P( A)
P( A B) P( AB) P( B)
A ( A )
( AB )
AB
B ( B )
推广

(n)
P( ABC) P( A)P(B A) P(C | AB)
P( A1 A2 An ) P( A1 ) P( A2 A1 ) P( A3 ( A1 A2 )) P( An ( A1 A2 An 1 ))
例 考虑恰有两个小孩的家庭.若已知某一家有男孩, 求这家有两个男孩的概率;若已知某家第一个是男孩, 求这家有两个男孩(相当于第二个也是男孩)的概率. (假定生男生女为等可能)

Ω={ (男, 男) , (男 , 女) , (女 , 男) , (女 ,(女 , 男) } A={(男, 男) },
贝叶斯公式 Bayes’ Theorem
设A1,A2,…, An构成完备事件组,且诸P(Ai)>0)
B为样本空间的任意事件,P( B) >0 , 则有
P ( Ak | B )
P ( Ak ) P ( B | Ak )
P( A ) P( B | A )
i i i 1
n
证明
P( Ak B ) P( Ak B ) P( B)
设 B= “有男孩” ,

《概率论与数理统计》完整公式以及知识点归纳

《概率论与数理统计》完整公式以及知识点归纳

x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布
P(X=1)=p, P(X=0)=q
二项分布
(5)八大 分布
常称为可列(完全)可加性。
则称 P(A)为事件 A 的概率。
(8)古典 概型
1° 1, 2 n ,

P(1 )
P( 2
)
P( n
)
1 n

设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
m n

P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1 ,2 ,…,
第 3 页 共 27 页
(17)伯努 利概型
n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
n
A Bi

i1 ,
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
设事件 B1, B2 ,…, Bn 及 A 满足
1° B1, B2 ,…, Bn 两两互不相容, P(Bi) >0, i 1,2,…, n ,

华南理工大学概率论和数理统计课后答案

华南理工大学概率论和数理统计课后答案

第一章1-1(1)Ω={1,2,3,4,5,6};(2)Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4)(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)};(3)Ω={3,4,5,6,7,8,9,10};(4)用数字1代表正品,数字0代表次品,则Ω={(0,0),(1,0,0),(0,1,0),(1,1,0,0),(0,1,1,0),(1,0,1,0),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,1,1,1)}.1-2 (1)A为随机事件;B为不可能事件;C为随机事件;D为必然事件;(2)、(3)、(4)、(5)均为随机事件.1-3 (1)A;(2)ABC;(3)A B C;(4)ABC;(5) .ABC ABC ABC1-4 (1)ABC;(2)ABC ABC ABC;(3)ABC;(4)或;(5)ABC ABC ABC ABC ABC ABC ABCABC A B CABC;(6)A B C ABC ABC ABC ABC ABC ABC ABC或或ABC.1-5 (1)买的是1985年以后出版的英文版物理书;(2)在“书店所有物理书都是1985年以后出版的且是英文版”这一条件下,ABC A=.1-6 (1)、(4)、(5)、(6)、(7)正确,其余均不正确.1-7 若需要测试7次,即前6次恰好取出2个次品,还有一个次品在第7次取出,故有246C C A次.而在10个中取出7个共有710A种取法.376设 A ={测试7次},故2463767101()8C C A P A A == 1-8 设 A ={能开门},从6把钥匙中任取2把共有 26C 种取法,故2611()15P A C == . 1-9 设 A ={拨号不超过3次就能接通电话},则191981()0.3101091098P A =+⨯+⨯⨯= 设 B ={若记得最后一位是奇数时,拨号不超过3次就能接通电话},则141431()0.6554543P B =+⨯+⨯⨯= 1-10 设 A ={恰有2人的生日在同一个月份},则21114121110455()12144C C C C P A == .1-11 将五个数字有放回地抽取,出现的结果有 35125= 种. 三个数字不同的取法有335360C A = 种,故 60()0.48125P A == ; 三个数字不含1或5,即每次只能在2、3、4中进行抽取,共有3327=种取法,故 27()0.216125P A == ; 三个数字5出现两次,即有 213412C C = 种取法,故12()0.096125P C == .1-12 设 A ={指定的3本书恰好放在一起},10本书的排列方法共有10!种,而指定的3本书的排列方法有3!种,剩下的7本书与指定的3本书这一整体的排列有8!种,故3!8!1()10!15P A == 1-13 (1)21134339()416C C C P A ==;(2)341()416P B == . 1-14 从10个人中任选3个人共有310C 种方法.(1)设 A ={最小号码是5},当最小号码是5时,在 610 之间还有地两个号码,即有 25C 种方法,故253101()12C P A C ==(2)设 B ={最大号码是5},当最大号码是5时,在14 之间还有两个号码,即有 24C 种方法,故243101()20C P B C ==1-15 (1)112211661()9C C P A C C == ;(2)1111244211664()9C C C C P B C C +== . 1-16 (1) 22261()15C P A C == ;(2)1124268()15C C P A C == .1-17 (1)设 A ={样品中有一套优质品、一套次品},则11844210056()825C C P A C ==; (2)设 B ={样品中有一套等级品、一套次品},则1112421008()825C C P B C == ;(3)设 C ={退货},则2112496412210076()825C C C C P C C ++==; (4)设D ={该批货被接受},则2118484122100749()825C C C PD C +==; (5)设E ={样品中有一套优质品},则1184162100224()825C C P E C ==. 1-18 (1)设 A ={恰有5张黑体,4张红心,3张方块,1张梅花},则5431131313131352()C C C C P A C = (2)设 B ={恰有大牌A,K,Q,J 各一张而其余为小牌},则111194444361352()C C C C C P B C = 1-19 设A ={至少有两张牌的花色相同},则 3112113441134354()0.562C C C C C P A C +==第二章2-1 (1)()()()()0.50.40.10.8;P A B P A P B P AB =+-=+-=(2)()0.1(|)0.25;()0.4P AB P A B P B === (3)()0.1(|)0.2;()0.5P AB P B A P A === (4)()()()0.50.12(|)0.66671()10.43()P AB P A P AB P A B P B P B --====≈--2-2 因为A B 、是独立事件,所以有()()(),()()(),()()()P AB P A P B P AB P A P B P AB P A P B ===(1)()()()(|)0.3;()()P AB P A P B P A B P B P B === (2)()1()1()()10.70.40.72;P A B P A B P A P B =-=-=-⨯=(3)()()()(|)0.4;()()P AB P A P B P B A P A P A === (4)()()()(|)0.7()()P AB P A P B P A B P B P B === 2-3 因为AB A A B ⊆⊆ ,所以()()()P AB P A P A B ≤≤又因为()()()()P A B P A P B P AB =+- ,所以()()()()()P AB P A P A B P A P B ≤≤≤+当A B ⊂时,第一个不等式中的等号成立; 当B A ⊂时,第二个不等式中的等号成立; 当AB =∅时,第三个不等式中的等号成立. 2-4 证明 (())()()()(P A B C P A CB CP A CP B C PA CBC ==+- (()())()()P A P B P C P A B P C=+- (()()())(P A P B P A B P C =+- ()()P A B P C= ()()()()()()P ABC P A P B P C P AB P C ==(())()()()()P A B C P ABC P A P B P C -==()()()()P A B P C P A B P C ==- 所以,A B A B AB - 、、分别与C 独立2-5 设A ={射手击中目标},1A ={第一次击中目标},2A ={第二次击中目标},3A ={第三次击中目标}.有题意可知,0.6100k=,即60k =; 1112233()()()(|)()(|)()(|)P A P A P A P A A P A P A A P A P A A =+++6060600.60.40.410.832150150200⎛⎫=+⨯+⨯-⨯= ⎪⎝⎭ 2-6 设1A ={投掷两颗骰子的点数之和为偶数},设2A ={投掷两颗骰子的点数之和为奇数},1B ={点数和为8},2B ={点数和为6}(1)1166111111113333111665()5(|)()18C C P A B P B A C C C C P A C C ===+;(2)11662222111133332116662()12(|)()18C C P A B P B A C C C C P A C C ⨯===+;(3)116622222116662()12(|)21()21C C P A B P A B P B C C ⨯=== 2-7 设A ={此密码能被他们译出},则141421()0.6553534P A =+⨯+⨯⨯= 2-8 1110101101()1(|),1()10C C P AB P B A P A C === 1110101110101()1(|)6()6C C P AB P A B P B C C === 2-9 设A ={第一次取得的全是黄球},B ={第二次取出黄球、白球各一半},则5552010155103025()0.1,(|)C C C P A P B A C C ===所以 5551015201052530()()(|)C C C P A B P A P B A C C ==2-10 设1A ={第一次取得的是黄球},2A ={第二次取得的是黄球},3A ={第三次取得的是白球},则1111213121112(),(|),(|)b b ca ab a bc a b cC C C P A P A A P A A A C C C ++++++===所以 12312131()()(|)(|)P A A A P A P A A P A A A= 1111112b b c a a b a b c a bcC C CC C C ++++++=2b b c aa b a b c a b c+=+++++2-11 设A ={这批货获得通过},B ={样本中恰有一台次品},A ={这批空调设备退货};D ={第一次抽的是合格品},E ={第二次抽的是合格品}(1)67661474()()(|);70691610P A P D P E D ==⨯= (2)673367134()()(|)()(|);706970691610P B P D P E D P D P E D =+=⨯+⨯=(3)136()1()1610P A P A =-=2-12 设A ={选出的产品是次品},1B ={产品是由 厂生产},B ={选出的产品是正品}(1)118241300042();3000C P A C +== (2)11811182418(|);42C P B A C +==(3)117821117821761782(|)2958C P B B C +==2-13 设A ={检验为次品},B ={实际为正品}(1)()5%90%95%1%0.0545P A =⨯+⨯=; (2)()(|)95%1%(|)0.1743()0.0545P B P A B P B A P A ⨯===2-14 设A ={这位学生选修了会计},B ={这位学生是女生} (1)()()(|)0.66%0.036P AB P B P A B ==⨯=;(2)()()(|)0.490%0.36P AB P B P A B ==⨯=; (3)((())()()P A P A B B P AB P AB =+=+)()(|)()(|)P B P A B P B P AB =+ 0.66%0.410%0.=⨯+⨯= 2-15 设A ={此人被诊断为患肺癌},B ={此人确实患肺癌}(1)()98%3%(|)0.7519;()98%3%97%1%P AB P B A P A ⨯===⨯+⨯(2)()(|)3%2%(|)0.0001;2%3%97%99%()P B P A B P B A P A ⨯===⨯+⨯ (3)对于被检查者,若被查出患肺癌,可不必过于紧张,还有约25%的可能没有患肺癌,可积极准备再做一次检查.对地区医疗防病结构而言,若检查结果是未患肺癌,则被检查者基本上是没有患肺癌的. 2-16 设A ={收到信息为0},B ={发送信息为0},则有(0.7(10.02)0.30.010.689P A =⨯-+⨯=)(0.7(10.02)0.686P AB =⨯-=)所以 (0.686686(|()0.689689P AB P B A P A ==))=2-17 设1A ={这批计算机是畅销品},2A ={这批计算机销路一般},3A ={这批计算机是滞销品},B ={试销期内能卖出200台以上}.根据题意有123()0.5,()0.3,()0.2P A P A P A === 123(|)0.9,(|)0.5,(|)0.3P B A P B A P B A ===(1)1111112233()((|(|)()((|((|((|P A B P A P B A P A B P B P A P B A P A P B A P A P B A ==++)))))))) 0.50.90.726;0.50.90.30.50.20.1⨯==⨯+⨯+⨯ (2)22()0.15(|)0.242;()0.62P A B P A B P B === (3)33()0.02(|)0.032;()0.62P A B P A B P B === (4)33(|)1(|)10.0320.968P A B P A B =-=-=2-18 设A ={硬币抛掷出现正面},i B ={硬币是第i 个硬币} (i =1,2,3,4,5),B ={抛掷又出现字面}(1)125()()()()P A P AB P AB P AB =+++112255()(|)()(|)()(|)P B P A B P B P A B P B P A B =+++ 11111311101;545254552=⨯+⨯+⨯+⨯+⨯= (2)11()(|)0()P AB P B A P A ==, 2211()145(|)1()102P AB P B A P A ⨯===, 3311()125(|)1()52P AB P B A P A ⨯=== , 4431()345(|)1()102P AB P B A P A ⨯===,551()25(|)1()52P AB P B A P A === ;(3)1111332()0010.75104521045P B =⨯+⨯+⨯+⨯+⨯=2-19 设1A ={一人击中},2A ={两人击中},3A ={三人击中},B ={飞机被击落}.根据题意有1()0.40.5(10.7)0.60.50.30.60.50.70.36,P A =⨯⨯-+⨯⨯+⨯⨯= 2()0.40.5(10.7)0.40.50.370.60.50.70.41,P A =⨯⨯-+⨯⨯+⨯⨯= 3()0.40.50.70.14,P A =⨯⨯=123(|)0.2,(|)0.6,(|)1P B A P B A P B A ===所以 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 0.360.20.410.60.141=⨯+⨯+⨯= 2-20 设A ={这批元件能出厂},则495()(4%0.0596%0.99)0.050.999999P A ⎛⎫=⨯+⨯+⨯+⨯+ ⎪⎝⎭4940.050.999898⎛⎫⨯+⨯ ⎪⎝⎭0.8639= 2-21 (1)设A ={这批产品经检验为合格品},则1205124175()0.960.060.960.060.960.063252516162222P A ⎛⎫=⨯⨯+⨯+⨯+⨯+⨯+⨯ ⎪⎝⎭0.757= (2)设B ={产品真是合格品},则12012170.960.960.96()3251622(|)0.982()0.757P AB P B A P A ⎛⎫⨯⨯+⨯+⨯ ⎪⎝⎭===第三章3-1 根据题意可知{}()1x a x aP X x F x a x b b ax b ≤⎧⎪-⎪<==<≤⎨-⎪>⎪⎩当当当3-2 根据题意可知00()1012x f x x ≤⎧⎪=⎨<≤⎪⎩当 当所以 001(){}1211x F x P X x x x x ≤⎧⎪⎪=<=<≤⎨⎪>⎪⎩当当0当3-3 根据题意可知011126(){}223313x x F x P X x x x ≤-⎧⎪⎪-<≤⎪=<=⎨⎪<≤⎪⎪>⎩当当当当3-4 设X ={取到的次品的个数}.(1)取出后放回:1144115516{0}25C C P X C C === ,1111144111558{1}25C C C C P X C C +=== 111111551{2}25C C P X C C === 因此,取得的次品数的分布列为X 0 1 2P 1625 825 125(2)取出后不放回:114311543{0}5C C P X C C ===, 1111144111542{1}5C C C C P X C C +===因此取得的次品数的分布列为 X 0 1P 35 253-5 当X k =时,说明前1k -次失败,第k 次成功,因而1{}(1)k P X k p p -==- (1,2,)k = 3-6 (1)放回袋中的情况:512161{0}243C P X C ⎛⎫=== ⎪⎝⎭, 111111422225111116666610{1}243C C C C C P X C C C C C C === ,111112442225111116666640{2}243C C C C C P X C C C C C C ===, 111113444225111116666680{3}243C C C C C P X C C C C C C === , 111114444425111116666680{4}243C C C C C P X C C C C C C ===, 111115444445111116666632{5}243C C C C C P X C C C C C C === . 因此红球个数的分布列为X 0 1 2 3 4 5P1243 10243 40243 80243 80243 32243(2)不放回袋中的情况:223524562{3}3C P P P X P ===, 114524561{4}3C P P P X P ===.因此红球个数的分布列为X 3 4P23 133-7 {1}0.9P X ==, {2}0.10.90.09P X ==⨯=,{3}0.10.10.90P X ==⨯⨯=,{4}0.10.10.10.90P X ==⨯⨯⨯=, {5}0.10.10.10.1P X ==⨯⨯⨯=因此,X 1 2 3 4 5P 0.9 0.09 0.009 0.0009 0.00013-8 由题意知,1~8000000,2000000X B ⎛⎫ ⎪⎝⎭,由于8000000n =较大,12000000p =很小,故二项分布可用4np λ==的泊松分布近似代替,则有44{}!k P X k e k -==3-9 设X ={废品的件数},1000,0.0063n p ==可用泊松近似公式( 6.3)np λ==得所求概率为6 6.36.3{6}0.166!P X e -==≈3-10 设X ={单位时间内纱线被扯断的次数},由题意可知,~(800,0.005)X B ,则(1)448004800{4}(0.005)(0.995)0.195367P X C -===;(2)108008000{10}(0.005)(0.995)0.997160i i i i P X C -=≤==∑.3-11 设X ={该单位患有这种疾病的人数},5000,0.001n p ==,可用泊松近似公式(5)np λ==得所求概率为5505{5}1{5}1!k k P X P X e k -=>=-≤=-∑10.00670.03370.08420.140=----- 0.38404=3-12 设X ={在同一时刻向总机要外线的分机数},则~(300,0.30)X B ,在同一时刻至少有13台分机向总机要外线的时候不能满足.可用泊松近似公式得所求概率为13909{13}0.92615!k k P X e k -=≤==∑3-13 这分布不是离散的,因为X 的分布函数不是阶梯型的,也不是连续的(在x =1处是跳跃的).3-14 由连续型随机变量概率密度分布的性质可知:2()111A x dx dx A x ϕπ+∞+∞-∞-∞==⇒=+⎰⎰因此 1A π=121111{11}[arctan1arctan(1)]0.51P X dx x ππ--<<==--=+⎰3-150002010211()()022411224x xx x xxe dxx F x x dx e dx dx x e dx dx x ϕ-∞-∞-∞-∞⎧≤⎪⎪⎪==+<≤⎨⎪⎪+>⎪⎩⎰⎰⎰⎰⎰⎰当当当化简得10211()022412xex F x x x x ⎧≤⎪⎪⎪=+<≤⎨⎪>⎪⎪⎩当当当3-16 (1)因为()F x 在(,)-∞+∞上的左连续性,所以(1)1F A == ,则200()0111x F x x x x ≤⎧⎪=<≤⎨⎪>⎩当当当(2)对分布函数求导得分布密度函数为201()()0x x x F x ϕ<<⎧'==⎨⎩当其他(3) 0.70.3{0.30.7}20.4P X xdx <<==⎰.3-17 (1)0.0151001.5{100}1{100}10.0150.223xP X P X edx e ---∞>=-≤=-==⎰(2)0.0150.015{}1{}10.0150.1xx x P X x P X x edx e ---∞>=-≤=-=<⎰因此ln 0.1153.50.015x >-=. 3-18 由题意可知1030()30x f x ⎧≤≤⎪=⎨⎪⎩当其他 10012{10}1{10}1303P X P X dx ≥=-<=-=⎰3-19 由题意可知212(1)01()0x x x x ϕ⎧-<<=⎨⎩当其他 120.8{0.8}12(1)0.0272P X x x dx >=-=⎰120.9{0.9}12(1)0.0037P X x x dx >=-=⎰3-20 (1){ 2.2}(2.2)0.9861P X φ<==; (2){ 1.76}1(1.76)0.0392P X φ>=-=;(3){0.78}1(0.78)0.2177P X φ<-=-=;(4){ 1.55}{1.55 1.55}2(1.55)10.8788P X P X φ<=-<<=-=; (5){ 2.5}{ 2.5}{ 2.5}22(2.5)0.0124P X P X P X φ>=<-+>=-=. 3-21 1,4μσ=-= .(1)()2.441{ 2.44}0.860.80514P Y φφ+⎛⎫<=== ⎪⎝⎭;(2)1{ 1.5}1{ 1.5}1(0.125)0.54988P Y P Y φφ⎛⎫>-=-≤-=--== ⎪⎝⎭;(3) 2.81{ 2.8}(0.45)1(0.45)0.32644P Y φφφ-+⎛⎫<-==-=-= ⎪⎝⎭;(4)4141{4}{44}44P Y P Y φφ+-+⎛⎫⎛⎫<=-<<=- ⎪ ⎪⎝⎭⎝⎭()()1.25(10.75)0.6678φφ=--=; (5)2151{52}44P Y φφ+-+⎛⎫⎛⎫-<<=- ⎪ ⎪⎝⎭⎝⎭()()0.75[11]0.6147φφ=--=;(6)2101{11}{2}{0}144P Y P Y P Y φφ++⎛⎫⎛⎫->=>+<=-+ ⎪ ⎪⎝⎭⎝⎭0.8253=.3-22 设A ={一次测量中误差的绝对值不超过30}.(1)由题意可知,2~(20,40)X N ,20,40μσ==,则(){30}{3030}(0.25)( 1.25)P A P XP X φφ=≤=-≤≤=-- (0.25)(1.25)10.φφ=+-= (2)设Y 表示3次独立重复测量中事件A 发生的次数,则~(3,0.4931)Y B{1}1{1}1{0}P Y P Y P Y ≥=-<=-=331(10.4931)0.87C =--=3-23 首先求出电子管的损坏概率为150150201001001()03P x dx dx x ϕ==+=⎰⎰设Y ={电子管损坏的个数},则1~(3,)3Y B .(1)0303118{0}13327P Y C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭; (2)333111{3}13327P Y C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭. 3-24 设A ={生产的零件合格},2~(50,0.75)X N ,50,0.75μσ==,则(){50 1.550 1.5}P A P X =-≤≤+501.55050501.550{}0.750.750.75X P ---+-=≤≤(2)(2)2(2)10.φφφ=--=-= 3-25 强度2~(200,18)X N .(1)18020010{180}1{180}10.8665189P X P X φφ-⎛⎫⎛⎫>=-≤=-== ⎪ ⎪⎝⎭⎝⎭(2)强度不低于150MPa 的概率为()150200{150}1{150}1 2.770.997218P X P X φφ-⎛⎫≥=-<=-== ⎪⎝⎭3-26 由题意可知X -3 -2 0 1 21X -- 2 1 -1 -2 -32X 9 4 0 1 4P18 14 18 13 16所以1X --的分布列为1X -- 2 1 -1 -2 -3 P 18 14 18 13 162X 的分布列为2X 0 1 4 9P18 13 512 183-27 由23(0,1)()0(0,1)xx x x ϕ⎧∈=⎨∉⎩当当知300()0111x F x x x x ≤⎧⎪=<<⎨⎪≥⎩当当当.(1)令21Y X =-+,Y 的分布函数为(){}{21}Y F x P Y x P X x =<=-+<1211()2xx P X x d x ϕ--∞-⎧⎫=>=-⎨⎬⎩⎭⎰ 当1012x -≤<时312201()1312xY x F x x dx --⎛⎫=-=- ⎪⎝⎭⎰, 所以 221131()32222Y x x f x --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当102x-<时,12()0xx dx ϕ--∞=⎰,此时,1x >,()1Y F x =;当112x-≤时12()1xx dx ϕ--∞=⎰此时,1x ≤-,()0Y F x = .因此 3011()111211Y x x F x x x ≤-⎧⎪-⎪⎛⎫=--<≤⎨ ⎪⎝⎭⎪⎪>⎩当当当23111()220Y x x f x ⎧-⎛⎫-<≤⎪ ⎪=⎨⎝⎭⎪⎩当其他 (2)设2Y X = ,Y 的分布函数为2(){}{}()Y F x P Y x P X x x t d t=<=<=<1> ,即1x >时,()1Y F x =;当01<≤,即01x <≤时,23/2()3Y F x t dt x==,所以1/23()2Y f x x =;0=,即0x =时,()0Y F x =.因此 3/200()0111Y x F x xx x ≤⎧⎪=<≤⎨⎪>⎩当当当 1/2301()2Y xx f x ⎧<≤⎪=⎨⎪⎩当其他 3-28 当0x >时,(){}{}{ln }X Y F x P Y x P e x P X x =<=<=<2222l n l n()/2()/2xx t a t a dt e dt σσ-----∞-∞==⎰22(ln )/2()0()00x a Y Y dF x x x dx x σϕ--⎧=>⎪=⎨⎪≤⎩当当3-29 1/331/3(){}{}{}()x Y F x P Y x P X x P X x t dt ϕ-∞=<=<=<=⎰2/31/3()1()()3Y Y dF x x x x dx ϕϕ-==令()1x ϕ=代入上式可得2/3101()3Y xx x ϕ-⎧<≤⎪=⎨⎪⎩当其他 3-30 /2/2(){}{2ln }{}x e x t Y F x P Y x P X x P X e e dt λλ-=<=<=<=⎰因此/2/2/2/211()22x x x e x e Y f x e e e λλλλ--==()x -∞<<+∞第四章4-1X 1 2 3Y1 0 16 1122 16 16 163 112 164-2 4352410{,}i j i jC C C P X i Y j C --=== 4-3 由于11(,)14RAf x y dxdy Axydxdy A xdx ydy +∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰, 故4A =,代入密度函数,得401,01(,)0xy x y f x y <<<<⎧=⎨⎩当其他所以 112300111{,}42336P X Y xdx ydy <<==⎰⎰4-4 (1)当0X >且0Y >时,()0(,)(1)(1)xyu v x y F x y du e dv e e -+--==--⎰⎰;当00x y <<或时,(,)0F x y =.所以 (1)(1)0,0(,)0x ye e x y F x y --⎧--<<+∞<<+∞=⎨⎩当其他(2)由于{(,):0,0,1}D x y x y x y =≥≥+≤,有11()10(,)(,)12xx y DP X Y f x y dxdy dx e dy e --+-===-⎰⎰⎰⎰4-5 由题意可知:14(,)111(,)220x y B f x y ⎧=∈⎪⎪⨯⨯=⎨⎪⎪⎩当其他当12x ≤-或0y ≤时,(,)0F x y =; 当102x -<≤且021y x <≤+时,102(,)42(21)x y y F x y dudv y x y -==--⎰⎰;当102x -<≤且21y x >+时,212102(,)42(21)x x F x y dudv x +-==+⎰⎰; 当0x >且01y <≤时,102(,)42(1)xyy F x y dudv y y -==-+⎰⎰;当0x >且1y >时,(,)1F x y =.因此 2100212(21)00212(,)12(21)02122(1)001101x y y x y x y x F x y x x y x y y x y x y ⎧≤-≤⎪⎪⎪-+-<≤<≤+⎪⎪=⎨⎪+-<≤>+⎪⎪-><≤⎪>>⎪⎩当或当且当且当且当且4-61{0}6P X ==, 7{0}12P Y ==, 5{1}12P X =-=,1{1}3P Y ==, 5{2}12P X ==, 11{}312P Y ==. 4-7 由于()(,)X f x f x v dv +∞-∞=⎰,得1(,)(,)0x y Df x y ∈⎧=⎨⎩当其他当[0,1]x ∈时,220()122xX f x dv x -==-⎰;当[0,1]x ∉时,()0X f x =.因此 2201()0X x x f x -<<⎧=⎨⎩当其他当[0,2]y ∈时,2201()1(2)2yY f y du y -==-⎰;当[0,2]y ∉时,()0Y f y =.因此 1102()2Y y y f y ⎧-≤≤⎪=⎨⎪⎩当其他 4-8 由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰ 当0x >时,0()x v x X f x e dv e +∞---==⎰;当0y >时,0()u y y Y f y e du e +∞---==⎰.因此 0()00x X e x f x x -⎧>=⎨≤⎩当当, 0()00y Y e y f y y -⎧>=⎨≤⎩当当4-9 由题意可知1X 0 12X0 0.1 0.81 0.1 0 4-10 由于1X -1 0 12X-1 0 140 14 0 141 0140 4-11 (1)由于(34)(34)(,)112x y x yRAf x y dxdy Ae dxdy A dx e dy +∞+∞+∞+∞-+-+-∞-∞====⎰⎰⎰⎰⎰⎰, 故12A =.(2)当0x <或0y <时,(,)0F x y =; 当00x y <<且时,(34)340(,)12(1)(1)x yu v x y F x y e dudv e e -+--==--⎰⎰.故 34(1)(1)0,0(,)0x y e e x y F x y --⎧-->>=⎨⎩当其他(3)34(34)9160{03,04}12(1)(1)x y P X Y dx e dy e e -+--<≤<≤==--⎰⎰4-12 由题意可知1(,)(,)20x y D f x y ⎧∈⎪=⎨⎪⎩当其他当10x -≤<时,111()12x X x f x dv x +--==+⎰; 当01x ≤≤时,111()12x X x f x dv x -+-==-+⎰. 故 110()1010X x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩当当其他 4-13 (1)11111111118812121216161616a ⎛⎫⎛⎫⎛⎫+++++++++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故14a =. (2)1{}4P Xi ==(1,2,3,4i =, 25{1}48P Y ==,13{2}48P Y ==,27{3}48P Y ==,3{4}48P Y ==.(3)111125{}48121648P XY ==+++=. 4-14 由联合分布函数的性质可知 (1)(,)()()122F A B C ππ+∞+∞=++=,(,)()()022F A B C ππ-∞-∞=--=,(,)()(a r c t a n )023yF y A B C π-∞=-+=,(,)(a r c t a n )()022x F x A B C π-∞=+-=,故21A π=,2Bπ=,2C π=.(2)21(,)arctan arctan 2223x y F x y πππ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭, 2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++. (3)222262()(4)(9)(4)X f x dy x y x ππ+∞-∞==+++⎰,222263()(4)(9)(9)Y f y dx x y y ππ+∞-∞==+++⎰4-15 (1)由于122002(,)()13f x y dxdy x Cxy dxdy C +∞+∞-∞-∞=+=+=⎰⎰⎰⎰,故13C=. (2)当00x y <<或时,(,)0F x y =; 当1,2x y >>时,(,)1F x y =;当01,02x y ≤≤≤≤时,232200111(,)()3312xyF x y du u uv dv x y x y =+=+⎰⎰;当01,2x y ≤≤>时,223200121(,)()333xF x y du u uv dv x x =+=+⎰⎰当1,02x y >≤≤时,12200111(,)()3312yF x y du u uv dv y y =+=+⎰⎰.故 3223220001101,0231221(,)01,233111,0231211,2x y x y x yx y F x y x x x y y y x y x y <<⎧⎪⎪+≤≤≤≤⎪⎪⎪=+≤≤>⎨⎪⎪+>≤≤⎪⎪>>⎪⎩当或当当当当(3)由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰,当[0,1]x ∈时,222012()233X f x x xy dy x x ⎛⎫=+=+ ⎪⎝⎭⎰;当[0,1]x ∉时,()0X f x =.故 22201()3X x x x f x ⎧+≤≤⎪=⎨⎪⎩当其他当[0,2]y ∈时,120111()336Y f y x xy dx y ⎛⎫=+=+ ⎪⎝⎭⎰;当[0,2]y ∉时,()0Y f y =.故 1102()360Y y y f y ⎧+≤≤⎪=⎨⎪⎩当其他(4)由于|(,)(|)()X Y Y f x y f x y f y =, |(,)(|)()Y X X f x y f y x f x =,故 26201,02(|)20x xyx y f x y y ⎧+≤≤≤≤⎪=+⎨⎪⎩当其他故 301,02(|)62x yx y f y x x +⎧≤≤≤≤⎪=+⎨⎪⎩当其他 4-16 由于|(,)(|)()X Y Y f x y f x y f y =, |(,)(|)()Y X X f x y f y x f x =, (1)当0x >时,(2)20()22x y x X f x e dy e +∞-+-==⎰;当0y >时,(2)0()2x y y Y f y e dx e +∞-+-==⎰.故 2|20,0(|)0x X Y e x y f x y -⎧>>=⎨⎩当其他|0,0(|)0y Y X e x y f y x -⎧>>=⎨⎩当其他(2)21(2)0012{2,1}{2|1}{1}x y ydx e dyP X Y P XY P Y edy-+-≤≤≤≤==≤⎰⎰⎰14541111e e e e e -------+==--. 4-17 (1)由于()1X f x = (01)x <<|1(|)1Y X f y x x=- (01,1)x x y <<<<故 101,1(,)10x x y f x y x⎧<<<<⎪=-⎨⎪⎩当其他 (2)由于01()(,)l n (1)1yY f y f x y d x d x y x+∞-∞===---⎰⎰故l n (1)01()0Y y y f y --<<⎧=⎨⎩当其他 (3)11121{()1}l n 21yy P X Y d yd x x-+>==-⎰⎰ 4-18X Y 与相互独立的充要条件是ij i j p p p = (1,2;1,2,3)i j ==,因此有{1,3}{1}{3}P X Y P X P Y =====1111169181818B ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭{2,3}{2}{3}P X Y P X P Y =====11318A B B B ⎛⎫⎛⎫=+++= ⎪⎪⎝⎭⎝⎭解得21,99A B ==. 4-19 (1)由0.5()0.5()(,)0.251x xu v x X F x f u v dvdu e dvdu e +∞+∞-+--∞-∞-∞-∞===-⎰⎰⎰⎰故 0.510()00x X e x F x x -⎧->=⎨≤⎩当当同理可得0.510()00y Y e y F y y -⎧->=⎨≤⎩当当(2)0.5()20.250,0(,)(,)0x y e x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩当其他当0x >时,0.5()0.50()(,)0.250.5x v x X f x f x v dv e dv e +∞+∞-+--∞===⎰⎰;当0x ≤时,()0X f x =.故 0.50.50()00x X e x f x x -⎧>=⎨≤⎩当当同理可得0.50.50()00y Y e y f y y -⎧>=⎨≤⎩当当(3)由于(,)()()X Y f x y f x f y =,故X Y 、相互独立. (4)0.5()0.10.10.1{0.1,0.1}0.25x y P XY dy e dx e +∞+∞-+->>==⎰⎰.4-20 (1)由于1001(,)()12x f x y dxdy dx C x y dy C +∞+∞-∞-∞=+==⎰⎰⎰⎰,故2C=.(2)由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰当[0,1]x ∈时,20()2()3x X f x x y dy x =+=⎰;当[0,1]x ∉时,()0X f x =.故 2301()0X x x f x ⎧≤≤=⎨⎩当其他当[0,1]y ∈时,12()2()123Y yf y x y dx y y =+=+-⎰;当[0,1]y ∉时,()0Y f y =.故 212301()0Y y y y f y ⎧+-≤≤=⎨⎩当其他(3)当01x y ≤≤≤时,有(,)2()f x y xy =+, 22()()3(123)X Y f x f y x y y =+-可见,(,)()()X Y f x y f x f y ≠,所以X Y 与并不相互独立. (4)11201{1}2()3y yP XY dy x y dx -+≤=+=⎰⎰.4-21 (1)由于X Y 与相互独立,故()0,0(,)()()0x y X Y e x y f x y f x f y -+⎧>>==⎨⎩当其他 (2)110{1|0}{1}1x P X Y P X e dx e --≤>=≤==-⎰.第五章5-1 (1)1111210(1)12666EX =⨯+⨯+⨯+-⨯=,222211117210(1)26663EX =⨯+⨯+⨯+-⨯=,11(21)(221)(211)(201)26E X -+=-⨯+⨯+-⨯+⨯+-⨯+⨯11(2(1)1)166+-⨯-+⨯=-; (2)224()3DX EX EX =-=,()X σ==.5-2 (1)00;kk k k qEX kpq pq q p∞∞=='⎛⎫=== ⎪⎝⎭∑∑(2)2222221000kk k k k k k k EXk pq pqk qpq q pq kq ∞∞∞∞--====''⎛⎫===+ ⎪⎝⎭∑∑∑∑200k k k k pq q pq q ∞∞=='''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑222q qp p=+2222222q q q q q DX p p p p p=+-=+5-3 (1)1()02xEX xf x dx x e dx +∞+∞--∞-∞===⎰⎰;(2)22201()2(3)22x DX EX EX x e dx +∞-=-==Γ=⎰. 5-4 (1)0(1)1EXp p p =⨯-+⨯=, 0(1)1EY p p p =⨯-+⨯=;(2)由于20(1)1EX p p p =⨯-+⨯=,20(1)1EY p p p =⨯-+⨯=;22()(1)DX EX EX p p =-=-,22()(1)DY EY EY p p =-=-;(3)由于00(1)11EXY p p p =⨯⨯-+⨯⨯=,故2cov(,)(1)X Y EXY EX EY p p p p =-⋅=-=-.5-5222()()2g t E X t EX tEX t =-=-+, ()220dg t t EX dt=-=, 因此,tEX =,即t EX =时,()g t 达到最小值为DX .5-6 当2Y X =时,022x EYxe dx +∞-==⎰;当3XYe-=时,3014x x EYe e dx +∞--==⎰. 5-7 222()/2(ln 2)/2xx u a EY a dx a eμσσ+∞---∞==⎰ 22()DY EY EY =-222222()/2(l n 2)/222l n 2l n2()()(1)xx u a u a a a e d x a ea e e μσσσσ+∞---∞=-=-⎰ 5-8 由于12102()23EX x x dx x dx ϕ+∞-∞===⎰⎰, (5)20()y EY y y dy ye dy ϕ+∞+∞---∞==⎰⎰6=,且X Y 与相互独立,所以有2643EXY EX EY =⋅=⨯=, 220(+)+633E X Y EX EY ==+=5-9 证明)0E Y E E X E X==-=22221()()1DY EY EY E E X EXDX=-==-=5-10 证明)XYρ===()()0E X E X Y E Y⇒--=()0E X Y Y E X X E Y E X E Y⇒-⋅-⋅+⋅=E X Y E X E Y⇒-⋅=()2c o v(,)D X Y D X D Y X Y D X D Y⇒+=++=+5-15 (1)由于2200(,)sin()x y dxdy A x y dxdyππϕ+∞+∞-∞-∞=+⎰⎰⎰⎰2c o s c o s2A x x d xππ⎡⎤⎛⎫=-+-⎪⎢⎥⎝⎭⎣⎦⎰21A==,故12A=.(2)22200011sin()cos cos2224 EX x x y dxdy x x x x dxπππππ⎡⎤⎛⎫=+=++=⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰,由于X Y与相互对称,故有4EY EXπ==;2 222222200011sin()[sin cos]22282 EX x x y dxdy x x x x dxπππππ=+=+=+-⎰⎰⎰22222()22824162DX EX EXπππππ⎛⎫=-=+--=+-⎪⎝⎭由于X Y与相互对称,故有22162DYππ=+-.(3)222000112sin()sin cos222EXY xy x y dxdy x x x dxππππ-⎛⎫=+=+⎪⎝⎭⎰⎰⎰22π-=2cov(,)1162X Y EXY EX EY ππ=-⋅=-+-2211622162XYππρππ-+-==+- 5-12 二维随机变量(,)X Y 的联合分布函数为1(,)(,)0x y Af x y ∈⎧=⎨⎩当其他12(1)12(1)000012,33x x EX xdydx EY ydydx --====⎰⎰⎰⎰12(1)0016x EXY xydydx -==⎰⎰. 5-13 设抽到次品所需要次数为X ,则X 服从下列分布:X 1 2 3 k P2n 221n n n -⋅- 23212n n n n n --⋅⋅-- 2(2)(3)()(1)(2)(1)n n n k n n n n k ------- 即2{}1n k P Xk n n -==⋅-,因此 11112{}1n n k k n k EX k P X k k n n --==-=⋅==⋅⋅-∑∑1121121(2)3n n k k n kn k n n --==+⎛⎫=-= ⎪-⎝⎭∑∑122121n k n k EX k n n -=-=⋅⋅-∑11231121(1)(2)6n n k k k n k n n n n --==⎛⎫=-=+ ⎪-⎝⎭∑∑221()(1)(2)18DX EX EX n n =-=+- 5-15 (1)11005(2)12EX x x y dydx =--=⎰⎰, 512EY EX ==.1122001(2)4EX x x y dydx =--=⎰⎰, 2214EY EX == 2211()144DX DY EX EX ==-=11001(2)6EXY xy x y dydx =--=⎰⎰2151cov(,)612144X Y EXY EX EY ⎛⎫=-⋅=-=- ⎪⎝⎭5()2cov(,)36D X Y DX DY X Y +=++=(2)103()(2)2X f x x y dy x =--=-⎰, 103()(2)2Y f y x y dx y =--=-⎰可见,()()(,)X Y f x f y f x y ≠,所以两者不独立.111441111144XYρ-===-故两者相关. 5-16(5)5()22y X f x xedy x +∞--==⎰, 1(5)(5)0()2y y Y f y xe dx e ----==⎰可见,()()(,)X Y f x f y f x y =,故两者独立.1(5)054y EXY xye dydx +∞--==⎰⎰5-17 两台仪器无故障时间的密度分布为1511150()0x e x f x -⎧>=⎨⎩当其他, 2522250()0x e x f x -⎧>=⎨⎩当其他联合密度函数为125()121212250,0(,)()()0x x e x x f x x f x f x -+⎧>>==⎨⎩当其他设无故障工作时间为12y x x =+,则联合分布函数为1125()5512210(,)()2551y y x x x y y F x x F y e dx dx ye e --+--===--+⎰⎰5()()25y df y F y e y dy-==所以密度函数为5250()0y e y y f y -⎧>=⎨⎩当其他 2502255yEY y edy +∞-==⎰, 235062525y EY y e dy +∞-==⎰ 262225525DY ⎛⎫=-= ⎪⎝⎭5-18 根据题意有()EX P A =, ()EY P B =, ()EXY P AB ={1}()P XY P AB ==, {0}1()P XY P AB ==-已知0XYρ=,所以cov(,)0X Y =,即cov(,)()()()0X Y EXY EX EY P AB P A P B =-⋅=-=故()()()P AB P A P B =.事件A B 与相互独立,由事件的独立性定理可得:A ,A ,B ,B 两两相互独立,即{11}{1}{1}P X Y P X P Y =====, {10}{1}{0}P X Y P X P Y =====, {01}{0}{1}P X Y P X P Y =====, {00}{0}{0}P X Y P X P Y =====,因此,X Y 和相互独立.5-19 已知11~0,,~0,22X N Y N ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由正态分布的性质可知:()1D X Y DX DY -=+=, ()0E X Y -=故()()~0,1XY N -,令Z X Y=-,则()~0,1ZN .22()zE Z z e dz+∞--∞==⎰22222()()()()1D Z EZE Z DZ EZ E Zπ=-=+-=-⎡⎤⎡⎤⎣⎦⎣⎦第六章6-1 设11nn iiY Xn==∑,再对n Y利用契比雪夫不等式:{}1222222nii nnn nD XDY nP Y EYn nεεεε=→∞⎛⎫⎪⎝⎭-≥≤=≤−−−→∑故{}n X服从大数定理.6-2 设出现7的次数为X,则有()~10000,0.1,1000,900X B E X n p D X===由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015XP X P--⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-311,212i iEX DX==由中心极限定理可知,10110iX-⨯∑,所以101011616110.136i ii iP X P X==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X,则.100,100==DXEX.由棣莫佛-拉普拉斯定理可得()0228.021100100120}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DXEXXPXP。

概率论与数理统计总结之第四章

概率论与数理统计总结之第四章

概率论与数理统计总结之第四章第四章概率论与数理统计总结第四章是概率论与数理统计中的重要章节,主要介绍了概率分布以及随机变量的性质和应用。

本章内容相对较为复杂,需要掌握一定的数学基础知识,但是只要我们认真学习并进行实践,就能够掌握其中的核心概念和方法。

本章的重点内容包括:离散型随机变量及其概率分布、连续型随机变量及其概率密度函数、随机变量的函数分布、两个随机变量的联合分布、随机变量的独立性等。

首先,我们需要了解离散型随机变量及其概率分布。

离散型随机变量是一种取有限或可数个数值的随机变量,其概率分布可以通过概率分布列或概率质量函数进行描述。

常见的离散型随机变量有二项分布、泊松分布等。

我们需要掌握这些分布的定义、性质以及应用,能够计算其均值、方差以及分布函数等。

接着,我们学习了连续型随机变量及其概率密度函数。

连续型随机变量是一种取连续数值的随机变量,其概率分布可以通过概率密度函数进行描述。

常见的连续型随机变量有均匀分布、正态分布等。

我们需要了解这些分布的定义、性质以及应用,能够计算其期望、方差以及分位数等。

随后,我们学习了随机变量的函数分布。

通过对随机变量进行函数变换,可以得到新的随机变量,其概率分布可以通过原始随机变量的概率分布进行推导。

我们需要了解函数分布的计算方法,能够根据随机变量的分布函数和概率密度函数计算新的随机变量的分布函数和概率密度函数。

然后,我们学习了两个随机变量的联合分布。

对于两个随机变量,我们可以通过联合分布来描述它们的联合概率分布。

对于离散型随机变量,我们可以通过联合分布列来描述;对于连续型随机变量,我们可以通过联合概率密度函数来描述。

我们需要掌握联合概率分布的计算方法,能够计算两个随机变量的联合概率、边缘概率以及条件概率等。

最后,我们学习了随机变量的独立性。

当两个随机变量的联合概率分布可以通过各自的边缘概率分布表示时,我们称它们是独立的。

我们需要了解独立性的定义和性质,能够判断两个随机变量是否独立,并能够计算独立随机变量的联合概率分布。

(完整版)概率论与数理统计知识点总结(最新整理)

(完整版)概率论与数理统计知识点总结(最新整理)
当 AB 不相容 P(AB)=0 时,P(A+B)=P(A)+P(B) 法公式
当 AB 独立,P(AB)=P(A)P(B), P(A+B)=P(A)+P(B)-P(A)P(B)
P(A-B)=P(A)-P(AB) (8)减
当 B A 时,P(A-B)=P(A)-P(B) 法公式
当 A=Ω时,P( B )=1- P(B)
独立性 必然事件 和不可能事件 Ø 与任何事件都相互独立。
Ø 与任何事件都互斥。
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
1
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F (x) 1, x ;
2° F (x) 是单调不减的函数,即 x1 x2 时,有 F (x1) F (x2) ;
3° F () lim F (x) 0 , F () lim F (x) 1;
X ~ B(n, p) 。
当 n 1时, P(X k) pk q1k , k 0.1,这就是(0-1)分布,所
以(0-1)分布是二项分布的特例。
1
泊松分 设随机变量 X 的分布律为

P( X k) k e , 0 , k 0,1,2,
k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或者
①每进行一次试验,必须发生且只能发生这一组中的一个事件; (2)基 ②任何事件,都是由这一组中的部分事件组成的。 本 事 这样一组事件中的每一个事件称为基本事件,用 来表示。 件 、 样 基本事件的全体,称为试验的样本空间,用 表示。 本 空 间 一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大 和事件 写字母 A,B,C,…表示事件,它们是 的子集。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chap 5 数字特征 5.1 数学期望1.为什么引进随机变量的数字特征 例5-1 试问哪一位射手水平较高?虽然有各自的分布律(完整的描述了随机变量),但不是一眼看得出来(不够“集中”地反映它的变化情况)。

因此有必要找出一些量来更集中、更概括的描述随机变量,这些变量多是某种平均值。

研究例5-1中平均环数。

(加权平均)甲平均环数:8(0.3)+ 9(0.1) +10(0.6)=9.3乙平均环数:8(0.2) +9(0.4) +10(0.4)=9.22.离散型随机变量的数学期望(1)设X 是一离散型随机变量,它的分布律为若级数iip a 绝对收敛,则把此级数称为X 的数学期望。

记 i i p a EX ∑=若i i p a ∑发散,则说X 的数学期望不存在。

(绝对收敛的条件是为了数学上的处理方便,也是合理的) (2)X 的函数f (X )的数学期望 如果级数i ii p a f ∑)(绝对收敛,则有i ii p a f X Ef ∑=)()(例5-2 求二项分布的数学期望 Consider the identity00()()nnnk kn kk k n k knn k k px q C px qC p q x --==+==∑∑ Regarding ,p q as constants, x as a variable and take differentiation with respect to x , we have111()nn k k n k k n k np px q kC p q x ---=+=∑. Put 1x =, we get1nk k n k n k kC p q np -==∑ But ()k k n k n P X k C p q -==, thus()()nnk k n kn k k E X kp X k kC p q np -======∑∑.例5-3 求泊松分布的数学期望 例5-4 博彩者能赢吗?设想有这样一种博彩游戏,博彩者将本金1元压注在1到6的某个数字上,然后掷三个骰子,若所压的数字出现i 次( i = 1,2,3),则下注者赢i 元,否则没收1元本金,试问这样的游戏规则对下注者有利吗?例 新的验血技术能减少化验次数在一个人数很多的团体中普查某种疾病,为此要抽验N 个人的血,可以用两种方法进行.(i) 将每个人的血分别去验,这就需验N 次.(ii)按k 个人一组进行分组,把从k 个人抽来的血混合在一起进行检验,如果这混合血液呈阴性反应,就说明k 个人的血都呈阴性反应,这样,k 个人的血就只需验一次.若呈阳性,则再对这k 个人的血液分别进行化验.这样, k 个人的血总共要化验是1k +次.假设每个人化验呈阳性的概率为p ,且这些人的试验反应是相互独立的.试说明当p 较小时,选取适当的k ,按第二种方法可以减少化验的次数.并说明k 取什么值时最适宜.解 各人的血呈阴性反应的概率为1q p =-.因而k 个人的混合血呈阴性反应的概率为k q ,k 个人的混合血呈阳性反应的概率为1-k q .设以k 个人为一组时,组内每人化验的次数为X ,则X 是一个随机变量,其分布律为11(), ()1.k k k P X q P X q k k+====-X 的数学期望为111()(1)(1)1.k k k E X q q q k k k=++-=-+ N 个人平均需化验的次数为 1(1)k N q k-+. 由此可知,只要选择k 使111k q k-+<, 则N 个人平均需化验的次数N <.当p 固定时,我们选取k 使得11k L q k=-+小于1且取到最小值,这时就能得到最好的分组方法. 例如,0.1p =,则0.9q =,当4k =时, 11k L q k=-+取到最小值. 此时得到最好的分组方法.若1000N =,此时以4k =分组,则按第二方案平均只需化验411000(10.9 )594()4-+=次.这样平均来说,可以减少40%的工作量.3.连续型随机变量的数学期望(1)若X 的密度函数是)(x ϕ,并且⎰+∞∞-dx x x )(||ϕ收敛,称⎰+∞∞-=dx x x EX )(ϕ是X 的数学期望.(2))(X f 的数学期望是⎰+∞∞-=dx x x f X Ef )()()(ϕ例5-6 正态分布2(,)N μσ的数学期望是μ。

(验证)例3按规定,某车站每天8:00-9:00,9:00-10:00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间相互独立. 其规律为一旅客8:20解 设旅客的候车时间为X (以分计). X 的分布律为在上表中,例如13{70}()()(),66P X P AB P A P B ====⨯其中A 为事件“第一班车在8:10到站”,B 为“第二班车在9:30到站”. 候车时间的数学期望为32132()10+30+ 50+ 70+ 90=27.2266363636E X =⨯⨯⨯⨯⨯(分).例4某商店对某种家用电器的销售采用先使用后付款的方式. 记使用寿命为X (以年计),规定:1X ≤, 一台付款1500元; 12X <≤ ,一台付款2000元;23X <≤,一台付款2500元;3X >,一台付款3000元.设寿命X 服从指数分布,概率密度为101, 0 ()100 , 0xe xf x x -⎧>⎪=⎨⎪⎩≤试求该商店对上述家电收费(Y 元)的数学期望. 解 先求出寿命X 落在各个时间区间的概率,即有1/100.101{1}d 10.0952,10x P X e x e --==-=⎰≤ 20.20.31011{12}d 0.086110x P X e x e e ---<==-=⎰≤, 3/100.20.321{23}d 0.077910x P X e x e e ---<==-=⎰≤,0.31031{3}d 0.0740810x P X e x e ∞-->===⎰. 一台收费Y 的分布律为得()2732.15E X =,即平均一台收费2732.15元. □ 例5-10若X 服从[ 0,2π]上的均匀分布,求E (sin X ) //略补充例()max ,M X Y =及()min ,N X Y =的分布 设,X Y 是两个相互独立的随机变量,它们的分布函数分别为()X F x 和()Y F y .现在来求()max ,M X Y =及()min ,N X Y =的分布函数.由于()max ,M X Y =不大于z 等价与X 和Y 不大于z ,故有{}{},P M z P X z Y z =≤≤≤.又由于X 和Y 相互独立,得到()max ,M X Y =的分布函数为(){}{}{}{}max ,F z P M z P X z Y z P X z P Y z ===≤≤≤≤≤即有()()()max X Y F z F z F z =.类似地,可得到()min ,N X Y =的分布函数为(){}{}{}{}{}min 11,1F z P N z P N z P X z Y z P X z P Y z ==->=->>=->⋅>≤.即 ()()()m i n 111X Y F z F z F z =---⎡⎤⎡⎤⎣⎦⎣⎦.//补充例有2个相互独立工作的电子装置,它们的寿命 (1,2)k X k = 服从同一指数分布,其概率密度为1, 0 ()0.0 , 0xe xf x x θθθ-⎧>⎪=>⎨⎪⎩,≤,若将这2个电子装置串联联接组成整机,求整机寿命(以小时计)N 的数学期望.解 (1,2)k X k =的分布函数为1,0,()0,0.x e x F x x θ-⎧⎪->=⎨⎪⎩≤由第四章补充例知道:12min(,)N X X =的分布函数为22min 1, 0()1[1()] 0, 0xe x F x F x x θ-⎧⎪->=--=⎨⎪⎩≤因而N 的概率密度为2min , 0()20, 0xe xf x x θθ-⎧>⎪=⎨⎪⎩≤ 于是N 的数学期望为2/min 02()()d d 2x xE N xf x x e x θθθ∞∞--∞===⎰⎰.作业 P98 第五章 1,2,34.二维随机变量(X ,Y )的数学期望 离散型 j i j iji p b a f Y X Ef ),(),(∑∑=连续型 设( X, Y )的联合密度为),(y x ϕdxdy y x y x f Y X Ef ),(),(),(ϕ⎰⎰+∞∞-+∞∞-=例5-11设(X, Y )服从区域D 上的均匀分布,求X ,Y 和X 3Y 的数学期望。

区域D 是直径为1的上半圆。

*******5.数学期望的性质 (1)当c 是常数时,E(c )=c (2) E(cX)=cEX (3) E( X +Y )=E X +E Y E(X -Y )=E X -E Y(4) 当 X 、Y 相互独立时,E( XY )=E X E Y 推广到n 的情形0, 1,2,,10.1,i i X i i ⎧==⎨⎩ 在第站没有人下车,在第站有人下车,易知 1210.X X X X =+++ 现在来求()E X .按题意, 任一旅客在第i 站不下车的概率为109, 因此20位旅客都不在第i 站下车的概率为(109)20,在第i 站有人下车的概率为1-(109)20,也就是 202099{0}(),{1}1(),1,2,,10.1010i i P X P X i ====-=由此209()1(),1,2,10.10i E X i =-=进而 1210()()E X E X X X =+++121020 ()()()910[1()]8.784().10E X E X E X =++=-= 次作业P98 5-5, 5-6, 5-9, 5-13, 5-14机动 应用例 例5-3 求职面试策略(P96) 采购策略思考题如果你能预先知道5周的原料价格,当然是按最低价购买全部原料, 则此时价格的期望值是多少? //5.2方差和标准差1.引例某批灯泡质量(平均寿命与偏离程度)。

2.定义DX=E(X–EX)2公式DX=EX2– (EX)23.例5-14(离散,求两点分布的方差)例5-18(求正态分布的方差)4.方差的性质(1)当c为常数时,Dc=0(2) D (cX)=c2 EX(3)当X、Y相互独立时,D(X+Y)=DX+DYD(X-Y)=DX+DY推广n情形。

(4)DX=0的充要条件是P {X=c}=1*******5.3 协方差与相关系数 1. 定义随机变量X 与Y 的协方差cov( X , Y )=E(X -E X )(Y -E Y )显然cov(X , Y )=cov( Y ,X )D X = cov(X , X ) , D Y = cov(Y , Y ) 2. 定理1给定二维随机变量( X, Y),(1) 若X ,Y 独立,则cov( X, Y)=0 (2) [cov( X, Y))]2<=DXDY 3. ξ与η的相关系数ηξrηξηξD D r ),cov(=可见,ξ与η独立,则相关系数ηξr =0,反之不成立。

相关文档
最新文档