低压电缆热稳定校验
设计综采工作面供电设计
设计综采工作面供电设计综采工作面供电设计一、工作面概况与设备选型配置里机巷走向长度460米,外机巷走向长度385米,切眼开采长度为110米,工作面煤层倾角25°-32°,平均倾角28°,煤层厚度2.5米-4.2米,平均厚度3.5,采煤方式为综合机械化采煤,设备选型配置情况如设备选型配置情况如下表:序号设备名称设备型号数量电机功率(KW)额定电压(V)额定电流(A)1 采煤机MG400/920-QWD 1 920 3300 200.42 运输机SGZ800/800 1 400×2 3300 178/1163 乳化液泵MRB-400/31.5 2 2×250 3300 524 控制台KTC-2 15 贝克开关KE3002 46 移动变电站KBSGZY-1600/6/3.4527 移动变电站KBSGZY-800/6/1.218 转载机SZZ-764/60 1 160 1140 90.59 破碎机LPS-1000 1 110 1140 62.310 皮带机DSJ 1000/100/2×110 1 2×110 1140 124.611 皮带机 1 2×75 1140 85 总计2860二、供电系统的选择确定综采供电电源来自北六下部变电所,高压采用两路供电,一路在轨道石门处供800KVA移变,(由保运区安装),另外一路至工作面开关车供两台1600KVA移变.电缆敷设巷道路线为:下部变电所→北八大巷→充电硐室→进风石门→Ⅰ联巷→机巷,移动变电站及泵站放置进风石门附近,设备控制开关放置距工作面190m附近,低压电缆沿进风石门→机巷敷设,采用电压等级为3300KV。
三、负荷统计及移动变电站选择⑴、根据工作面设备选型配置、电压等级列出用电设备负荷统计表如下:设备名称设备型号电机台数额定功率(KW)额定电压(V)额定电流(A)功率因数采煤机MG-400/920-QWD2 400 3300 87 0.852 50 380 95.6 0.851 20 3300 4.4 0.85运输机SGZ800/800 2 400 3300 89 0.85 乳化液泵MRB-400/31.5 1 250 3300 52 0.9 转载机SZZ-764/60 1 160 1140 90.5 0.85 破碎机LPS-1000 1 110 1140 62.3 0.85皮带机DSJ 1000/100/2×11012×110 1140 124.60.85皮带机 1 2×75 1140 85⑵、变压器的选择:根据供电系统拟定原则,选择两台移动变电站,其容量分别决定如下:1、1#移动变电站向采煤机组、一台乳化液泵供电,供电电压为3450V。
浅谈低压电力电缆的选择
浅谈低压电力电缆的选择摘要:文章通过学习规范和设计手册中有关1kV及以下低压电力电缆选择的内容,结合自身的工程经验,从整体及长远的角度考虑,在文中归纳总结了1kV及以下低压电力电缆的选择方法。
关键词:电缆类型;电缆截面;绝缘水平;电压损失;热稳定1、前言低压电力电缆在整个工程中承担着电力传输的任务,具有运行可靠、不立电杆、不占地面、不碍观瞻、受外界影响较小等特点,因而在低压配电系统中得到广泛应用。
工程设计中,低压电缆的选择对生产生活的安全和生产效率有着重要的影响,因此低压电力电缆的选择应做到保障人身和财产安全、节约能源、技术先进、功能完善、经济合理、配电可靠和安装运行方便。
2、低压电缆类型选择2.1导体材质的选择用作低压电缆的导电材料通常有铜和铝两种。
两种材料的主要区别如下:(1)在正常温度(20°左右)下铝材的电阻率约为铜的1.7倍,在相同的截面积下,铜材的载流量约铝材的1.5倍;(2)铜材的机械性能优于铝材,延展性好,便于加工和安装;(3)相同条件下铜与铜导体比铝与铜导体连接的接触电阻小很多,而且因铜的延展性好,不易折断,可满足多次拆接使用,因此铜导体电缆比铝导体电缆的连接可靠性和安全性更高,尤其是在爆炸危险性环境中;(4)工程实践中也反映出铜比铝导体的事故率和火灾故障率低。
因此,除了对铜有腐蚀而对铝腐蚀相对较轻的环境、架空输电线路和较大截面的中频线路外,其余场所的电缆导体应尽量选择铜导线更合适。
2.2芯数的选择1kV及以下电源中性点直接接地时,三相回路中的保护线与中性线合用同一导体时,应选用四芯电缆;保护线与中性线各自独立时,宜选用五芯电缆。
受电设备外露可导电部位的接地与电源系统接地各自独立时,应选用四芯电缆。
单相回路中的保护线与中性线合用同一导体时,应选用两芯电缆;保护线与中性线各自独立时,宜选用三芯电缆。
受电设备外露可导电部位的接地与电源系统接地各自独立时,应选用两芯电缆。
2.3绝缘水平选择绝缘导体应符合工作电压的要求,室内敷设塑料绝缘电线不应低于0.45/0.75kV,电力电缆不应低于0.6/1kV.而控制电缆额定电压的选择,应不低于该回路的工作电压,一般宜选用0.45/0.75kV.当外部电气干扰影响很小时,可选用较低的额定电压。
变压器低压侧出线电缆热稳定校验
针 对不 同变压器容量, 计算 出可 以在本省使用并满足热稳定校验的最小电缆表 以方便 工程设 计使 用。
[ 关键 词] 变压 器低压侧 出线 电缆 ; 热稳 定校验 ; 短路点短路 电流 ; 断路 器动作 时间
Th e t r an s f or me r l ow — — v o l t a g e o u t l e t c h e c k t he c a b l e t he r ma l s t a bi l i t y
电缆 热 稳 定 的 要 求 。
3计 算 最不 利 点 变压 器低 压侧 出 线 短 路 点 短 路 电 流
变 压 器 低 压 出 口处 的 短 路 阻 抗 :
X : X1 " +x =0. 2 8 9 +3 . 75 =4. 0 39
( 3 ) 变压器低压出线端处的短路电流 :
‘ 7 5
般 民用建筑工程设计 中, 变 电所 的变压器 出线端 的短
路电流为最大 , 所 以本 文讨论重 点在变 电所 出线 柜的 电缆热 稳定校验 。变压器 出线端的最小 电缆截面配出 回路为最不利 点, 如大部分项 目中配 至消 防控 制 中心 及电信 网络机房 的出 线 回路 , 负荷容量 最小所选 电缆截面最小 , 为最不 利点 , 若此 次满足规范对 电缆热稳定 的要求 , 则其他 回路均 满足规 范对
变压器低压侧出线电缆热稳定校验
变压器低压侧出线电缆热稳定校验设计人员常对变压器高压侧电缆作短路热稳定校验。
但低压侧电缆的短路热稳定校验往往容易被忽略,尤其是配至消防控制中心和弱电机房等处的出线回路,由于负荷容量不大、所选电缆截面较小,有时并不满足规范对电缆热稳定的要求。
1 电缆热稳定校验的重要性根据GB 50054—2011《低压配电设计规范》第3.2.14条、第6.2.3条和GB 50217 2007《电力工程电缆设计规范》第3.7.7条的规定,电缆应能承受预期的故障电流或短路电流和短路保护的动作时间,对于非熔断器保护回路,应该校验电缆的相导体和保护导体的最小截面。
如果电缆不满足热稳定校验的要求.则在短路时电缆的绝缘层可能被破坏.同时可能影响到近旁的电缆和电气装置,甚至引发电气火灾。
电缆的热稳定校验是设计过程中的重要环节。
2 变压器低压侧出线电缆的热稳定校验要求根据GB 50054—2011第3.2.14条、第6.2.3条的规定,绝缘导体的热稳定,应按其截面积校验,且应符合下列规定:当短路持续时间小于等于5 S(但不小于0.1 S)时,绝缘导体的截面积应符合下式:-------------短路持续时间小于0.1 s时,校验绝缘导体截面积应计入短路电流非周期分量的影响;大于5 S时.校验绝缘导体截面积应计入散热的影响。
由上式可得:-----------3 民用建筑中典型案例校验3.1 短路参数计算假设变压器高压侧的短路容量为S=300 MVA,则l 000 kVA变压器的低压出I=1处(Un =0.38 kV,uk%=6)的短路电流计算如下:取基准容量:Sj =100 MVA,基准电压:Uj= 1.05 Un=0.4 kV,基准电流:-----------电力系统的阻抗:------变压器的阻抗:--------变压器低压出口处的短路阻抗:---------变压器低压出口处的短路电流:--------假设这个短路点远离发电厂,短路电路的总电阻较小,总电抗较大(RΣ≤XΣ/3)时,t一0.05 s。
低压电缆热稳定校验
低压电缆热稳定校验低压电缆热稳定校验是保证电缆质量的重要环节,也是电力系统运行安全的关键。
本文将详细介绍低压电缆热稳定校验的原理、方法和注意事项,为广大读者提供有指导意义的信息。
一、校验原理低压电缆热稳定校验是通过模拟电缆在长时间高温工作条件下的热稳定性能,检测电缆的绝缘材料和结构的耐高温能力。
通过校验可以发现电缆是否存在绝缘老化、热变形等问题,从而确保电缆的可靠运行和延长使用寿命。
二、校验方法1. 校验设备准备:准备好热稳定试验箱、温度传感器、温度控制器等设备,并确保设备的正常工作状态。
2. 校验样品选择:选择符合要求的待检测的低压电缆样品,并检查样品的外观和使用条件,确保样品的完整性和可靠性。
3. 样品准备:将待测样品连接至试验箱中,确保连接牢固并避免连接处出现漏电或短路。
4. 设定温度和时长:根据电缆的使用条件和规定标准,设定合适的温度和时长。
一般情况下,温度可设定为指定温度±2℃,时长可设定为规定时长±10%。
5. 温度控制与监测:将温度传感器插入电缆样品中,确保温度传感器与电缆完全贴合,并连接至温度控制器。
启动温度控制器,使温度稳定在设定温度。
6. 校验结果判定:在设定的时间内,观察电缆样品是否出现外观异常、电气性能衰减等问题。
同时,通过测量温度传感器的温度数值,判断电缆的耐高温能力。
如超过规定的温度限值或出现其他异常情况,则判定为校验不合格。
三、注意事项1. 校验操作应按照相关标准和规范进行,确保校验过程的可靠性和准确性。
2. 校验设备的选用应符合标准要求,设备的工作状态需要定期检查和维护,确保设备的准确度和可靠性。
3. 校验样品的选择应代表性,避免样品选择不当或样品受损对校验结果的影响。
4. 温度和时长的设定应合理,根据实际使用情况和标准要求进行设定,避免温度过高或时长过长导致电缆损坏。
5. 校验结果的判定应严格按照标准进行,如有不合格情况应及时处理并重新校验。
热稳定性校验(主焦要点
井下高压开关、供电电缆动热稳定性校验一、-350中央变电所开关断路器开断能力及电缆热稳定性校验123G 35kV 2Uz%=7.5△P N.T =12kW△P N.T =3.11kW S N.T =8MVA 6kVS1点三相短路电流计算: 35kV 变压器阻抗:222.1.u %7.5 6.30.37()1001008z N TN T U Z S ⨯===Ω⨯35kV变压器电阻:222.1.22. 6.30.0120.007()8N TN T N T U R P S =∆=⨯=Ω35kV 变压器电抗:10.37()X ===Ω电缆电抗:02(x )0.415000.087800.66()10001000i L X ⨯⨯+⨯===Ω∑电缆电阻:02(x )0.11815000.1187800.27()10001000i L R ⨯⨯+⨯===Ω∑总阻抗:21.370.66)1.06(Z ==Ω S1点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算:S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KV A ,查表的:(2)2d I =2.5KAS2点三相短路电流:32d d =2.88I I KA =1、架空线路、入井电缆的热稳定性校验。
已知供电负荷为3128.02KV A ,电压为6KV ,需用系数0.62,功率因数cos 0.78φ=,架空线路长度1.5km ,电缆长度780m (1)按经济电流密度选择电缆,计算容量为3128.020.622486.37cos 0.78kp S KVA φ⨯===。
电缆的长时工作电流Ig 为239.25Ig === A按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于239.25A 符合要求。
(2)按电压损失校验,配电线路允许电压损失5%得60000.1300Uy V∆=⨯=,线路的实际电压损失109.1L U COS DS φφ∆====,U ∆小于300V电压损失满足要求(3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积:32min d=S I mm 其中:i t ----断路器分断时间,一般取0.25s ;C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电缆负荷率为80%。
低压电热稳定校验的计算
10/0.4KV 干式变压器相阻抗值(归算到 0.4KV 侧) 生 产 250 500 800 变压器容量(KVA) 1000 1250
表2
1600
2000
2500
厂 家 ABB(上海) SCR9 西门子(志 亨)SCLB9 顺德 SC(B)9 顺德 SC(B)10 国标 GB/T10288 R 6. 50 6. 70 6. 17 7. 00 8. 30 X 24. 77 24. 77 24. 80 24. 60 24. 20 R 2. 88 2. 88 2. 75 3. 12 3. 76 X 12. 50 12. 50 12. 50 12. 40 12. 30 R 1. 60 1. 60 1. 65 1. 74 2. 10 X 11. 90 11. 90 11. 80 11. 80 11. 80 R 1. 20 1. 20 1. 20 1. 30 1. 53
2
长度为 8m,母线相间距为 350mm;由低压母线至供电点选用 YJV-3×35+2×16 的电缆 13m,断路器短路时瞬动,当在电缆末端发生三相短 路时,对电缆进行热稳定校验。 1) 计算电路各元件阻抗: 查表 1 得系统电抗为 Xs=0.4 mΩ 查表 2 得变压器电抗为 XB=7.6 mΩ 电阻为 RB=1.17 mΩ 查表 3 得铜线电抗为 XM=0.168×8=1.344 mΩ 电阻为 RM=0.017×8=0.136 mΩ 查表 4 得电缆电抗为 XD=0.08×13=1.04 mΩ 电阻为 RD=0.622×13=8.086 mΩ 因此电路总电抗为 X∑=Xs+XB+XM+XD=10.384 mΩ 总电阻为 R∑= RB+ RM+RD=9.392 mΩ 总阻抗为 Z=
变压器低压侧出线电缆热稳定校验
变压器低压侧出线电缆热稳定校验随着电网的发展和用电量的增加,电力变压器在电力系统中扮演着至关重要的角色。
然而,对于变压器低压侧出线电缆的质量和性能的测试并不容易,特别是电缆热稳定性的校验。
因此,本文将介绍一种变压器低压侧出线电缆热稳定校验的方法。
首先,为了保证测试的准确性,需要准备适当的测试设备和工具,例如热稳定性测试仪、高压绝缘测试仪、导线夹等。
安装和调整这些工具时,需要严格按照相关标准和操作规程进行,以确保测试的可靠性和有效性。
其次,在进行测试之前,需要对电缆进行预处理,包括去污、去皮和将电缆暴露在开放空气中进行摆放和等待一定时间,以确保它们处于稳定状态。
在此之后,将电缆固定在测试设备上,并按照相关标准和规范进行高压测试,确保电缆的绝缘性能符合要求。
接下来,开始进行热稳定性测试。
将测试仪器的温度设定在一定的温度范围内,然后使电缆在此条件下持续工作一段时间,以检查电缆在高温环境下的稳定性和耐久性。
在此期间,应定期检查并记录电缆的温度、电压和电流等相关参数,以确定电缆是否能够在高温环境下稳定地工作。
最后,在测试完成后,应对测试结果进行分析和评估。
根据测试数据和相关标准和规范,评估电缆的热稳定性能,并对测试结果进行总结和归纳。
如果发现电缆有热稳定性问题,必须采取必要的措施,如加强电缆的绝缘保护、更换电缆或减少电缆负载等,以确保电力系统的正常运行和安全性。
在实际工程中,变压器低压侧出线电缆的热稳定校验是一项至关重要的工作。
通过本文介绍的测试方法,能够保证电缆的质量和性能,确保电力系统的正常运行。
因此,我们需要注重这项工作的重要性,并加强对该领域的研究和改进,以在电力系统中更好地应用和推广变压器低压侧出线电缆的热稳定校验技术。
随着电力系统的不断发展,变压器低压侧出线电缆的热稳定性能和质量也变得越来越重要。
热稳定测试是评估电缆是否具有足够的耐热性能,以在高温环境下稳定地工作的关键步骤。
通过测试,我们能够检测电缆的绝缘性能、电缆连接器的耐压能力和导线的热膨胀等性能,从而确保电缆的功能性和可靠性能够达到要求。
低压配电断路器额定分断能力选择与电缆热稳定校验
低压配电断路器额定分断能力选择与电缆热稳定校验摘要:通过低压配电断路器额定分断能力分析及相关低压电缆热稳定校验,探讨工程设计中应注意的低压配电设计及电缆选型问题。
关键词:低压配电断路器;额定分断能力;电缆;热稳定校验低压配电设计的主要内容是断路器与低压电缆选型。
断路器及电缆的正确选型对于设备的安全、稳定运行至关重要。
一些电气工程设计人员在低压断路器及低压电缆选型时,忽略了对断路器及电缆的校验,结果造成设备或电缆得不到有效保护, 酿成事故。
下面探讨低压配电断路器额定分断能力的选择及电缆热稳定校验,并举例说明。
1 低压配电断路器额定分断能力选择低压配电断路器选型时,首先要选择断路器的额定分断能力,正确的选择是有效保护线路及设备的前提。
规范上对于断路器额定分断能力是有要求的,即短路保护电器的分断能力不得小于其安装处的预期短路电流。
断路器额定分断能力分为额定极限分断能力(Ics)与额定运行分断能力(Icu)。
其中 Ics 指按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力,Icu 指按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。
额定运行分断能力不大于额定极限分断能力,规范规定其值为四挡(或三挡),分别为 25%、50%、75%及 100% Ics(其中框架断路器无 25%)。
Ics 是一个重要指标,在选择低压配电断路器时,必须保证其安装处的预期短路电流小于Ics;在保证 Ics 的前提下,可根据断路器配电负荷的重要性,尽量选择 Icu 较高的断路器。
现阶段技术能力下,很多低压开关制造厂家生产的低压断路器都能够做到 Icu 等于 Ics,在设计选型时可优先考虑此类断路器。
断路器安装处的预期短路电流值由系统短路电流计算得出,对于由低压配电变压器直接供电的配电柜,由于变压器低压出线线路很短,预期短路电流值近似等于低压配电变压器低压侧短路电流。
对于大部分工程设计配电设计都属于发电机远端配电,故可按照发电机远端短路来计算变压器低压侧短路电流,如图 1 所示。
低压配电断路器额定分断能力选择与电缆热稳定校验
低压配电断路器额定分断能力选择与电缆热稳定校验
慎建军 潘世全 王 立 栗 克 颜 妍 杨 林 刘 景 河南建筑材料研究设计院有限责任公司(450002)
摘 要:通过低压配电断路器额定分断能力分析及相关低压电缆热稳定校验,探讨工程设计中应注意的低压配 电设计及电缆选型问题。 关键词:低压配电断路器;额定分断能力;电缆;热稳定校验
姨2
2
=5.4
2
mm
袁故最小截面应为
6
mm2袁选择
4
mm2 电缆截面偏小遥
236
2019 年第 2 期 河南建材
大型公共建筑电气智能化设计研究
丁洹 厦门唐人科技股份有限公司(361000)
摘 要:随着我国经济的发展,大型公共建筑的数量呈逐年上升趋势,对电气智能化设计提出了更高的要求。 文章阐述了建筑电气智能化的概念,对我国大型公共建筑电气智能化设计的劣势进行了分析,并对其发展路 径进行探讨,希望为相关人士提供有价值的参考。 关键词:大型公共建筑;电气智能化;设计
化
2 结语
在实际工程设计中,经常能够遇到上述情况袁电 缆截面选择偏小袁不能满足电缆热稳定要求遥 故应 在设计中对所选电缆进行校验袁以免因选型错误而 导致事故遥
否合适遥 电缆校验主要有压降校验尧短路校验渊包含
动稳定校验尧热稳定校验冤等袁我们以图 1 为例来探
讨电缆的短路热稳定校验遥
假设图 1 中 Q1 断路器选型为 16 A袁 型号为施
耐德 NSX160 3P TM16D曰电缆选型为 YJV-0.6/1 kV
5伊4 mm2遥 热稳定校验计算公式如下:
2 2逸 2 式中 为计算系数袁 为导体截面积袁 2 为保护 电器允许通过的能量值遥 图 2 为施耐德提供的 NSX 系列开关热应力曲线遥 由图 2 可知袁NSX160 3P TM16D 50 kA 时被限 制 的 能 力 值 为 6 伊105, 代 入 公 式 可 以 得 出 : 逸
大型公建低压配电电缆截面选择
TECHNOLOGY AND INFORMATION科学与信息化2022年3月上 121大型公建低压配电电缆截面选择刘利萍重庆市设计院有限公司 重庆 400015摘 要 电缆截面的选择是建筑工程供配电设计中的重要内容之一,电缆截面选择的合理与否,直接影响到低压配电系统的安全可靠运行以及初期的投资成本。
在大型公共建筑设计中,大多数情况下低压配电电缆截面按载流量选择即可满足要求,对于一些特殊情况必须通过校验计算来确定电缆截面。
关键词 电缆截面;低压配电系统 ;短路电流;热稳定;电压损失Selection of Low-Voltage Distribution Cable Section in Large-Scale Public Buildings Liu Li-pingChongqing Architectural Design Institute Co., Ltd., Chongqing 400015, ChinaAbstract The selection of cable section is one of the important contents in power supply and distribution design of construction engineering. The reasonable selection of cable section directly affects the safe and reliable operation of low-voltage distribution system and the initial investment cost. In the design of large-scale public buildings, in most cases, the section of low-voltage distribution cable can meet the requirements according to the current carrying capacity of cable. For some special cases, the section of cable must be determined by verification calculation.Key words cable section; low-voltage distribution system; short-circuit current; thermal stability; voltage loss引言随着我国经济、社会的快速发展,各地的城市建设发展也很迅速。
热稳定性校验(主焦.
井下高压开关、供电电缆动热稳定性校验一、-350中央变电所开关断路器开断能力及电缆热稳定性校验123G 35kV 2Uz%=7.5△P N.T =12kW△P N.T =3.11kW S N.T =8MVA 6kVS1点三相短路电流计算: 35kV 变压器阻抗:222.1.u %7.5 6.30.37()1001008z N TN T U Z S ⨯===Ω⨯35kV变压器电阻:222.1.22. 6.30.0120.007()8N TN T N T U R P S =∆=⨯=Ω35kV 变压器电抗:10.37()X ===Ω电缆电抗:02(x )0.415000.087800.66()10001000i L X ⨯⨯+⨯===Ω∑电缆电阻:02(x )0.11815000.1187800.27()10001000i L R ⨯⨯+⨯===Ω∑总阻抗:21.370.66)1.06(Z ==Ω S1点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算:S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KV A ,查表的:(2)2d I =2.5KAS2点三相短路电流:32d d =2.88I I KA =1、架空线路、入井电缆的热稳定性校验。
已知供电负荷为3128.02KV A ,电压为6KV ,需用系数0.62,功率因数cos 0.78φ=,架空线路长度1.5km ,电缆长度780m (1)按经济电流密度选择电缆,计算容量为3128.020.622486.37cos 0.78kp S KVA φ⨯===。
电缆的长时工作电流Ig 为239.25Ig === A按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于239.25A 符合要求。
(2)按电压损失校验,配电线路允许电压损失5%得60000.1300Uy V∆=⨯=,线路的实际电压损失109.1L U COS DS φφ∆===,U ∆小于300V电压损失满足要求(3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积:32min d==17.15100S I mm 其中:i t ----断路器分断时间,一般取0.25s ;C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电缆负荷率为80%。
绝缘导线的热稳定校验
现对《低压配电设计规范》GB50054-95的第4.2.2条的规定,谈谈我的意见。
第4.2.2条:绝缘导线的热稳定校验应符合下列规定:一. 当短路持续时间不大于5s时,绝缘导体的热稳定应按下式进行校验:S≥It0.5/K(4.2.2)式中 S——绝缘导体的线芯截面(mm2);I——短路电流有效值(均方根值A);t——在已达到允许最高持续工作温度的导体内短路电流持续作用的时间(s);K——不同绝缘的计算系数。
二.不同绝缘、不同线芯材料的K值,应符合表4.2.2的规定。
三.短路持续时间小于0.1s时,应计入短路电流非周期分量的影响;大于5s时应计入散热的影响。
在执行该条规定时,需注意下列问题:1. 公式(4.2.2)只适合短路持续时间不大于5s。
2. 短路电流I如何确定:a) 相线的热稳定校验:在220/380配电系统中,一般以三相短路电流为最大。
两相短路电流在远离发电机处发生短路时仅为三相短路电流的0.866倍,只有在发电机出口处短路时两相短路电流可能达三相短路电流的1.5倍。
因此,当短路点远离发电机时,校验相线的热稳定时I值采用三相短路电流值;在发电机出口处发生短路时I值采用两相短路电流。
b) 中性线(N)的热稳定校验:取相线对中性线的短路电流作为I值。
c) TN-C系统的PEN、TN-S系统的PE、TT系统的PE、IT系统的PE线热稳定校验:TN-C系统的PEN及TN-S系统的PE线的热稳定校验取相线对PEN或PE线的短路电流作为I值。
TT系统,考虑到某一设备发生中性线碰外壳接地,因中性线基本上为地电位,故障电流甚小,回路上的过电流保护以及RCD都无法动作,此故障作为第一次故障得以长期潜伏下来。
但因中性线碰设备外壳与PE线导通,此TT系统实际已转变为TN系统。
其后设备发生相线碰外壳时,PE线上流过的故障电流将和TN系统同样大,以金属导体为通路的金属性短路电流。
因此TT系统的PE线的热稳定校验所采用的I值需考虑上述的要求。
低压电缆热稳定校验探讨
低压电缆热稳定校验探讨低压电缆热稳定校验探讨随着现代社会的发展和人民生活水平的提高,电力作为人们生产和生活中不可或缺的能源,得到了广泛应用。
所以,电缆作为输送电能的基础,也成为了生产生活不可或缺的电力工具。
然而,在电缆运行的过程中,由于环境因素的不断变化,电缆材料的性能也会发生一定的变化,这就对电缆的热稳定性进行了重新的考量。
电缆的热稳定性指的是在长时间运行及在高温下运行时,电缆仍能够维持其正常的性能和理想的工作状态。
为了保障电力设备的正常运行,提高电缆的安全可靠性,需要对电缆的热稳定性进行校验和探讨。
首先,选择合适的校验方法和设备。
电缆热稳定性校验可以采用模拟实验法和实际运行检测法两种方法进行。
模拟实验法指的是将电缆材料或组件暴露在一定的高温下,对其进行加速老化试验,以推算电缆在实际运行中的热稳定性。
而实际运行检测法则是对已经在运行中的电缆进行性能检测和分析,以评估电缆的热稳定性。
无论采用哪种方法进行校验,都需要选择合适的校验设备和实验仪器,以保证校验结果的可靠性和准确性。
其次,注重电缆的材料选择和加工工艺。
电缆的材料和加工工艺直接影响到电缆的热稳定性。
选用优质的电缆材料,并采取合理的加工工艺,可以有效提高电缆的热稳定性。
在实际制造过程中,需要注重各种因素的搭配和运用,从而达到最佳的加工效果,提高电缆的品质和稳定性。
最后,定期进行电缆的保养和维护。
无论是在实验室还是在实际运行应用中,电缆的热稳定性都需要定期进行检测和校验。
只有通过定期的检测,及时发现和解决问题,才能确保电缆的长期稳定运行,提高电缆的安全可靠性。
综上所述,电缆的热稳定性校验和探讨是一个持久和不断深入的过程。
只有采用合适的校验方法和设备,注重电缆的材料选择和加工工艺,并定期进行电缆的保养和维护,才能保障电缆的正常运行,提高电缆的安全可靠性。
电缆的热稳定探讨不仅是对电缆技术的提升,也是对电力行业的进一步发展和优化的重要环节。
电缆是现代工业生产和人们生活不可缺少的物品,它在生产加工、交通、通信等领域中扮演着重要的角色。
低压电缆热稳定校验 肖祥
低压电缆热稳定校验肖祥摘要:在不同变压器容量下,对不同电缆截面以及不同短路电流持续时间探讨低压电缆热稳定校验。
关键词:热稳定校验;三相短路电流;电缆截面;最小供电长度;限流断路器;熔断器0引言根据《低压配电设计规范》GB50054-2011(文中简称《低规》)第6.2.1条:" 配电线路的短路保护电器,应在短路电流对导体和连接处产生的热作用和机械作用造成危害之前切断电源。
”以及6.2.3条:“绝缘导体的热稳定,应按其截面积校验,且应符合下列规定:1 当短路持续时间小于等于5s时,绝缘导体的截面积应符合本规范公式(3.2.14)的要求,其相导体的系数可按本规范表A.0.7的规定确定;2 短路持续时间小于0.1s时,校验绝缘导体截面积应计入短路电流非周期分量的影响;大于5s时,校验绝缘导体截面积应计入散热的影响。
”相关规定,要求我们在电气设计中对绝缘导体进行热稳定校验。
目前,大多设计人员在设计过程中采用适当加大供电电缆截面的方式来满足热稳定校验,但没有可靠的计算数据依据来确定具体供电电缆的截面或根本未进行热稳定校验。
为此,本文将就低压电缆热稳定校验展开探讨。
1 热稳定校验公式(本文抛砖引玉,仅以当短路持续时间0.1s<t<5s为计算依据进行校验)根据《低规》公式3.2.14:S≥(I/k)√t(3.2.14)公式1式中:S——保护导体的截面积(mm2);I——通过保护电器的预期故障电流或短路电流[交流方均根值(A)];t——保护电器自动切断电流的动作时间(s);k——系数,按本规范公式(A.0.1)计算或按表A.0.2~表A.0.6确定。
针对目前大多数建筑低压出线均采用交联聚乙烯铜导体电缆,故本文中K值=143另笔者认为式中的保护电器自动切断电流的动作时间即为短路电流持续时间而非断路器全分闸时间。
2 确定短路点电缆始端至终端间任一点均可能发生短路,怎么选取短路计算点,参照文献(2)相关做法,笔者建议按以下方式确定:a.放射式配电电缆选其末端作为短路计算点,假如中间有接头则选在靠近电源侧的接头处。
浅析变压器低压侧出线电缆短路热稳定校验
(2) 低压断路器的特性。短路电流持续时
-19 •
Mae No.7 Vol.10 (Serial No.115) 2019
间取决于保护电器,短路电流持续时间越长,累 计的热量越大。某些断路器能限制通过电缆的 能量(允通能量曲线)。
短路点按照低压断路器出口处以及在5 m、 10 m、15 m低压电缆末端进行4组计算。 2.3断路器选择
选择以下3种不同品牌的塑壳断路器 (MCCB)进行计算。
(1) T2H TMD/3P/25A断路器其瞬动短路 电流持续时间不大于16 ms。T2H断路器的允通 能量曲线如图1所示。
18 0 溫 一 ^
-供配电-
* (S.ZV)、
图2 CM3断路器的允通能量曲线
经与厂家技术部咨询,计算时25 A断路器 可按照63 A允通能量曲线考虑。
(3) NSX-100H/3P/25A断路器瞬动短路电 流持续时间不大于20 ms。NSX断路器的允通能 量曲线如图3所示。
(S.ZV)/*
)、*(s.< 溫 ® u
0引言
近年来,多次在施工图外审时被审图专家提 出变压器低压侧电缆不满足热稳定要求 ,容量为 1 250 kVA、1 600 kVA变压器低压侧电缆的截面 至少需要选择16 mm2以上。通过查阅相关手册 及国家规范,并进行了针对性计算,发现变压器 低压侧出线电缆截面的热稳定校验 ,并非仅考虑 变压器容量。
1热稳定校验的相关概念
1.1相关定义 短路电流通过导体时产生热量,热量向周围
介质散发,衡量电路及元件在很短的时间内能否 承受短路时的巨大热量为热稳定%门。本文讨论 小截面供电回路,只考虑保护电器瞬动时的短路 电流热稳定。
三十七、热稳定如何校验
热稳定如何校验?热稳定校验是短路电流对导体的热作用的计算,理论上任何一点都需要考虑,对于同一条线路,始端短路电流最大,一般按始端校验,如果始端满足,那么整条线路都满足。
热稳定需要按最大短路电流考虑,计算最大短路电流需要考虑以下五个问题:1)最大短路电流的电压系数,按可能的最大值。
不能简单地按标称电压,变压器附近往往比标称电压高5%,甚至更多。
2)选择电网结构,考虑电厂与馈电网络可能的最大馈入。
3)用等值阻抗等值外部网络时,应使用最小值。
4)计及电动机的影响。
5)线路电阻采用20℃时的数值。
按上述条件计算可能的最大短路电流来校验热稳定,若满足,就能保证发生短路时线路能够被保护。
关于热稳定的相关内容,GB 50054—2011的正文及条文说明如下:1)配电线路的短路保护电器,应在短路电流对导体和连接处产生的热作用和机械作用造成危害之前切断电源。
2)绝缘导体的热稳定,应按其截面积校验,且应符合下列规定:①当短路持续时间小于或等于5s时,绝缘导体的截面积应符合式(18)的要求,其相导体的系数可按表46的规定确定。
②短路持续时间小于0.1s时,校验绝缘导体截面积应计入短路电流非周期分量的影响;大于5s时,校验绝缘导体截面积应计入散热的影响。
式中 S——保护导体的截面积(mm2);I——通过保护电器的预期故障电流或短路电流[交流方均根值(A)];t——保护电器自动切断电流的动作时间(s);k——系数,按规范中式(A.0.1)计算或按表 A.0.2~表 A.0.6确定。
相导体的初始、最终温度和系数,其值应按表46的规定确定。
▼表46 相导体的初始、最终温度和系数▲注:括号内数值适用于截面积大于300mm2的聚氯乙烯绝缘导体。
裸导体温度不损伤相邻材料时的初始、最终温度和系数,其值应按表47的规定确定。
▼表47 裸导体温度不损伤相邻材料时的初始、最终温度和系数《工业与民用配电设计手册》中的公式及k值如下:在回路任一点短路引起的电流,使导体达到允许极限温度之前应分断电路。
低压配电设计规范GB5005495
低压配电设计规范 GB50054-95主编部门:中华人民共和国机械工业部批准部门:中华人民共和国建设部施行日期:1996 年6 月1 日第一章总则第1.0.1条为使低压配电设计执行国家的技术经济政策,做到保障人身安全、配电可靠、电能质量合格、节约电能、技术先进、经济合理和安装维护方便,制订本规范。
第1.0.2条本规范适用于新建和扩建工程的交流、工频500V以下的低压配电设计。
第1.0.3条低压配电设计应节约有色金属,合理地选用铜铝材质的导体。
第1.0.4条低压配电设计除应执行本规范外,尚应符合现行的国家有关标准、规范的规定。
第二章电器和导体的选择第一节电器的选择第2.1.1条低压配电设计所选用的电器,应符合国家现行的有关标准,并应符合下列要求:一、电器的额定电压应与所在回路标称电压相适应;二、电器的额定电流不应小于所在回路的计算电流;三、电器的额定频率应与所在回路的频率相适应;四、电器应适应所在场所的环境条件;五、电器应满足短路条件下的动稳定与热稳定的要求。
用于断开短路电流的电器,应满足短路条件下的通断能力。
第2.1.2条验算电器在短路条件下的通断能力,应采用安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响。
第2.1.3条当维护、测试和检修设备需断开电源时,应设置隔离电器。
第2.1.4条隔离电器应使所在回路与带电部分隔离,当隔离电器误操作会造成严重事故时,应采取防止误操作的措施。
第2.1.5条隔离电器宜采用同时断开电源所有极的开关或彼此靠近的单极开关。
第2.1.6条隔离电器可采用下列电器:一、单极或多极隔离开关、隔离插头;二、插头与插座;三、连接片;四、不需要拆除导线的特殊端子;五、熔断器。
第2.1.7条半导体电器严禁作隔离电器。
第2.1.8条通断电流的操作电器可采用下列电器:一、负荷开关及断路器;二、继电器、接触器;三、半导体电器;四、10A及以下的插头与插座。