干货实图分析运放7大经典电路

合集下载

经典的运算放大器基本电路大全

经典的运算放大器基本电路大全

运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明Voh 和Vol 。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3V 也或者会更低。

常用运放电路及其各类比较器电路

常用运放电路及其各类比较器电路

彭发喜,制造同相放大电路:运算放大器的同相输入端加输入旌旗灯号,反向输入端加来自输出的负反馈旌旗灯号,则为同相放大器.ZLH838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸图是同相放大器电路图.ZLH838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸因为e1=e2,所以输入电流微小,输入阻抗极高.ZLH838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸假如运算放大器的输入偏置电流,则ZLH838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸e1=e2放大倍数:道理图:反比拟例运算放大电路图:1号图:2号图:反相输入放大电路如图1所示,旌旗灯号电压经由过程电阻R1加至运放的反相输入端,输出电压vo经由过程反馈电阻Rf反馈到运放的反相输入端,构成电压并联负反馈放大电路.R ¢为均衡电阻应知足R ¢= R1//Rf.运用虚短和虚断的概念进行剖析,vI=0,vN=0,iI=0,则即∴该电路实现反比拟例运算.反相放大电路有如下特色1.运放两个输入端电压相等并等于0,故没有共模输入旌旗灯号,如许对运放的共模克制比没有特别请求.2.vN= vP,而vP=0,反相端N没有真正接地,故称虚地点.3.电路在深度负反馈前提下,电路的输入电阻为R1,输出电阻近似为零.运算放大器减法电路道理:图为运放减法电路4y6838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸由e1输入的旌旗灯号,放大倍数为R3/R1,并与输出端e0相位相反,所以4y6838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸4y6838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸由e2输入的旌旗灯号,放大倍数为 4y6838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸与输出端e0相位相,所以4y6838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸4y6838电子-技巧材料-电子元件-电路图-技巧运用网站-根本常识-道理-维修-感化-参数-电子元器件符号-各类图纸当R1=R2=R3=R4时 e0=e2-e1加法运算放大器电路:加法运算放大器电路包含有反相加法电路和同相加法电路.同相加法电路:由LF155构成.三个输入旌旗灯号同时加到运放同相端,其输入输出电压关系式:反相加法电路:由运算放大器lm741 构成.(lm741中文材料)反相加法运算电路为若干个输入旌旗灯号从集成运放的反相输入端引入,输出旌旗灯号为它们反相按比例放大的代数和.电压比较器:图4(a)由运算放大器构成的差分放大器电路,输入电压VA经分压器R2.R3分压后接在同相端,VB经由过程输入电阻R1接在反相端,RF为反馈电阻,若不斟酌输入掉调电压,则其输出电压Vout与VA.VB及4个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB.若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益.当R1=R2=0(相当于R1.R2短路),R3=RF=∞(相当于R3.RF开路)时,Vout=∞.增益成为无限大,其电路图就形成图4(b)的样子,差分放大器处于开环状况,它就是比较器电路.现实上,运放处于开环状况时,其增益并不是无限大,而Vout输出是饱和电压,它小于正负电源电压,也不成能是无限大.从图4中可以看出,比较器电路就是一个运算放大器电路处于开环状况的差分放大器电路. 同相放大器电路如图5所示.假如图5中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了.图5中的Vin相当于图3(b)中的VA.滞回电压比较器:滞回比较器又称施密特触发器,迟滞比较器.这种比较器的特色是当输入旌旗灯号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特征具有“滞回”曲线的外形.滞回比较器也有反相输入和同相输入两种方法.UR是某一固定电压,转变UR值能转变阈值及回差大小.以图4(a)所示的反相滞回比较器为例,盘算阈值并画出传输特征内心放大器电路今朝,内心放大器电路的实现办法重要分为两大类:第一类由分立元件组合而成;另一类由单片集成芯片直接实现.依据现有元器件,分离以单运放LM741和OP07,集成四运放LM324和单片集成芯片AD620为焦点,设计出四种内心放大器电路计划.计划1 由3个通用型运放LM741构成三运放内心放大器电路情势,辅以相干的电阻外围电路,加上A1,A2同相输入端的桥式旌旗灯号输入电路,如图2所示.图2中的A1~A3分离用LM741调换即可.电路的工作道理与典范内心放大器电路完整雷同.计划2 由3个周详运放OP07构成,电路构造与道理和图2雷同(用3个OP07分离代替图2中的A1~A3).计划3 以一个四运放集成电路LM324为焦点实现,如图3所示.它的特色是将4个功效自力的运放集成在同一个集成芯片里,如许可以大大削减各运放因为制造工艺不合带来的器件机能差别;采取同一的电源,有利于电源噪声的下降和电路机能指标的进步,且电路的根本工作道理不变.图4 滞回比较器及其传输特征(a)反相输入;(b)同相输入1,正向进程正向进程的阈值为形成电压传输特征的abcd段2,负向进程负向进程的阈值为形成电压传输特征上defa段.因为它与磁滞回线外形类似,故称之为滞回电压比较器.运用求阈值的临界前提和叠加道理办法,不难盘算出图4(b)所示的同相滞回比较器的两个阈值两个阈值的差值ΔUTH=UTH1–UTH2称为回差.由上剖析可知,转变R2值可转变回差大小,调剂UR可转变UTH1和UTH2,但不影响回差大小.即滞回比较器的传输特征将平行右移或左移,滞回曲线宽度不变.图5 比较器的波形变换(a)输入波形;(b)输出波形例如,滞回比较器的传输特征和输入电压的波形如图6(a).(b)所示.依据传输特征和两个阈值(UTH1=2V, UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示.从图(c)可见,ui在UTH1与UTH2之间变更,不会引起uo的跳变.但回差也导致了输出电压的滞后现象,使电平辨别产生误差.图6 解释滞回比较器抗干扰才能强的图(a)已知传输特征;(b)已知ui 波形;(c)依据传输特征和ui波形画出的uo波形计划4 由一个单片集成芯片AD620实现,如图4所示.它的特色是电路构造简略:一个AD620,一个增益设置电阻Rg,外加工作电源就可以使电路工作,是以设计效力最高.图4中电路增益盘算公式为:G=49.4K/Rg+1. 实现内心放大器电路的四种计划中,都采取4个电阻构成电桥电路的情势,将双端差分输入变成单端的旌旗灯号源输入.机能测试主如果从旌旗灯号源Vs的最大输入和Vs最小输入.电路的最大增益及共模克制比几方面进行仿真和现实电路机能测试.测试数据分离见表1和表2.个中,Vs最大(小)输入是指在给定测试前提下,使电路输出不掉真时的旌旗灯号源最大(小)输入;最大增益是指在给定测试前提下,使输出不掉真时可以实现的电路最大增益值.共模克制比由公式KCMRR=20|g | AVd/AVC|(dB)盘算得出.解释:(1)f为Vs输入旌旗灯号的频率;(2)表格中的电压测量数据全体以峰峰值暗示;(3)因为仿真器件原因,试验顶用Multisim对计划3的仿真掉效,表1顶用“-”暗示掉效数据;(4)表格中的计划1~4依次分离暗示以LM741,OP07,LM324和AD620为焦点构成的内心放大器电路.由表1和表2可见,仿真机能显著优于现实测试机能.这是因为仿真电路的机能根本上是由仿真器件的机能和电路的构造情势肯定的,没有外界干扰身分,为幻想前提下的测试;而现实测试电路因为受情况干扰身分(如情况温度.空间电磁干扰等).工资操纵身分.现实测试仪器精确度.精确度和量程规模等的限制,使测试前提不敷幻想,测量成果具有必定的误差.在现实电路设计进程中,仿真与现实测试各有所长.一般先经由过程仿真测试,初步肯定电路的构造及器件参数,再经由过程现实电路测试,改良其具体机能指标及参数设置.如许,在包管电路功效.机能的前提下,大大进步电路设计的效力.由表2的实测数据可以看出:计划2在旌旗灯号输入规模(即Vs的最大.最小输入).电路增益.共模克制比等方面的机能表示为最优.在价钱方面,它比计划1和计划3的成本高一点,但比计划4便宜许多.是以,在四种计划中,计划2的性价比最高.计划4除最大增益相对小点,其他机能仅次于计划2,具有电路简略,机能优胜,节俭设计空间等长处.成本高是计划4的最大缺点.计划1和计划3在机能上的差别不大,计划3略优于计划1,且它们同时具有绝对的价钱优势,但机能上不如计划2和计划4好.分解以上剖析,计划2和计划4实用于对内心放大器电路有较高机能请求的场合,计划2性价比最高,计划4简略.高效,但成本高.计划1和计划3实用于机能请求不高且须要勤俭成本的场合.针对具体的电路设计请求,拔取不合的计划,以达到最优的资本运用.电路的设计计划肯定今后,在具体的电路设计进程中,要留意以下几个方面:(1)留意症结元器件的拔取,比方对图2所示电路,要留意使运放A1,A2的特征尽可能一致;选用电阻时,应当运用低温度系数的电阻,以获得尽可能低的漂移;对R3,R4,R5和R6的选择应尽可能匹配.(2)要留意在电路中增长各类抗干扰措施,比方在电源的引入端增长电源退耦电容,在旌旗灯号输入端增长RC低通滤波或在运放A1,A2的反馈回路增长高频消噪电容,在PCB设计中精心计划合理布线,精确处理地线等,以进步电路的抗干扰才能,最大限度地施展电路的机能.内心放大器的特色:● 高共模克制比共模克制比(CMRR)则是差模增益( A d)与共模增益( Ac)之比,即:CMRR = 20lg | Ad/ Ac | dB ;内心放大器具有很高的共模克制比,CMRR 典范值为 70~100 dB 以上.● 高输入阻抗请求内心放大器必须具有极高的输入阻抗,内心放大器的同相和反相输入端的阻抗都很高并且互相十分均衡,其典范值为 109~1012Ω.● 低噪声因为内心放大器必须可以或许处理异常低的输入电压,是以内心放大器不克不及把自身的噪声加到旌旗灯号上,在 1 kHz 前提下,折合到输入端的输入噪声请求小于 10 nV/ Hz.● 低线性误差输入掉折衷比例系数误差能经由过程外部的调剂来修改,但是线性误差是器件固出缺点,它不克不及由外部调剂来清除.一个高质量的内心放大器典范的线性误差为 0. 01 % ,有的甚至低于 0. 0001 %.● 低掉调电压和掉调电压漂移内心放大器的掉调漂移也由输入和输出两部分构成,输入和输出掉调电压典范值分离为100μV 和2 mV.● 低输入偏置电流和掉调电流误差双极型输入运算放大器的基极电流,FET 型输入运算放大器的栅极电流,这个偏置电流流过不服衡的旌旗灯号源电阻将产生一个掉调误差.双极型输入内心放大器的偏置电流典范值为 1 nA~50 pA ;而 FET 输入的内心放大器在常温下的偏置电流典范值为 50 pA.● 充裕的带宽内心放大器为特定的运用供给了足够的带宽,典范的单位增益小旌旗灯号带宽在 500 kHz~4 MHz 之间.● 具有“检测”端和“参考”端内心放大器的奇特之处还在于带有“检测”端和“参考”端,许可远距离检测输出电压而内部电阻压降和地线压降( IR)的影响可减至最小.。

详解运放七大应用电路设计

详解运放七大应用电路设计

详解运放七大应用电路设计运放(Operational Amplifier,简称OPAMP)是一种高增益、直流耦合、差分放大器电路,常用于各种模拟电路和信号处理电路中。

它具备高增益、高输入阻抗、低输出阻抗、宽带宽等特点,适用于各种应用场景。

以下是运放的七大应用电路设计:1. 反相放大器(Inverting Amplifier):用于放大输入信号,但输出信号与输入信号具有180度相位差。

在反相放大器中,输入信号通过一个电阻R1作用在运放的反相端,而反相端还通过一个电阻R2与运放的输出端相连。

这种电路可以得到具有指定放大倍数的输出信号。

2. 同相放大器(Non-Inverting Amplifier):该电路与反相放大器结构类似,但是反相输入引脚和接地相连,而非反相输入引脚通过一个电阻与输出端相连。

同相放大器输出信号与输入信号相位相同。

3. 集成运放比例器(Integrator):该电路可将输入信号积分,输出信号与输入信号成正比。

集成运放比例器的电路还包括一个电容器,它与运放的反相输入端连接。

当输入信号施加到运放的非反相输入端时,电容器开始充电,导致运放的输出电压变化。

4. 集成运放微分器(Differentiator):该电路可对输入信号进行微分,输出信号与输入信号的导数成正比。

微分器电路使用一个电容器连接到运放的反相输入端,而电容器的另一端通过一个电阻与运放的输出端相连。

当输入信号通过电容器时,运放的输出电压变化,产生与输入信号的导数成正比的输出信号。

5. 增益调节器(Gain Adjuster):该电路可以通过改变反馈电阻值Rf来调整放大倍数。

增益调节器电路结合了反相放大器和用变阻器替代常规反馈电阻的电路设计。

通过改变变阻器的阻值,可以调节输出信号的放大倍数。

7. 限幅放大器(Clamp Amplifier):该电路可以将输入信号限制在一个特定范围内,并且不受输入信号的变化影响。

限幅放大器电路使用二极管来限制输入信号的范围。

最全的运放典型应用电路

最全的运放典型应用电路

U& o
=
1−
R1 j ω0
U& i
ω
波 电 路
jωc U& + = U& −
ω o
=
1 RC


ui>uR uo=+Uo(sat)

ui=uR 转折点

ui<uR uo= - Uo(sat)



ui>uR uo=-Uo(sat)

ui=uR 转折点

ui<uR uo=+Uo(sat)



u− = ui
RF
u+ = 0
u− = 0
ui + ui2 + ui3 = − uo
R1 R2 R3
RF
主要特征
uo
=
(1 +
RF R1
)ui
(电压串联负反馈)
uo
=

RF R1
ui
(电压并联负反馈)
uo
=
−RF
(
ui1 R1
+
ui2 R2
+
ui3 ) R3
u+
=
R3 R2 + R3
ui 2
u−
=
R1
1 +
R2
( R1uo
比 较
u+
=
R1 R1 + R2
uo


形 波
u+
=
R1 R1 + R2
uo
T = 2RC ln(1 + 2R2 )

运放常见电路

运放常见电路

运放常见电路
一、非反馈式运放常见电路
1. 比较器电路
比较器电路是一种非反馈式运放电路,通过将输入信号与参考电压进行比较,输出高低电平信号。

比较器电路可以用于数字电路中的信号处理和控制。

2. 跟随器电路
跟随器电路是一种非反馈式运放电路,用于将输入信号的变化转换为输出信号的变化,通常用于信号放大和模拟信号处理。

3. 倍增器电路
倍增器电路是一种非反馈式运放电路,通过将输入信号经过放大和整流处理后,输出信号的幅值是输入信号幅值的倍数。

倍增器电路常用于信号处理和测量仪器。

二、反馈式运放常见电路
1. 反相放大器电路
反相放大器电路是一种基本的反馈式运放电路,通常用于信号放大和滤波。

在该电路中,输入信号经过运放放大后,再通过反向输入回路与输入端接通,实现负反馈,使放大倍数得以精
确控制。

2. 非反相放大器电路
非反相放大器电路是一种基本的反馈式运放电路,通常用于信号放大和滤波。

与反相放大器电路不同的是,在该电路中,在输入端和反向输入回路之间串联了一个电阻,起到电压分压作用,使得放大倍数为正值。

3. 低通滤波器电路
低通滤波器电路是一种反馈式运放电路,它可以滤除高频成分,只保留低频成分。

在该电路中,输入信号经过运放放大后,通过并联的电容和电阻与反向输入回路相连,形成一个一阶低通滤波器。

4. 高通滤波器电路
高通滤波器电路是一种反馈式运放电路,它可以滤除低频成分,只保留高频成分。

在该电路中,输入信号经过电容和电阻串联后,与运放的反向输入端相连,形成一个一阶高通滤波器。

运算放大器的常见电路

运算放大器的常见电路

2.3.1 同相放大电路
3. 虚假短路 ▪ 图中输出通过负反馈的作用, 使vn自动地跟踪vp, 即vp≈vn,或vid=vp-vn≈0。 这种现象称为虚假短路,简称 虚短
▪ 由于运放的输入电阻ri很大,所以,运放两输入端之间的 ip=-in = (vp-vn) / ri ≈0,这种现象称为虚断。
由运放引入负反馈而得到的虚短和虚断两个重要概念,是分 析由运放组成的各种线性应用电路的利器,必须熟练掌握。
根据“虚短”,vP vP 0
根得据 “ 虚 断 ” , ii 0
得 因此
i2
i1
vI R
电容器被充电,其充电电流为 i2
设电容器C的初始电压为零,则
vN
vO
1 C
1 i2dt C
vI dt R
vO
1 RC
vIdt
式中,负号表示vO与vI在相位上是相反的。
(积分运算)
2.4.4 积分电路和微分电路
3. 若V-< vO <V+ 则 (vP-vN)0
4. 输入电阻ri的阻值很高 使 iP≈ 0、iN≈ 0
5. 输出电阻很小, ro ≈ 0
图2.2.1 运放的简化电路模型
理想:ri≈∞ ro≈0 Avo→∞ vo=Avo(vp-vn)
2.3 基本线性运放电路
2.3.1 同相放大电路 2.3.2 反相放大电路
2.3.1 同相放大电路
1. 基本电路
(a)电路图
(b)小信号电路模型
图2.3.1 同相放大电路
2.3.1 同相放大电路
2. 负反馈的基本概念 ▪ 开环 ▪ 闭环 ▪ 反馈:将放大电路输出量, 通过某种方式送回到输入回路 的过程。 ▪ 瞬时电位变化极性——某时刻电位的斜率

史上最全的运放典型应用电路及分析

史上最全的运放典型应用电路及分析

矩 形 波 发 生 器
u+ =
R1 uo R1 + R2
T = 2 RC ln(1 +
u − = uC
2 R2 ) R1
RC 正 弦 波 发 生 器 放大电路: 选频网络:
A = 1+
RF R1
fo =
1 2 π RC
F=
1 3
ω0 =
1 RC
& U− =
R1 & Uo R1 + RF & Ui R+ 1 jωc
& Uo =
1+
RF R1
& U+ =
1 jωc
1+ j
& ω Ui ωo
ωo =
& & U+ = U−
1 RC
& U− =
R1 & Uo R1 + RF
& Uo =
1+
& RU i & U+ = 1 R+ j ωc & & U+ = U−
u− =
若R1 = R2 = R3 = RF u o = u i 2 − u i1
u+ = u−
u + = u− = 0 ui du = −c o R dt
uo = − 1 ∫ u i dt RC
u+ = u− = 0 du u c i =− o dt R
uo = − RC
dui dt
一 阶 低 通 滤 波 电 路 一 阶 高 通 滤 波 电 路 同 相 比 较 器 反 相 比 较 器
史上最全的运放典型应用电路及分析运放典型电路典型运放pid电路运放电路分析运放电路运放放大电路运放差分放大电路运放积分电路运放差分放大电路计算运放加法电路

运算放大器7大经典电路实图分析!

运算放大器7大经典电路实图分析!

运算放大器7大经典电路实图分析!运放的基本分析方法:虚断,虚短。

对于不熟悉的运放应用电路,就使用该基本分析方法。

运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。

8号线攻城狮1运放在有源滤波中的应用上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。

有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。

该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。

其中电阻R280是防止输入悬空会导致运放输出异常。

滤波最常用二阶有源低通滤波电路为巴特沃兹低通滤波,单调下降,曲线平坦最平滑;●巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即仿真的该电路。

一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。

如果该滤波器还有放大功能,要知道该滤波器的增益是多少。

当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。

二阶有源低通滤波电路的通带放大倍数为 1+Rf /R1 ,与一阶低通滤波电路相同;截止频率为:注明,m的单位为欧姆, N 的单位为 u。

所以计算得出截止频率为:●切比雪夫,迅速衰减,但通带中有纹波;●贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

8号线攻城狮2运放在电压比较器中的应用上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相让软件处理一下就可以),该电路在交流信号测频中广泛使用。

该电路实际上是过零比较器和深度放大电路的结合。

将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。

(完整word版)经典运放电路分析(经典)

(完整word版)经典运放电路分析(经典)

从虚断,虚短分析基本运放电路运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

为此本人特搜罗天下运放电路之应用,来个“庖丁解牛",希望各位看完后有所斩获。

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=—Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短"和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”.开环电压放大倍数越大,两输入端的电位越接近相等.“虚短"是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上.因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

运算放大器基本电路——11个经典电路

运算放大器基本电路——11个经典电路

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!我曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1M Ω以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

运放原理及典型芯片电路

运放原理及典型芯片电路
用途: 数模转换、数字仪表、自动控制和自动检测等
技术领域,以及波形产生及变换等场合 。 运放工作在开环状态或引入正反馈。
理想运放工作在饱和区的特点:
1. 输出只有两种可能 +Uo (sat) 或–Uo (sat)
当 u+> u- 时, uo = + Uo (sat) u+< u- 时, uo = – Uo (sat)
RF
解:1. Auf = – RF R1
+ ui
R1

+
+
+ uO

R2

= –50 10 = –5 R2 = R1 RF
=10 50 (10+50)
= 8.3 k
2. 因 Auf = – RF / R1 = – RF 10 = –10
故得 RF = –Auf R1 = –(–10) 10 =100 k
uo
RFC1
dui dt

uo
O
–Ui
t
O
t
比例-微分运算电路
—PD调节器 iCC1
if RF
uo RFif
if iR iC
ui R1
C1
dui dt
+
iRR1
ui

R2

++
+
uo

uo
( RF R1
ui
RFC1
dui dt
)
上式表明:输出电压是对输入电压的比例-微分
控制系统中, PD调节器在调节过程中起加速作 用,即使系统有较快的响应速度和工作稳定性。
运算放大器的特点

运算放大器11种经典电路

运算放大器11种经典电路

精心整理运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。

????遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

???今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

???虚短和虚断的概念???由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。

而运放的输出电压是有限的,一般在10V~14V。

因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

????“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

???由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

???在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

常用运算放大器电路 (全集)]的电路图

常用运算放大器电路 (全集)]的电路图

下面是[常用运算放大器电路(全集)]的电路图常用OP电路类型如下:1. Inverter Amp. 反相位放大电路:放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。

R3 = R4 提供1 / 2 电源偏压C3 为电源去耦合滤波C1, C2 输入及输出端隔直流此时输出端信号相位与输入端相反2. Non-inverter Amp. 同相位放大电路:放大倍数为Av=R2 / R1R3 = R4提供1 / 2电源偏压C1, C2, C3 为隔直流此时输出端信号相位与输入端相同3. Voltage follower 缓冲放大电路:O/P输出端电位与I/P输入端电位相同单双电源皆可工作4. Comparator比较器电路:I/P 电压高于Ref时O/P输出端为Logic低电位I/P 电压低于Ref时O/P输出端为Logic高电位R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M)单双电源皆可工作5. Square-wave oscillator 方块波震荡电路:R2 = R3 = R4 = 100 KR1 = 100 K, C1 = 0.01 uFFreq = 1 /(2π* R1 * C1)6. Pulse generator脉波产生器电路:R2 = R3 = R4 = 100 KR1 = 30 K, C1 = 0.01 uF, R5 = 150 KO/P输出端On Cycle = 1 /(2π* R5 * C1)O/P输出端Off Cycle =1 /(2π* R1 * C1)7. Active low-pass filter 主动低通滤波器电路:R1 = R2 = 16 KR3 = R4 = 100 KC1 = C2 = 0.01 uF放大倍数Av = R4 / (R3+R4)Freq = 1 KHz8. Active band-pass filter 主动带通滤波器电路:R7 = R8 = 100 K, C3 = 10 uFR1 = R2 = 390 K, C1 = C2 = 0.01 uFR3 = 620, R4 = 620KFreq = 1 KHz, Q=259. Window detector窗型检知器电路:当I/P电位高于OP1+端电位时, Led 1暗/Led 2亮当I/P电位高于OP2-端电位时, Led 1亮/Led 2暗只有当I/P电位高于OP2-端电位, 却又低于OP1+端电位时, Led 1与Led 2同时皆亮如果适当选择R1, R2,R3数值可用以检知I/P电位是否合乎规格。

(完整)经典的运算放大器基本电路大全,推荐文档

(完整)经典的运算放大器基本电路大全,推荐文档

运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明Voh 和Vol 。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3V 也或者会更低。

运算放大器11种经典电路

运算放大器11种经典电路

运算放大器的11钟经典电路虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过R1的电流I1 = (Vi - V-)/R1 ……a 流过R2的电流I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代数方程得Vout = (-R2/R1)*Vi 这就是传说中的反向放大器的输入输出关系式了。

详解运放七大应用电路设计

详解运放七大应用电路设计

运放的基本分析方法:虚断,虚短。

对于不熟悉的运放应用电路,就使用该基本分析方法。

运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。

1、运放在有源滤波中的应用上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。

有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。

该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。

其中电阻R280是防止输入悬空,会导致运放输出异常。

滤波最常用的3种二阶有源低通滤波电路为:巴特沃兹,单调下降,曲线平坦最平滑;巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即仿真的该电路。

一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。

如果该滤波器还有放大功能,要知道该滤波器的增益是多少。

当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。

二阶有源低通滤波电路的通带放大倍数为 1+Rf/R1 ,与一阶低通滤波电路相同;截止频率为注明,m的单位为欧姆, N 的单位为 u所以计算得出截止频率为切比雪夫,迅速衰减,但通带中有纹波;贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

2、运放在电压比较器中的应用上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。

该电路实际上是过零比较器和深度放大电路的结合。

将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。

该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。

运算放大器电路大全运算放大器电路大全

运算放大器电路大全运算放大器电路大全

1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明Voh 和Vol 。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3 V 也或者会更低。

出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。

需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。

虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

干货实图分析运放7大经典电路
运放的基本分析方法:虚断,虚短。

对于不熟悉的运放应用电路,就使用该基本分析方法。

运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。

1、运放在有源滤波中的应用
上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。

有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。

该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。

其中电阻R280是防止输入悬空,会导致运放输出异常。

滤波最常用的3种二阶有源低通滤波电路为
•巴特沃兹,单调下降,曲线平坦最平滑;
巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即仿真的该电路。

一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。

如果该滤波器还有放大功能,要知道该滤波器的增益是多少。

当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。

二阶有源低通滤波电路的通带放大倍数为 1+Rf/R1 ,与一阶低通滤波电路相同;
截止频率为
注明,m的单位为欧姆, N 的单位为 u
所以计算得出截止频率为
•切比雪夫,迅速衰减,但通带中有纹波;
•贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

2、运放在电压比较器中的应用
电压比较
上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。

该电路实际上是过零比较器和深度放大电路的结合。

将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。

该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。

3、恒流源电路的设计
如图所示,恒流原理分析过程如下:
U5B(上图中下边的运放)为电压跟随器,故V1=V4;
由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有: V3=V5;
有以上等式组合运算得:
当参考电压Vref固定为1.8V时,电阻R30为3.6,电流恒定输出0.5mA。

该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。

但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。

4、整流电路中的应用
整流电路
上述电路是一个整流电路,将输入的一定频率的脉冲整流成固定的电平电压,再用此电压控制4-20mA电流的输出电流。

该电路功能类似一些DAC功能的接口。

5、热电阻测量电路
热电阻测量电路
上图的电路是典型的热电阻/电偶的测量电路,其测量思路为:将1-10mA的恒流源加于负载,将会在负载上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后将信号送入ADC接口。

该电路应用时,要注意在输入端施加保护,可以并TVS,但要注意节电容对测量精度的影响,当然,如果在一些低成本场合,上述电路图可简化为下电路
热电阻测量简化电路
6、电压跟随器
在运放的使用中,电压跟随器是一种常见的应用,该电路的好处是:一是减小负载对信号源的影响;二是提高信号带负载的能力。

电压跟随器
上图是运用运放实现了电阻分压的功能,首先用电阻获得需要输出的电压,然后用运放对该电压进行跟随,提高其输出能力。

7、单电源的应用
在运放的实际使用,我们一般为了保持运放的频率特性,一般都采用双电源供电,但有的时候在实际使用,我们只有单电源的情况,也能实现运放的正常工作。

首先我们运用运放跟随电路,实现一个VCC/2的分压:
分压电路
当然,如果在要求不是很高的场合,我们可以直接电阻分压,获得+VCC/2,但由于电阻分压的特性所在,其动态的响应速度会非常慢,请谨慎使用。

获得+VCC/2后,我们可以用单电源实现信号放大功能,如下图:
单电源的应用
该电路中 R66=R67//R68,信号的输出增益G=-R67/R68 。

具体应用如下图:运放为单+5V_AD供电,AD芯片的电压是3.3V(基准电压芯片REF3033得到),该3.3V再电阻分压和经过运放跟随后得到1.65V,给到运放的同相输入端
单电源差分输入并放大的应用附:运放的应用要点。

相关文档
最新文档