定时计数器 中断

合集下载

定时器中断触发条件

定时器中断触发条件

定时器中断触发条件
定时器中断触发条件是指当定时器计数器的值达到预设的目标值时,会产生中断信号,即触发定时器中断。

具体来说,定时器中断触发条件包括两个方面:
1. 定时器计数器的值达到目标值:定时器是一种可以定期产生中断的硬件设备,它通过一个计数器来记录时间。

当计数器的值达到预设的目标值时,就会触发定时器中断,通知CPU进行处理。

2. 定时器中断使能:在使用定时器中断时,需要使能相应的中断功能。

通常在代码中会设置定时器中断掩码,使得定时器中断可以被CPU识别和响应。

综上所述,定时器中断触发条件是指当定时器计数器的值达到预设的目标值并且定时器中断使能时,会产生中断信号,即触发定时器中断。

单片机实验-外部中断、计数器定时器

单片机实验-外部中断、计数器定时器

1)用单次脉冲申请中断INT0,在中断处理程序中对输出信号进行反转。

ORG 0000HLJMP STARTORG 0003HLJMP INT0START:CLR P1.0MOV TCON, #01HMOV IE, #81HLJMP $INT0:PUSH PSWCPL P1.0POP PSWRETIEND结果:按一下单脉冲小灯亮,再按一下,小灯灭接线:INT0接单脉冲P1.0接个小灯2)用单次脉冲申请中断INT1,在中断处理程序中实现8个小灯左移点亮1次。

ORG 0000HLJMP STARTORG 0013HLJMP INT1START:MOV TCON,#04HMOV IE,#84HCLR PX1MOV A,#01HSJMP $INT1:MOV R1,#8LOOP:MOV P1,ALCALL DELAYRL ADJNZ R1,LOOPRETIDELAY:MOV R6,#200DELAY1:MOV R7,#125DELAY2:DJNZ R7,DELAY2DJNZ R6,DELAY1RETEND结果:按一下单脉冲,8个小灯左移点亮一次接线:INT1接单脉冲P1口接8个小灯3)将8051计数器T0,按计数器模式和方式1工作,对P3.4(T0)引脚进行单脉冲计数,并将其数值按二进制在P1口驱动LED灯上显示出来。

ORG 0000HSTART:MOV TMOD,#05HMOV TH0,#0MOV TL0,#0SETB TR0LOOP:MOV P1,TL0LJMP LOOPEND结果:P1口与四个小灯相连,按单脉冲的次数在四个小灯上显示接线:(P3.4)T0接单脉冲P1.0到P1.4接4个小灯4)用CPU内部定时器T0中断方式计时,实现每1秒钟输出状态发生一次反转。

ORG 0000HLJMP STARTORG 000BHLJMP INTSTART: MOV TMOD,#01HMOV B,#0AH;即10,设循环次数10次。

中断与定时器和计数器实验

中断与定时器和计数器实验

中断与定时器和计数器实验一、实验目的:1.掌握单片机的中断的原理、中断的设置,掌握中断的处理及应用2.掌握单片机的定时器/计数器的工作原理和工作方式,学会使用定时器/计数器二、实验内容:(一)、定时器/计数器应用程序设计实验1.计数功能:用定时器1方式2计数,每计数满100次,将P1.0取反。

(在仿真时,为方便观察现象,将TL1和TH1赋初值为0xfd,每按下按键一次计数器加1,这样3次就能看到仿真结果。

)分析:外部计数信号由T1(P3.5)引脚输入,每跳变一次计数器加1,由程序查询TF1。

方式2有自动重装初值的功能,初始化后不必再置初值。

将T1设为定时方式2,GATE=0,C/T=1,M1M0=10,T0不使用,可为任意方式,只要不使其进入方式3即可,一般取0。

TMOD=60H。

定时器初值为X=82-100=156=9CH,TH1=TL1=9CH。

(1)硬件设计硬件设计如图所示(2)C源程序#include "reg51.h" sbit P1_0=P1^0;void main(){TMOD=0x60;TH1=0xfd;TL1=0xfd;TR1=1;ET1=1;while(1){if(TF1==1){P1_0=~P1_0;TF1=0;}}}(3)proteus仿真通过Keil编译后,利用protues软件进行仿真。

在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

(二)中断应用程序设计实验2.中断定时使用定时器定时,每隔10s使与P0、P1、P2和P3端口连接的发光二极管闪烁10次,设P0、P1、P2和P3端口低电平灯亮,反之灯灭。

分析:中断源T0入口地址000BH;当T0溢出时,TF0为1发出中断申请,条件满足CPU响应,进入中断处理程序。

主程序中要进行中断设置和定时器初始化,中断服务程序中安排灯闪烁;TL0的初值为0xB0,TH0的初值为0x3C,执行200次,则完成10s定时。

实验五 中断与定时(计数)器实验(Keil)

实验五  中断与定时(计数)器实验(Keil)

实验五中断与定时/计数器实验一、实验目的1.了解单片机中断与定时器工作原理,掌握中断与定时器程序结构;2.掌握在µVision环境中调试中断与定时器程序的方法。

二、实验仪器和设备Keil软件;THKSCM-2综合实验装置;三、实验原理及实验内容1.示例及相关设置(1)建立一个文件夹:lx51。

(2)利用菜单File的New选项进入编辑界面,输入下面的源文件,以lx51.asm文件名存盘到lx51文件夹中。

ORG 0000HLJMP MAINORG 0003HMOV P2,ARL ARETIORG 0040HMAIN:MOV SP,#5FHMOV A,#0FEHSETB EASETB EX0SETB IT0SJMP $END(3)在lx51文件夹下建立新工程,以文件名lx51存盘(工程的扩展名系统会自动添加)。

(4)在Project菜单的下拉选项中,单击Opt ions for Target ‘Target1’,在弹出的窗口中要完成一下设置:○1单片机芯片选择A T89C51选择完器件,按“确定”后会弹出一个提示信息框,提示“Copy Startup Code to Project Folder and Add File to Project?”,选择“是”。

○2晶振频率设为11.0592MHz。

○3Output标签下的Create HEX File前小框中要打钩。

○4在Debug标签选择Use Simulator(软件模拟)。

(5)在Project菜单的下拉选项中,单击build Target 选项完成汇编,生成目标文件(.HEX)。

按F5运行程序。

(6)在P3窗口的P3.2位单击鼠标(模拟INT0引脚信号),观察P2窗口变化。

(7)修改程序,使之适合字节数大于8的中断服务情况。

(8)利用单片机最小系统板演示该程序的运行情况。

2.示例及相关设置(1)建立一个文件夹:lx52。

(2)利用菜单File的New选项进入编辑界面,输入下面的源文件,以lx52.asm文件名存盘到lx52文件夹中。

单片机中断系统和定时计数器

单片机中断系统和定时计数器

单片机中断系统和定时计数器在单片机的世界里,中断系统和定时计数器就像是两个得力的助手,为单片机的高效运行和精确控制发挥着至关重要的作用。

接下来,让我们一起深入了解一下这两个重要的概念。

首先,咱们来聊聊中断系统。

想象一下,单片机正在专心致志地执行着一个任务,突然有个紧急情况发生了,比如外部设备传来了一个重要的数据需要立即处理。

这时候,中断系统就像是一个“紧急警报器”,让单片机暂停当前的任务,迅速去处理这个紧急情况。

处理完之后,再回到原来被中断的地方继续执行之前的任务。

中断系统的好处那可太多了。

它大大提高了单片机的工作效率。

要是没有中断,单片机就得一直按照顺序依次执行任务,可能会错过一些关键的信息或者无法及时响应紧急事件。

有了中断,单片机就能在多个任务之间灵活切换,做到“分身有术”。

中断系统一般由中断源、中断允许控制、中断优先级控制和中断响应等部分组成。

中断源就是那些能引起中断的事件,比如外部中断、定时器中断、串口中断等等。

中断允许控制就像是一道“开关”,决定了是否允许某个中断源发出中断请求。

中断优先级控制则是用来确定当多个中断同时发生时,先处理哪个中断,后处理哪个中断。

再来说说定时计数器。

在很多实际应用中,我们经常需要对时间进行精确的测量和控制,这时候定时计数器就派上用场了。

比如说,我们要控制一个小灯每隔1 秒钟闪烁一次,或者要统计外部脉冲的个数,都可以用定时计数器来实现。

定时计数器的工作原理其实并不复杂。

它就像是一个不断计数的“小闹钟”。

可以设置为定时模式或者计数模式。

在定时模式下,它根据单片机内部的时钟信号进行计数,当计数值达到设定的值时,就会产生一个定时中断。

在计数模式下,它对外部输入的脉冲进行计数,当计数值达到设定值时,也会产生中断。

比如说,我们要实现一个 1 毫秒的定时,假设单片机的时钟频率是12MHz,那么一个机器周期就是 1 微秒。

如果我们要定时 1 毫秒,就需要设置定时计数器的初值,让它经过 1000 个机器周期后产生中断。

项目三定时计数器和中断系统应用

项目三定时计数器和中断系统应用

(四)中断入口地址
表3-4 中断入口地址
地址
说明
0003H~000AH
外部中断0中断地址区
000BH~0012H
定时/计数0中断地址区
0013H~001AH
外部中断1中断地址区
001BH~0022H
定时/计数1中断地址区
0023H~002AH
串行中断地址区
定时器/计数器的设计步骤 初始化的内容如下: 设置TMOD寄存器参数 计算计数初值 计算出计数初始值并写入TH0、TL0、TH1、TL1中。 计数器的初始值和实际计数值并不相同,两者的换算关系如下:设实际计数值为C,计数最大值为M,计数初始值为X,则X=M-C。其中计数最大值在不同工作方式下的值不同,具体如下:
单击此处添加文本具体内容,简明扼要地阐述你的观点
202X
项目三、定时计数器和中断系统应用
项目三、定时/计数器和中断系统应用--- 任务1.秒脉冲发生器
能力目标 1.能正确运用定时/计数器产生秒信号 2.秒脉冲发生器程序的编写 3.学会中断控制系统的应用 4.秒脉冲发生器程序的仿真调试方法 学习内容 1.掌握定时/计数器的组成及功能 2.掌握单片机内部结构资源:TH0、TL0、TH1、TL1、TMOD、TCON 3.掌握中断控制系统的概念及定时功能 4.理解预置数的用法和溢出的概念
位控制转移指令 JBC bit,rel; 若(bit)=1时,则转移到标号对应的地址,并且同时bit←0。 例如:JBC TF0,NEXT; 若定时器0数据溢出时,即TF0=1时,则转移到标号NEXT对应的地址,并且同时清定时溢出标志TF0←0,这样下次就可以重新定时/计数。
比较转移指令 CJNE A,#data,rel; ≠data,PC+3+rel跳转到目标地址, =data,PC+3顺序向下执行。 CJNE A,direct,rel; CJNE Rn,#data,rel; CJNE @Ri,#data,rel;

ch07定时计数与中断系统

ch07定时计数与中断系统

11000B=18H赋给TL0。
MOV TL0 , #18H
方法一:
SETB TR0
;启动T0工作
采用查询工作方式,编程如下:
LOOP:JNB TF0 , $ ;$为当前指令指针地址
ORG 0000H
CLR TF0
AJMP MAIN
SETB P1.0
;产生2µs正脉冲
ORG 0100H
MAIN:CLR P1.0 MOV TMOD , #00H;设定T0的工作方式 MOV TH0 , #0DDH ;给定时器T0送初值
MCS-51单片机复位后,IP寄存器低5位全部被清0,将所有中断 源设置为低优先级中断。
(2) 不同优先级中断请求同时发生时CPU响应的优先顺序 高优先级可以打断低优先级
(3) 相同优先级中断请求同时发生时CPU响应的优先顺序 MCS-51单片机的5个中断源,当它们处于同优先级时的优先
级顺序如下表所示。
中断服务子程序为:
SERVE: JNB P1. 0 , L1 ;若X1无故障,跳到L1
CLR P1. 3 ;点亮LED1
L1:
JNB P1. 1 , L2 ;若X2有故障,跳到L2
CLR P1. 4 ;点亮LED2
L2:
JNB P1. 2 , L3 ;若X3有故障,跳到L3
CLR P1. 5 ;点亮 LED3
(2) 内部中断源 内部中断源有定时器T0和T1溢出中断源,以及串行口发送/
接收中断源。MCS-51内部有2个定时器/计数器,我们分别称它 们为定时器T0和定时器T1,定时器T0和T1内部都有各自的计数器。 当计数器计满溢出时,分别产生溢出中断,使各自的中断标志位 TF0、TF1置“1”,产生中断请求标志。TF0和TF1为TCON寄存器 中的2位。 TF0:定时器T0的溢出中断标志位。

c51单片机的定时器和中断

c51单片机的定时器和中断

二、方式1 方式
方式1结构 图6-5 T0 (或T1) 方式 结构 或
三、方式2 方式
TMOD 申请 TCON 中断 D7 TF1 TR1 TF0 TR0 T1引脚 溢出 TL1 重装初值控制 TH1 8位 &
≥1
0 1
M0 M1 C/T
D4
1
1 0
机器周期
GATE D7
1 INT1引脚
D0
方式2结构 图6-6 T0 (或T1) 方式 结构 或
图6-3 方波硬件设计和仿真波形
(2)源程序 ) //中断方式 中断方式 #include "reg51.h" #include "stdio.h" Uart_Init(); sbit P1_1=P1^1; void main() { TMOD=0X01; // T0工作在方式 工作在方式1 工作在方式 TL0=0xB0; //给TL0置初值 给 置初值 TH0=0x3c; //给TH0置初值 给 置初值 ET0=1; //开串行口中断 开串行口中断 EA=1; TF0=0; TR0=1; //启动 启动T0 启动 while(1) ; //设置断点处 设置断点处 } void Int_T0() interrupt 1 using 2 { TL0=0xB0; TH0=0x3c; //重赋初值 重赋初值 P1_1=!P1_1; //定时时间到 定时时间到P1_1取反 定时时间到 取反 printf("Timer1 overflow in Mode 1\n");/* 定时 溢出后, 器0溢出后,输出提示信息 */ 溢出后 }
计数器控制寄存器TCON 三、定时/计数器控制寄存器 定时 计数器控制寄存器
定时器控制字TCON的格式如下。 位地址 位符号 8FH TF1 8EH TR1 8DH TF0 8CH TR0 8BH IE1 8AH IT1 89H IE0 88H IT0

定时器计数器中断综合实验

定时器计数器中断综合实验

报告成绩:教师签字:批改日期:评语:学生实验报告课程名称单片机原理及接口技术姓名实验名称定时器/计数器、中断综合实验班级实验目的掌握51系列单片机中断系统及定时器的工作原理及使用技巧学号实验日期实验内容(1)P1 口做输出口,接八只发光二极管,高电平点亮,控制一个. 方向循环点亮8只LED,每个LED点亮时间为50ms;(2)在以上基础上加外部中断内容,由外部中断请求时,8只LED全亮(3)P1 口做输出口,接八只发光二极管,高电平点亮,控制一个方向循环点亮8只LED,每个LED点亮时间改为2s实验地点实验组号实验设备计算机 wave6000程序 lab2000p试验箱同组人1.实验电路及连线本次试验不做要求2.程序流程图本次实验无3.源程序(1 ORG 0000H MOV TL0,#58HLJMP MAIN SETB EAORG 0003H SETB ET0ORG 000BH SETB TR0LJMP SER0 SJMP $ORG 1000H SER0:MOV TH0,#9EHMAIN: MOV A,#01H MOV TL0,#58HLOOP: MOV P1,A RL AMOV TMOD,#01H MOV P1,AMOV TH0,#9EH RETIEND(2ORG 0000H SER0:MOV TH0,#9EHLJMP MAIN MOV TL0,#58HORG 0003H RL ALJMP SER1 MOV P1,AORG 000BH RETILJMP SER0 SER1:PUSH ACCORG 1000H PUSH PSWMAIN: MOV A,#01H MOV A,#0FFH LOOP: MOV P1,A MOV P1,AMOV TMOD,#01H LCALL DELAY MOV TH0,#9EH POP PSWMOV TL0,#58H POP ACCSETB EA RETISETB ET0 DELAY:MOV R7,#0FFH SETB TR0 L1:MOV R6,#0FAH SETB EX0 DJNZ R6,$SETB IT0 DJNZ R7,L1SJMP $ RETEND(3 ORG 0000H SETB EALJMP MAIN SETB ET0ORG 000BH SETB TR0LJMP SER0 SJMP $ORG 1000H SER0:MOV TH0,#9EH MAIN: MOV A,#01H MOV TL0,#58H LOOP: MOV P1,A DJNZ R0,EXIT MOV R0,#28H MOV R0,#28HMOV TMOD,#01H RL AMOV TH0,#9EH MOV P1,AMOV TL0,#58H EXIT:RETIEND4.结果记录及分析(1)结果: P1 口做输出口,接八只发光二极管,高电平点亮,控制一个方向循环点亮8只LED,每个LED点亮时间为50ms;分析:用定时器方式0,使用定时功能,定时器以中断方式工作。

51单片机中断系统详解

51单片机中断系统详解

51单片机中断系统详解51 单片机中断系统详解(定时器、计数器)51 单片机中断级别中断源INT0---外部中断0/P3.2 T0---定时器/计数器0 中断/P3.4 INT1---外部中断1/P3.3 T1----定时器/计数器1 中断/P3.5 TX/RX---串行口中断T2---定时器/计数器 2 中断第5 最低4 5 默认中断级别最高第2 第3 第4 序号(C 语言用) 0 1 2 3 intrrupt 0中断允许寄存器IE位序号符号位EA/0 ------ET2/1 ES ET1 EX1 ET0 EX0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 EA---全局中允许位。

EA=1,打开全局中断控制,在此条件下,由各个中断控制位确定相应中断的打开或关闭。

EA=0,关闭全部中断。

-------,无效位。

ET2---定时器/计数器2 中断允许位。

ET2=1, 打开T2 中断。

ET2=0,关闭T2 中断。

关,。

ES---串行口中断允许位。

关,。

ES=1,打开串行口中断。

关,。

ES=0,关闭串行口中断。

关,。

ET1---定时器/计数器1 中断允许位。

关,。

ET1=1,打开T1 中断。

ET1=0,关闭T1 中断。

EX1---外部中断1 中断允许位。

EX1=1,打开外部中断1 中断。

EX1=0,关闭外部中断1 中断。

ET0---定时器/计数器0 中断允许位。

ET0=1,打开T0 中断。

EA 总中断开关,置1 为开;EX0 为外部中断0 (INT0) 开关,。

ET0 为定时器/计数器0(T0)开EX1 为外部中断1(INT1)开ET1 为定时器/计数器1(T1)开ES 为串行口(TX/RX)中断开ET2 为定时器/计数器2(T2)开ET0=0,关闭T0 中断。

EX0---外部中断0 中断允许位。

EX0=1,打开外部中断0 中断。

EX0=0,关闭外部中断0 中断。

中断优先级寄存器IP位序号位地址------PS/0 PT1/0 PX1/0 PT0/0 PX0/0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 -------,无效位。

中断定时计数器课件

中断定时计数器课件

例 5 编写一段程序,功能要求为:当P1.0引脚的电平正跳变时,对P1.1的输入脉冲 进行计数;当P1.2引脚的电平负跳变时,停止计数,并将计数值写入R0、R1(高位 存R1,低位存R0)。 解答:将P1.1的输入脉冲接入INT0,即使用T0计数器完成对P1.1口的脉冲计数。编写程 序如下: ORG 0000H LJMP MAIN ORG 000BH LJMP IT0P MAIN: JNB P1.0,MAIN MOV TMOD,#05H ;定 时器/计数器T0为计数方式1 SETB TR0 ;启动T0,开 始计数 SETB ET0 ;允许T0中断 SETB EA ;CPU开中断 WAIT: JB CLR CLR MOV MOV AJMP INC RETI P1.2,WAIT EA TR0 R1,TH0 R0,TL0 $ R2
ORG 000BH CPL P1.0 MOV TL0, #9CH RETI ORG 001BH CPL P1.1 MOV TH0, #38H RETI ;TL0 中断服务程序 ;P1.0 取反 ;重新装入计数初值 ;中断返回 ;TH0 中断服务程序 ;P1.1取反 ;重新装入计数初值 ;中断返回
AJMP DEL REP:CPL P1.0 AJMP DEL ; ;若计数溢出,则输出取反
TINT0: JNB 20H.0,NEXT MOV TL0,#0B5H MOV TH0,#0FFH CLR P1.1 CPL 20H.0 SJMP LAST NEXT: MOV TL0,#0CEH MOV TH0,#0FFH SETB P1.1 CPL 20H.0 LAST:RETI
方法二: 采用方式2 定时器中断 加延时程序
ORG 0000H LJMP MAIN ORG 000BH LJMP IT0P MAIN: MOV TMOD,#02H;定时器/ 计数器T0为定时方式2 IT0P:CLR EA MOV TL0,#4AH;定时 CLR P1.0 ;关中断 364μs初值赋值 MOV R0,#9 ;延时26μs SETB TR0;启动T0,开始 DLY:DJNZ R0,DLY MOV TL0,#4AH ;定时364μs 计数 初值赋值 SETB ET0;允许T0中断 SETB P1.0 SETB EA;CPU开中断 SETB EA RETI SETB P1.0 WAIT: AJMP WAIT

单片机实验3 中断、定时器计数器实验

单片机实验3 中断、定时器计数器实验

西南科技大学实验报告课程名称:单片机原理及应用A实验名称:中断、定时器/计数器实验姓名:学号:班级:生医1401指导教师:雷华军西南科技大学信息工程学院制实验题目数码管动态扫描显示驱动、键盘动态扫描驱动一、实验目的1、熟练巩固单片机开发环境KEIL界面的相关操作和PROTUES仿真软件的操作,会使用HEX文件进行单片机的仿真。

2、了解定时器的原理和四种工作方式的使用方法,学习定时器的相关应用,包括产生信号和计数,利用定时器进行延时等。

3、进一步掌握熟练单个数码管以及多位数码管的显示原理,学会将0~1000的数字进行显示。

4、掌握利用单片机产生矩形方脉冲的相关原理。

二、实验原理1、定时器结构和原理图①上图①为定时器T0、T1的结构,其中振荡器经12分频后作为定时器的时钟脉冲,T为外部计数脉冲输入端,通过开关K1选择。

反相器,或门,与门共同构成启/停控制信号。

TH 和TL为加1计数器,TF为中断标志。

每接收到一个脉冲,加1计数器自动加1,当计数器中的数被加为0时产生溢出标志,TF将被置1。

计数器工作方式的选择和功能的实现需要配置相应的寄存器TMOD和TCON。

2、定时器工作方式定时器共有四种工作方式分别为方式0——方式3。

方式0:13位计数器,最大计数值为213个脉冲。

方式1:16位计数器,最大计数值为216个脉冲。

方式2:8位自动重装计数器。

该方式下,TL进行计数工作,TH用于存放计数初值,当产生溢出中断请求时会自动将TH中的初值重新装入TL,以使计数器继续工作。

方式3:仅限于T0计数器,在方式3下,T0计数器被分成两个独立的8为计数器TL0和TH0。

3、定时器间隔1ms产生一个脉冲利用单片机1 P3.0口进行脉冲的输出,通过定时器进行端口定时控制,实现每1ms高低电平变换。

就可以实现一个占空比为50%的矩形脉冲输出。

对于定时器的定时功能实现,需要进行定时器模式选择,定时器初值设定。

4、利用中断进行脉冲的计数将单片机1 P3.0口输出的脉冲连接到单片机2的中断INT0口P3.2,通过脉冲的高低电平变换触发中断0,进行脉冲个数的计数。

微机原理及单片机应用技术第8章 80C51的中断与定时计数器

微机原理及单片机应用技术第8章 80C51的中断与定时计数器

定时/计数器的结构
T1引脚
TH1
TL1
TH0
T0引脚
TL0
机器周 期脉冲
TH1、TL1
内部总线
TH0、TL0
TF1 TR1 TF0 TR0 GATE C/T M1 M0 GATE C/T M1 M0
TCON
TMOD
TCON
外部中断相关位
T1方式
T0方式
TMOD
2020/10/27
21
计数脉冲源
定时/计数器的工作原理
76543210
TCON TF1 TR1 TF0 TR0
字节地址:88H
TFx:Tx溢出标志位。响应中断后TFx有硬件自动清0。 用软件设置TFx可产生同硬件置1或清0同样的效果。
TRx:Tx运行控制位。置1时开始工作;清0时停止工作。 TRx要由软件置1或清0(即启动与停止要由软件控制)。
2020/10/27
2020/10/27
24
定时/计数器的控制示意图
M1M0 工作方式


00 方式0 13位定时/计数器
01 方式1 16位定时/计数器
10 方式2 8位自动重装定时/计数器
11
方式3
T0分成两个独立的8位定时/计数器; T1此方式停止计数
注意:TMOD不能进行位寻址
2020/10/27
26
控制寄存器TCON
第八章 80C51的中断系统与定时计数器
8.1 80C51单片机的中断系统 8.2 80C51中断处理过程 8.3 80C51单片机的串行口
8.1 80C51单片机的中断系统
5.1.1 80C51中断系统的结构
中断的概念
与子程序调用相似 但有本质的区别

AT89S52单片机定时计数器中断

AT89S52单片机定时计数器中断

5.4.2 定时/计数器中断C语言编程实例AT89S52单片机定时/计数器中断电路原理图如图所示:图5-5 定时器中断的电路原理图AT89S52单片机定时/计数器中断C语言程序实例如下所示:/*********************************************************************** 程序名; 时钟实验1* 功能:数码管通过动态扫描显示时间,时间可设定,调整时间时时钟不走;* 定时器0用于设定1s定时,定时器1用于设定调节时间时时间的闪烁;* k1用于进入和退出时间调节模式,k2时间加1,k3时间减1。

* 编程者:ZPZ* 编程时间:2008/10/9**********************************************************************/#include<reg52.h> //包含头文件#define uint unsigned int //变量类型宏定义#define uchar unsigned charsbit led=P2^7; //定义LED等端口sbit key1=P2^0; //定义键盘端口sbit key2=P2^1;sbit key3=P2^2;uchar num=0,temp=0,count=0; //定义全局变量uchar aa;uchar hour,min,sec;uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//定义显示断码表(共阳)/*****************************************函数名:delay功能:延时1ms左右参数:z返回值:无******************************************/void delay(uint z){uint i,j; //定义局部变量for(i=z;i>0;i--) //循环for(j=120;j>0;j--); //循环}/*****************************************函数名:display功能:显示函数参数:a,b,c,d,e,f,aa返回值:无*******************************************/void display(uchar a,uchar b,uchar c,uchar d,uchar e,uchar f,uchar aa){if(num==1){P1=0x01&aa;P0=a;delay(2);}else{P1=0x01;P0=a;delay(2);} //时的十位显示if(num==1){P1=0x02&aa;P0=b;delay(2);}else{P1=0x02;P0=b;delay(2);} //时的个位显示if(num==2){P1=0x04&aa;P0=c;delay(2);}else{P1=0x04;P0=c;delay(2);} //分的十位显示if(num==2){P1=0x08&aa;P0=d;delay(2);}else{P1=0x08;P0=d;delay(2);} //分时的个位显示if(num==3){P1=0x10&aa;P0=e;delay(2);}else{P1=0x10;P0=e;delay(2);} //秒时的十位显示if(num==3){P1=0x20&aa;P0=f;delay(2);}else{P1=0x20;P0=f;delay(2);} //秒时的个位显示}/*****************************************函数名:read_key功能:读按键函数参数:无返回值:无*******************************************/void read_key(){if(key1==0) //如果K1按下{delay(10); //延时消抖if(key1==0) //再次判断K1是否按下{while(1) //K1若按下进入时间调节主循环{if(key1==0) //在调节主循环中判断K1是否按下{led=0; //有按键按下点亮LED灯delay(10); //延时消抖if(key1==0) //再次判断K1是否按下{num++; //K1若按下,按一次num值加1if(num>3){num=0;break;} //如果num值大于3则num值清0,退出循环}while(~key1); //送按键消抖led=1; //按键松开熄灭LED灯}if(key2==0) //判断K2是否按下{led=0;delay(10);if(key2==0){if(num==1){hour++;if(hour==24)hour=0;}//小时加1if(num==2){min++;if(min==60)min=0;}//分钟加1if(num==3){sec++;if(sec==60)sec=0;}//秒加1}while(~key1);led=1;}if(key3==0) //判断K3是否按下{led=0;delay(10);if(key3==0){if(num==1){hour--;if(hour==0)hour=23;} //小时减1if(num==2){min--;if(min==0)min=59;} //分钟减1if(num==3){sec--;if(sec==59)sec=59;} //秒减1}while(~key1);led=1;}if(count<=15) //调节时间时,实现要调节的时间闪烁display(table[hour/10],table[hour%10],table[min/10],table[min%10],table[sec/10],table[sec%10],0xff);if(count>15)display(table[hour/10],table[hour%10],table[min/10],table[min%10],table[sec/10],table[sec%10],0x00);}}while(~key1);}}/*****************************************函数名:time_change功能:时间调整函数参数:无返回值:无*******************************************/void time_change(){read_key(); //判断是那一个按键按下if(temp>=20) //如果定时器0定时1s到{temp=0; //temp清0sec++; //秒加1if(sec>=60) //如果秒>=60分加1{sec=0;min++;if(min>=60) //如果>=60时加1{min=0;hour++;if(hour>24) //如果时>24时清0{hour=0;}}}}}/*****************************************函数名:timer_init功能:定时器初始化参数:f返回值:无******************************************/void timer_init(bit f){TMOD=0x11; //定时器0/1均工作在方式1TH0=0x3c; //定时器0赋初值50msTL0=0xb0;TH1=0x3c; //定时器1赋初值50msTL1=0xb0;EA=1; //开总中断ET0=1; //开定时器0中断ET1=1; //开定时器1中断TR0=f; //f=1启动定时器0,f=0关闭定时器0TR1=f; //f=1启动定时器1,f=0关闭定时器1}/*******************************************函数名: main功能: 主函数参数: 无返回值: 无/*******************************************/void main(){P2=0xff;hour=12; //设定时间初值min=59;sec=50;aa=0xff; //aa赋0xfftimer_init(1); //定时器初始化while(1) //主循环{time_change(); //调节时间display(table[hour/10],table[hour%10],table[min/10],table[min%10],table[sec/10],table[sec%10],0 xff);//送显示}}/*******************************************函数名: timer0功能: 定时器0中断函数参数: 无返回值: 无/*******************************************/void timer0() interrupt 1 using 1{ TH0=0x3c; //重赋初值50msTL0=0xb0;temp++; //temp加1}/*******************************************函数名: timer1功能: 定时器1中断函数参数: 无返回值: 无/*******************************************/void timer1() interrupt 3 using 3{ TH1=0x3c; //重赋初值50msTL1=0xb0;count++; //count加1if(count>=20) //如果1s时间到count清0count=0;}6.3 独立键盘输入独立键盘的电路原理图如图5-6所示:独立键盘的C语言程序如下所示:/*********************************************************************** 程序名:独立键盘实验(晶振11.0592MHZ)* 功能:数码管上显示00~99按一下K1数值加1,按一下K2数值减1* 编程者:ZPZ* 编程时间:2008/9/14**********************************************************************/#include<reg52.h> //包含头文件#define uchar unsigned char //宏定义#define uint unsigned int#define data_bus P0sbit wei1=P1^1; //定义位选口sbit wei2=P1^0;sbit key1=P3^2; //定义键盘口sbit key2=P3^3;uchar counter=0; //定义一个全局变量uchar code table[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//定义断码表0~9 /*******************************************函数名:delay功能:延时1ms左右参数:z返回值:无********************************************/void delay(uint z){ uint i,j; //定义局部变量for(i=z;i>0;i--) //循环for(j=120;j>0;j--); //循环}if(counter==0) //如果counter=0,counter=99counter=99;counter--; //如果k2按下counter-1 }while(key2==0); //判断k2是否松开}}/*******************************************函数名:display功能:显示函数参数:shi,ge返回值:无********************************************/void display(uchar shi,uchar ge){wei1=0; wei2=1; //选通第一个数码管关断另一个data_bus=table[shi]; //送要显示的段码delay(2);wei2=0; wei1=1; //选通第二个数码管/关断另一个data_bus=table[ge]; //送要显示的段码delay(2);}/*******************************************函数名: main功能: 主函数参数: 无返回值: 无/********************************************/void main(){ while(1){ key_scan(); //键盘扫面display(counter/10,counter%10); //送显示}}。

51单片机内部定时器和中断系统以及编写第一个简单的定时器实验程序

51单片机内部定时器和中断系统以及编写第一个简单的定时器实验程序

51单片机内部定时器和中断系统以及编写第一个简单的定时器实验程序上讲通过讲述用单片机控制一个外部的LED闪烁实验来向读者介绍了单片机的工作原理与开发流程。

这一讲将介绍单片机内部非常重要的两个资源——定时/ 计数器和中断系统。

通过该讲,读者可以掌握定时器的工作原理和单片机的中断系统。

从而设计定时器计数程序和中断服务程序。

一、原理简介首先让我们举闹钟为例,将它定时在一分钟后闹铃,这就需要秒针走一圈(60 次)。

即一分钟时间转化为秒针走的次数,也就是计数的次数,计数到了60 次然后闹铃,而每一次计数的时间是1 秒。

单片机内部的定时/ 计数器跟闹钟类似,可以通过编程来设定要定时的时间、定时时间到了进行相应的操作。

那么在单片机内部计数一次的时间是多少呢,51 单片机输入的时钟脉冲是由晶体振荡器的输出经12 分频后得到的,所以定时器也可看作是对计算机机器周期的计数器。

因为每个机器周期包含12 个振荡周期,故每一个机器周期定时器加1,可以把输入的时钟脉冲看成机器周期信号。

故其频率为晶振频率的1/12。

如果晶振频率为12MHz,则定时器每接收一个输入脉冲的时间刚好为1μs。

在本实验套件中采用的是11.0592M 的晶振,故每接收一个输入脉冲的时间约为1.085μs。

实现精确定时在实际项目应用中非常重要,因为往往需要用到精确定时一段时间,然后定时时间到的时刻做相应的任务。

那如何编程实现定时时间呢?首先先简单介绍下本实验板上单片机(STC89C52)内的定时器资源。

STC89C52 内有三个定时/ 计数器,分别为T0、T1 和T2。

其中T0、T1 工作方式一样,一并介绍。

T2 的工作方式稍有区别,这里不做介绍,实验套件光盘中有实际应用程序。

同时,单片机中的定时器和计数器是复用的,计数器是记录外部脉冲的个数,而定时器则是由单片机内部时钟提供的一个非常稳定的计数源。

本讲中,以T0、T1 作为定时器来进行实例介绍使用。

stm32寄存器版学习笔记定时计数器中断

stm32寄存器版学习笔记定时计数器中断

stm32寄存器版学习笔记定时计数器中断STM32共有8个定时计数器,⾼级定时器: TIME1 TIME8是通⽤定时器:TIME2~TIME5基本定时器: TIME6和TIME7以TIME3通⽤定时器为例总结定时计数器的基本⽤法⼀:TIM3时钟使能APB1外设时钟使能寄存器(RCC_APB1ENR)Eg:RCC->APB1ENR|=1<<1; //使能TIM3时钟⼆:设置TIM3_ARR和TIM3_PSC的值通过这两个寄存器来设置⾃动重装的值以及分频系数⾃动重装载寄存器(TIMx_ARR)预分频器(TIMx_PSC)三:设置TIM3_DIER允许更新中断中断使能寄存器(TIMx_DIER)Eg: TIM3->DIER|=1<<0; //允许更新中断四:允许TIM3⼯作控制寄存器1(TIMx_CR1)CEN:使能计数器位0 0:禁⽌计数器; 1:使能计数器Eg: TIM3->CR1|=0x01; //使能定时器3 或 TIM3->CR1|=1<<0;五:TIM3中断分组设置直接调⽤MY_NVIC_Init()函数Eg:MY_NVIC_Init(1,3,TIM3_IRQChannel,2);//抢占1,⼦优先级3,组2六:编写中断服务函数状态寄存器(TIMx_SR)Eg: if(TIM3->SR&0X0001)//溢出中断Eg: //定时器3中断服务程序 void TIM3_IRQHandler(void) //TIM3_Int_Init(5000,7199); //10Khz的计数频率,计数到5000为500ms//500ms中断⼀次 { if(TIM3->SR&0X0001) //溢出中断 { //add your code } TIM3->SR&=~(1<<0); //清除中断标志位 }六:关于溢出事件的计算因为Stm32_Clock_Init函数⾥⾯已经初始化APB1的时钟为2分频,所以APB1的时钟是32MHz(系统时钟72MHz)。

微机原理与单片机接口技术(第2版)李精华 第6章微处理器中断及定时计数器应用设计

微机原理与单片机接口技术(第2版)李精华 第6章微处理器中断及定时计数器应用设计
低级中断,一个正在执行的高级中断是不能被低级中断而中断的。 (4)若多个同级中断请求同时发出,则单片机按照一定的原则决定执行的顺序。51系列单片机对中
断的查询顺序是“外部中断0→定时/计数器T0→外部中断1→定时/计数器T1→串行口中断”。 (5)若程序正在执行读/写IE和IP指令,则CPU执行该指令结束后,需要再执行一条其他指令才可
处理中断源的程序称为中断处理程序。 CPU执行有关的中断处理程序称为中断处理 。而返回断点的过程称为中断返回,中断响应 和处理过程如图6-1所示。
图6-1 中断响应和处理过程
4
2.中断的处理过程
①接收中断请求。 ②查看本级中断屏蔽位,若该位为1,则本级中断源参与优先级排队。 ③中断优先级选择。 ④处理机执行完一条指令后或者这条指令已无法执行完,则立即中止现 行程序。接着,中断部件根据中断级去指定相应的主存单元,并把被中 断的指令地址和处理机当前的主要状态信息存放在此单元中。 ⑤中断部件根据中断级又指定另外的主存单元,从这些单元中取出处理 机新的状态信息和该级中断控制程序的起始地址。 ⑥执行中断控制程序和相应的中断服务程序。 ⑦执行完中断服务程序后,利用专用指令使处理机返回被中断的程序或 转向其他程序。
7.中断屏蔽
对各中断级设置相应的屏蔽位。只有屏蔽位为1时,该中断级才能参加 中断优先级排队。中断屏蔽位可由专用指令建立,因而可以灵活地调整中断 优先级。有些机器针对某些中断源也设置屏蔽位,只有当屏蔽位为1时,相 应的中断源才起作用。。
6.2 单片机中断系统概述
51系列不同型号单片机的中断源的数量是不同的(5~11个) ,本节以8051单片机的中断系统为例分析51系列单片机的中断系 统,其它各种51单片机的中断系统与之基本相同,8051单片机的 中断系统结构框图如图6-2所示。8051单片机有5个中断源,2个中 断优先级,可以实现二级中断服务程序嵌套,每个中断源可以编 程为高优先级或低优先级中断,允许或禁止向CPU请求中断。与中 断系统有关的特殊功能寄存器有中断允许控制寄存器IE、中断优 先级控制寄存器IP和中断源寄存器TCON、SCON。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tt++;
}
sbit P1_0=P1^0;
uchar tt;
void main() //主函数
{
TMOD=0x01;//设置定时器0为工作方式1
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器0中断
}
}
程序二
利用定时/计数器T1产生定时时钟,
由P1口控制8个发光二极管,
使8个指示灯依次一个一个闪动,
闪动频率为10次/秒(8个灯依次亮一遍为一个周期),循环。
#include<reg51.h> //51单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库
beep=~beep;
}
if(flag>=320&&flag<360)
{
tt=0;
fre=156;
beep=~beep;
}
TR0=1;
}
void timer1() interrupt 3 //定时器1中断用来产生2秒时间定时
{
TH1=(65536-50000)/256;
TL1=(65536-50000)%256;
flag++;
if(flag==360)
{
flag=0;
fre=50000;
}
}
程序四
用定时器以间隔500MS在6位数码管上依次显示
0、1、2、3....C、D、E、F,重复。
#include<reg52.h> //52单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库
#define uint unsigned int //宏定义
#define uchar unsigned char //宏定义
sbit dula=P2^6; //数码管段选锁存端
sbit wela=P2^7; ////数码管位选锁存端
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器0中断
TR0=1;//启动定时器0
dula=1;
P0=0x3f; //给段开始送显示0。
dula=0;//关闭段选锁存端,防止开始时出现乱码。
#define uint unsigned int //宏定义
#define uchar unsigned char //宏定义
sbit P1_0=P1^0;
uchar tt,a;
void main() //主函数
{
TMOD=0x01;//设置定时器0为工作方式1
TH0=(65536-50000)/256;
{
tt=0;
fre=5000;
beep=~beep;
}
if(flag>=160&&flag<200)
{
tt=0;
fre=2500;
beep=~beep;
}
if(flag>=200&&flag<240)
{
tt=0;
1k(hz)的方波
#include<reg52.h> //52单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库
#define uint unsigned int //宏定义
#define uchar unsigned char //宏定义
sbit beep=P2^3;
TL0=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器0中断
TR0=1;//启动定时器0
a=0xfe;
while(1);//等待中断产生
}
void timer0() interrupt 1
{
TH0=(65536-50000)/256;
TL1=(65536-50000)%256;
EA=1;//开总中断
ET0=1;//开定时器0中断
ET1=1;
TR1=1;
TR0=1;//启动定时器0
while(1);//等待中断产生
}
void timer0() interrupt 1 //定时器0中断
{
TR0=0; //进中断后先把定时器0中断关闭,防止内部程序过多而造成中断丢失
fre=1250;
beep=~beep;
}
if(flag>=240&&flag<280)
{
tt=0;
fre=625;
beep=~beep;
}
if(flag>=280&&flag<320)
{
tt=0;
fre=312;
TR0=1;//启动定时器0
while(1);//等待中断产生
}
void timer0() interrupt 1
{
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
tt++;
if(tt==20)
{
tt=0;
P1_0=~P1_0;
uchar tt;
uint fre,flag;
void main() //主函数
{
fre=50000;
beep=0;
TMOD=0x11;//设置定时器0,定时器1为工作方式1
TH0=(65536-fre)/256;
TL0=(65536-fre)%256;
TH1=(65536-50000)/256;
程序一
利用定时/计数器T0从P1.0输出周期为1s的方波,
让发光二极管以1HZ闪烁,
#include<reg51.h> //51单片机头文件
#include <intrins.h> //包含有左右循环移位子函数的库
#define uint unsigned int //宏定义
#define uchar unsigned char //amp;&flag<80)
{
tt=0;
fre=50000;
beep=~beep;
}
if(flag>=80&&flag<120)
{
tt=0;
fre=10000;
beep=~beep;
}
if(flag>=120&&flag<160)
TL0=(65536-50000)%256;
tt++;
if(tt==2)
{
tt=0;
P1=a;
a=_crol_(a,1);
}
}
程序三
同时用两个定时器控制蜂鸣器发声,
定时器0控制频率,定时器1控制同个
频率持续的时间,间隔2s依次输出
1,10,50,100,200,400,800,
TH0=(65536-fre)/256;
TL0=(65536-fre)%256;
tt++;
if(flag<40) //以下几个if分别用来选取不同的频率
if(tt==10)
{
tt=0;
fre=50000;
beep=~beep;
}
uchar num,tt;
uchar code table[]={
0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71};
void main()
{
num=0;
tt=0;
TMOD=0x01;//设置定时器0为工作方式1
num=0;
dula=1;
P0=table[num];
dula=0;
}
}
}
void exter0() interrupt 1 // 定时器0中断
{
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
wela=1;//11101010
P0=0xc0; // 打开六个数码管位选
wela=0;
while(1)
{
if(tt==10) //每进入10次中断即为500ms,执行一次显示变化。
{
tt=0;
num++;
if(num==16)
相关文档
最新文档