(历年中考)山东省潍坊市中考数学试题 含答案
潍坊中考数学试题及答案
潍坊中考数学试题及答案潍坊市是山东省的一个地级市,每年都会举行中考,其中包括了数学科目的考试。
为了帮助同学们更好地复习和备考,本文将提供潍坊中考数学试题及答案。
以下是一些典型的试题示例及对应的答案解析。
题目一:已知正方形ABCD的边长为8cm,点E在BC边上,且BE=3cm,请计算三角形AEC的面积。
解答一:首先我们可以通过求得AE的长度来计算三角形AEC的面积。
根据正方形性质可知点E与点C重合,所以AE = AC - EC = 8cm - 3cm =5cm。
利用三角形的面积公式:面积 = 底边 ×高 ÷ 2,我们可以计算得到三角形AEC的面积为:5cm × 3cm ÷ 2 = 7.5cm²。
题目二:小明去超市买水果,他买了10个苹果和5个橙子,苹果的单价为2元/个,橙子的单价为3元/个。
请计算小明购买水果的总价。
解答二:根据题目可知,小明购买的苹果总价为10个 × 2元/个 = 20元,橙子总价为5个 × 3元/个 = 15元。
所以小明购买水果的总价为20元 + 15元 = 35元。
题目三:已知函数f(x) = 2x² - 3x + 1,求其对称轴的方程和顶点坐标。
解答三:对称轴方程可以通过求解一次项系数的相反数得到。
由于f(x) = 2x²- 3x + 1,我们可以求得对称轴的方程为 x = -(-3) ÷ 2×2 = 3/4。
对称轴方程的解释是,函数在该直线上对称。
所以函数f(x)在x =3/4处有对称。
接下来我们求顶点坐标,顶点的x坐标可以通过对称轴的方程得到,即顶点的x坐标为 3/4。
将x = 3/4代入函数f(x)中,我们可以求得顶点的y坐标:f(3/4) = 2(3/4)² - 3(3/4) + 1 = 3/8 - 9/4 + 1 = -17/8。
所以函数f(x)的顶点坐标为 (3/4, -17/8)。
山东省中考数学真题试题(含解析)
山东省中考数学真题试题(含解析)山东省潍坊市中考数学试卷一、选择题〔本大题共12小题,在每个小题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对的3分,选错、不选或选出的答案超出一个均记0分.〕0﹣11.〔3分〕〔2022?潍坊〕在|﹣2|,2,2,这四个数中,最大的数是〔〕 0﹣1 A. |﹣2| B. 2 C. 2 D. 2.〔3分〕〔2022?潍坊〕如下图几何体的左视图是〔〕A. B. C. D. 3.〔3分〕〔2022?潍坊〕2022年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来〞××××10 4.〔3分〕〔2022?潍坊〕如图汽车标志中不是中心对称图形的是〔〕A. B. C. D.5.〔3分〕〔2022?潍坊〕以下运算正确的选项是〔〕 22 A. += B. 3xy ﹣xy=3 2363 C. D.〔ab〕=ab =a+b 6.〔3分〕〔2022?潍坊〕不等式组的所有整数解的和是〔〕A. 2 B. 3 C. 5 D. 6 7.〔3分〕〔2022?潍坊〕如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,那么∠C的度数是〔〕1A. 70° B. 50° C. 45° 0D. 20° 8.〔3分〕〔2022?潍坊〕假设式子的图象可能是〔〕 A. B. +〔k﹣1〕有意义,那么一次函数y=〔k﹣1〕x+1﹣kC. D. 9.〔3分〕〔2022?潍坊〕如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.假设BD=6,AF=4,CD=3,那么BE的长是〔〕A. 2 B. 4 C. 6 D. 8 10.〔3分〕〔2022?潍坊〕将一盛有缺乏半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如下图,水杯内径〔图中小圆的直径〕是8cm,水的最大深度是2cm,那么杯底有水局部的面积是〔〕A.〔2π﹣42B.〕cm 〔π﹣82C.〕cm 〔π﹣42D.〕cm 〔π﹣2〕cm 211.〔3分〕〔2022?潍坊〕如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,那么该纸盒侧面积的最大值是〔〕A. cm 2B. cm 2C. cm 2D. cm 2 212.〔3分〕〔2022?潍坊〕二次函数y=ax+bx+c+2的图象如下图,顶点为〔﹣1,0〕,2以下结论:①abc<0;②b﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是〔〕A. 1 B. 2 C. 3 D. 4 二、填空题〔本大题共6小题,每题3分,共18分,只要求填写最后结果.〕 13.〔3分〕〔2022?潍坊〕“植树节〞时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.这组数据的众数是5,那么该组数据的平均数是. 14.〔3分〕〔2022?潍坊〕如图,等腰梯形ABCD 中,AD∥BC,BC=50,AB=20,∠B=60°,那么AD= .215.〔3分〕〔2022?潍坊〕因式分解:ax﹣7ax+6a= . 16.〔3分〕〔2022?潍坊〕观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D处的俯角是30°.楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是 m.317.〔3分〕〔2022?潍坊〕如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共局部的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共局部的面积记为S2;?,以此类推,那么Sn= .〔用含n的式子表示〕18.〔3分〕〔2022?潍坊〕正比例函数y1=mx〔m>0〕的图象与反比例函数y2=〔k≠0〕的图象交于点A〔n,4〕和点B,AM⊥y轴,垂足为M.假设△AMB 的面积为8,那么满足y1>y2的实数x的取值范围是.三、解答题〔本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.〕 19.〔9分〕〔2022?潍坊〕为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.〔1〕求A、B两种型号家用净水器各购进了多少台;〔2〕为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.〔注:毛利润=售价﹣进价〕420.〔10分〕〔2022?潍坊〕某校了解九年级学生近两个月“推荐书目〞的阅读情况,随机抽取了该年级的局部学生,调查了他们每人“推荐书目〞的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少〞;当3≤n<5时,为“一般〞;当5≤n<8时,为“良好〞;当n≥8时,为“优秀〞.将调查结果统计后绘制成不完整的统计图表:阅读本数n〔本〕 1 2 3 4 5 6 7 8 9 人数〔名〕 1 2 6 7 12 x 7 y 1 请根据以上信息答复以下问题:〔1〕分别求出统计表中的x、y的值;〔2〕估计该校九年级400名学生中为“优秀〞档次的人数;〔3〕从被调查的“优秀〞档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.21.〔10分〕〔2022?潍坊〕如图,在△ABC中,AB=AC,以AC为直径的⊙O 交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.〔1〕求证:直线DF与⊙O相切;〔2〕假设AE=7,BC=6,求AC的长.522.〔11分〕〔2022?潍坊〕“低碳生活,绿色出行〞的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v〔米/分钟〕随时间t〔分钟〕变化的函数图象大致如下图,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T〔t,0〕,直线l 左侧局部的面积即为t分钟内王叔叔行进的路程s〔米〕.〔1〕①当t=2分钟时,速度v= 200 米/分钟,路程s= 200 米;②当t=15分钟时,速度v= 300 米/分钟,路程s= 4050 米.〔2〕当0≤t≤3和3<t≤15时,分别求出路程s〔米〕关于时间t〔分钟〕的函数解析式;〔3〕求王叔叔该天上班从家出发行进了750米时所用的时间t. 23.〔12分〕〔2022?潍坊〕如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.〔1〕求证:DE⊥AG;〔2〕正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角〔0°<α<360°〕得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②假设正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.624.〔14分〕〔2022?潍坊〕如图,在平面直角坐标系中,抛物线y=mx﹣8mx+4m+2〔m>2〕与y轴的交点为A,与x轴的交点分别为B〔x1,0〕,C〔x2,0〕,且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E〔t,0〕过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.〔1〕求抛物线的解析式;〔2〕当0<t≤8时,求△APC面积的最大值;〔3〕当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?假设存在,求2出此时t的值;假设不存在,请说明理由.7山东省潍坊市中考数学试卷解析一、选择题〔本大题共12小题,在每个小题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对的3分,选错、不选或选出的答案超出一个均记0分.〕0﹣11.〔3分〕〔2022?潍坊〕在|﹣2|,2,2,这四个数中,最大的数是〔〕 0﹣1 A. |﹣2| B. 2 C. 2 D.考点:实数大小比拟;零指数幂;负整数指数幂.. 分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的 0﹣1反而小,首先求出|﹣2|,2,2的值是多少,然后根据实数比拟大小的方法判断即可. 0﹣1解答:解:|﹣2|=2,2=1,2=0.5,∵∴0﹣1,,∴在|﹣2|,2,2,这四个数中,最大的数是|﹣2|.应选:A.点评:〔1〕此题主要考查了实数大小比拟的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.〔2〕此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a=﹣p 〔a≠0,p为正整数〕;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. 0〔3〕此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a=10〔a≠0〕;②0≠1. 2.〔3分〕〔2022?潍坊〕如下图几何体的左视图是〔〕A. B. C. D.考点:简单组合体的三视图.. 分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看可得矩形中间有一条横着的虚线.应选C.点评:此题考查了三视图的知识,左视图是从物体的左面看得到的视图. 8。
山东省潍坊市中考数学试卷及答案解析
山东省潍坊市中考数学试卷一、选择题1.(3分)(2014•潍坊)的立方根是()A .﹣1 B.0C.1D.±1考点:立方根分析:根据开立方运算,可得一个数的立方根.解答:解:的立方根是1,故选:C.点评:本题考查了立方根,先求幂,再求立方根.A.B.C.D.考点:中心对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、不是中心对称图形,是轴对称图形,故此选项符合题意;D、是中心对称图形,故此选项不合题意;故选:C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.D.s in45°A.B.2﹣2C.5.考点:无理数分析:根据无理数是无限不循环小数,可得答案.解答:解:A、B、C、是有理数;D、是无限不循环小数,是无理数;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2014•潍坊)一个几何体的三视图如图,则该几何体是()A.B.C.D.考点:由三视图判断几何体分析:由空间几何体的三视图可以得到空间几何体的直观图.解答:解:由三视图可知,该组合体的上部分为圆台,下部分为圆柱,故选:D.点评:本题只要考查三视图的识别和判断,要求掌握常见空间几何体的三视图,比较基础.5.(3分)(2014•潍坊)若代数式有意义,则实数x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠3C.x>﹣1 D.x>﹣1且x≠3考点:二次根式有意义的条件;分式有意义的条件分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x+1≥0且x﹣3≠0,解得x≥﹣1且x≠3.故选B.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2014•潍坊)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44°B.54°C.72°D.53°考点:圆周角定理;平行四边形的性质分析:首先根据直径所对的圆周角为直角得到∠BAE=90°,然后利用四边形ABCD是平行四边形,∠E=36°,得到∠BEA=∠DAE=36°,从而得到∠BAD=126°,求得到∠ADC=54°.解答:解:∵BE是直径,∴∠BAE=90°,∵四边形ABCD是平行四边形,∠E=36°,∴∠BEA=∠DAE=36°,∴∠BAD=126°,∴∠ADC=54°,故选B.点评:本题考查了圆周角定理及平行四边形的性质,解题的关键是认真审题,发现图形中的圆周角.7.(3分)(2014•潍坊)若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1D.a≤﹣1考点:解一元一次不等式组分析:分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.解答:解:,由①得,x≥﹣a,由②得,x<1,∵不等式组无解,∴﹣a≥1,解得a≤﹣1.故选D.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(3分)(2014•潍坊)如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()A.B.C.D.考点:动点问题的函数图象分析:利用三角形相似求出y关于x的函数关系式,根据函数关系式进行分析求解.解答:解:∵BC=4,BE=x,∴CE=4﹣x.∵AE⊥EF,∴∠AEB+∠CEF=90°,∵∠CEF+∠CFE=90°,∴∠AEB=∠CFE.又∵∠B=∠C=90°,∴Rt△AEB∽Rt△EFC,∴,即,整理得:y=(4x﹣x2)=﹣(x﹣2)2+∴y与x的函数关系式为:y=﹣(x﹣2)2+(0≤x≤4)由关系式可知,函数图象为一段抛物线,开口向下,顶点坐标为(2,),对称轴为直线x=2.故选A.点评:本题考查了动点问题的函数图象问题,根据题意求出函数关系式是解题关键.9.(3分)(2014•潍坊)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方2A.27 B.36 C.27或36 D.18考点:等腰三角形的性质;一元二次方程的解分析:由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一根,再根据三角形的三边关系判断是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.解答:解:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得32﹣12×3+k=0,k=27.将k=27代入原方程,得x2﹣12x+27=0,解得x=3或9.3,3,9不能够组成三角形,不符合题意舍去;②当3为底时,则其他两条边相等,即△=0,此时144﹣4k=0,k=36.将k=36代入原方程,得x2﹣12x+36=0,解得x=6.3,6,6能够组成三角形,符合题意.故k的值为36.故选B.点评:本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.10.(3分)(2014•潍坊)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.考点:概率公式;折线统计图分析:先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公式求解即可.解答:解:∵由图可知,当1号到达时,停留的日子为1、2、3号,此时为(86,25,57),3天空气质量均为优;当2号到达时,停留的日子为2、3、4号,此时为(25,57,143),2天空气质量为优;当3号到达时,停留的日子为3、4、5号,此时为(57,143,220),1天空气质量为优;当4号到达时,停留的日子为4、5、6号,此时为(143,220,160),空气质量为污染;当5号到达时,停留的日子为5、6、7号,此时为(220,160,40),1天空气质量为优;当6号到达时,停留的日子为6、7、8号,此时为(160,40,217),1天空气质量为优;∴此人在该市停留期间有且仅有1天空气质量优良的概率==.故选C.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.11.(3分)(2014•潍坊)已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A、A.x<﹣1或0<x <3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3D.x<x<3考点:反比例函数与一次函数的交点问题.分析:根据观察图象,可得直线在双曲线上方的部分,可得答案.解答:解:如图:直线在双曲线上方的部分,故答案为:x<﹣1或0<x<3,故选:A.点评:本题考查了反比例函数与一次函数的交点问题,直线在双曲线上方的部分是不等式的解.12.(3分)(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(﹣2012,2) B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-平移专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点B的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点B的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.二、填空题13.(3分)(2014•潍坊)分解因式:2x(x﹣3)﹣8= 2(x﹣4)(x+1).考点:因式分解-十字相乘法等分析:首先去括号,进而整理提取2,即可利用十字相乘法分解因式.解答:解:2x(x﹣3)﹣8=2x2﹣6x﹣8=2(x2﹣3x﹣4)=2(x﹣4)(x+1).故答案为:2(x﹣4)(x+1).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,熟练掌握十字相乘法分解因式是解题关键.14.(3分)(2014•潍坊)计算:82014×(﹣0.125)2015= ﹣0.125.考点:幂的乘方与积的乘方;同底数幂的乘法分析:根据同底数幂的乘法,可化成指数相同的幂的乘法,根据积的乘方,可得答案.解答:解:原式=82014×(﹣0.125)2014×(﹣0.125)=(﹣8×0.125)2014×(﹣0.125)=﹣0.125,故答案为:﹣0.125.点评:本题考查了积的乘方,先化成指数相同的幂的乘法,再进行积的乘方运算.15.(3分)(2014•潍坊)如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为2π﹣3.(结果保留π)考点:扇形面积的计算;等边三角形的判定与性质;相交两圆的性质分析:根据题意得出一部分弓形的面积,得出=﹣S进而得出即可.解答:解:连接O1O2,过点O1作O1C⊥AO2于点C,由题意可得:AO1=O1O2=AO2=,∴△AO1O2是等边三角形,∴CO1=O1O2sin60°=,∴S=××=,==,∴=﹣S=﹣,∴图中阴影部分的面积为:4(﹣)=2π﹣3.故答案为:2π﹣3.点评:此题主要考查了扇形的面积公式应用以及等边三角形的判定与性质,熟练记忆扇形面积公式是解题关键.16.(3分)(2014•潍坊)已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为9.考点:方差;中位数专题:计算题.分析:由于有6个数,则把数据由小到大排列时,中间有两个数中有1,而数据的中位数为1,所以中间两个数的另一个数也为1,即x=1,再计算数据的平均数,然后利用方差公式求解.解答:解:∵数据﹣3,x,﹣2,3,1,6的中位数为1,∴=1,解得x=1,∴数据的平均数=(﹣3﹣2+1+1+3+6)=1,∴方差=[(﹣3﹣1)2+(﹣2﹣1)2+(1﹣1)2+(1﹣1)2+(3﹣1)2+(6﹣1)2]=9.故答案为5.点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.17.(3分)(2014•潍坊)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔50米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是50米.考点:相似三角形的应用分析:根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.解答:解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=50m,FH=4m,∴=①,=②,∴=,解得BD=50m,∴=,解得AB=52m.故答案为:52.点评:本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.18.(3分)(2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.考点:平面展开-最短路径问题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.解答:解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为25.点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.三、解答题19.(9分)(2014•潍坊)今年我市把男生“引体向上”项目纳入学业水平体育考试内容,考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试,测试成绩(单位:个)如图1:其中有一数据被污损,统计员只记得11.3是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图(如图2);测试成绩/个频数频率1~5 20.106~10 60.3011~15 90.4516~20 3 0.15合计20 1.00(3)估计在学业水平体育考试中该校九年级有多少名男生能完成11个以上(包含11个)“引体向上”?考点:频数(率)分布直方图;用样本估计总体;频数与频率;频数(率)分布表.分析:(1)直接利用平均数求法得出x的值,进而求出极差即可;(2)直接利用已知数据得出各组频数,进而求出频率,填表和补全条形图即可;(3)利用样本估计总体的方法得出,能完成11个以上的是后两组所占百分比,进而得出九年级男生能完成11个以上(包含11个)“引体向上”的人数.解答:解:(1)设被污损的数据为x,由题意知:=11.3,解得:x=19,根据极差的定义,可得该组数据的极差是:19﹣3=16,(2)由样本数据知,测试成绩在6~10个的有6名,该组频数为6,相应频率是:=0.30,测试成绩在11~15个的有9名,该组频数为9,相应频率是:=0.45,补全的频数、频率分布表和频数分布直方图如下所示:测试成绩/个频数频率1~5 2 0.106~10 6 0.3011~15 9 0.4516~20 3 0.15合计20 1.00(3)由频率分布表可知,能完成11个以上的是后两组,(0.45+0.15)×100%=60%,由此估计在学业水平体育考试中能完成11个以上“引体向上”的男生数是:220×60%=132(名).点评:此题主要考查了频数分布直方表以及条形统计图等知识,正确掌握相关定义求出各组频率是解题关键.20.(10分)(2014•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;梯形分析:(1)连接OE,证出RT△OAD≌RT△OED,利用同弦对圆周角是圆心角的一半,得出∠AOD=∠ABE,利用同位角相等两直线平行得到OD∥BE,(2)由RT△COE≌RT△COB,得到△COD是直角三角形,利用S梯形ABCD=2S△COD,求出xy=48,结合x+y=14,求出CD.解答:(1)证明:如图,连接OE,∵CD是⊙O的切线,∴OE⊥CD,在Rt△OAD和Rt△OED,∴Rt△OAD≌Rt△OED(SAS)∴∠AOD=∠EOD=∠AOE,在⊙O中,∠ABE=∠AOE,∴∠AOD=∠ABE,∴OD∥BE.(2)解:与(1)同理可证:Rt△COE≌Rt△COB,∴∠COE=∠COB=∠BOE,∵∠DOE+∠COE=90°,∴△COD是直角三角形,∵S△DEO=S△DAO,S△OCE=S△COB,∴S梯形ABCD=2(S△DOE+S△COE)=2S△COD=OC•OD=48,即xy=48,又∵x+y=14,∴x2+y2=(x+y)2﹣2xy=142﹣2×48=100,在RT△COD中,CD====10,∴CD=10.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和全等三角形的判定与性质.关键是综合运用,找准线段及角的关系.21.(10分)(2014•潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.考点:解直角三角形的应用-仰角俯角问题分析:首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900米,CD=1.99×104米,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得两海岛间的距离AB.解答:解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900米,CD=1.99×104米=19900米.在Rt△AEC中,∠C=60°,AE=900米.∴CE===300(米).在Rt△BFD中,∠BDF=45°,BF=900米.∴DF===900(米).∴AB=EF=CD+DF﹣CE=19900+300﹣900=19000+300(米).答:两海岛间的距离AB为(19000+300)米.点评:此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.22.(12分)(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.考点:四边形综合题分析:(1)运用Rt△ABE≌Rt△BCF,再利用角的关系求得∠BGE=90°求证;(2)△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QP求解;(3)先求出正方形的边长,再根据面积比等于相似边长比的平方,求得S△AGN=,再利用S四边形GHMN=S△AHM﹣S△AGN求解.解答:(1)证明:如图1,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.(2)解:如图2,根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP===.(3)解:∵正方形ABCD的面积为4,∴边长为2,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=2,∵∠AHM=90°,∴GN∥HM,∴=,∴=,∴S△AGN=,∴S四边形GHMN=S△AHM﹣S△AGN=1﹣=,∴四边形GHMN的面积是.点评:本题主要考查了四边形的综合题,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.23.(12分)(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.考点:一次函数的应用分析:(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.解答:解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88;(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值时4840辆/小时.点评:本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.24.(13分)(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.考点:二次函数综合题分析:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先根据三角形的面积公式求出S△OBF=OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由S四边形ABFC=S△AOC+S△OBF+S△OFC,得到S四边形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,S△OFC=OC•FG=×4×t=2t,∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,四边形的面积,平行四边形的判定等知识,综合性。
山东省潍坊市中考数学真题试卷(版)
山东省潍坊市中考数学真题试卷(版)山东省潍坊市中考数学真题试卷(版)一、选择题1. 小明在购物网站上购买了一双鞋子,原价为320元,打折后的价格为280元。
打折是按照原价的多少折扣呢?()A. 72%B. 85%C. 87.5%D. 90%2. 已知一个正方形的周长为24cm,求这个正方形的面积是多少cm²?()A. 6B. 12C. 18D. 363. 甲乙两个电子表同时准备调好时间,甲表从12:00开始调,每分钟慢30秒;乙表从12:20开始调,每分钟快40秒。
已知两个表在哪个小时能够首次准确显示相同的时间?()A. 第1小时B. 第2小时C. 第3小时D. 第4小时4. 某超市销售部门为了促销,在进口商品A的基础上连续降价,每降低15%。
现已连降两次,原价为120元的商品,现在的价格是多少元?()A. 97B. 92.7C. 89.7D. 83.75. 若x + y = 10,且x和y的平方和为34,则x和y的差是多少?()A. 3B. 4C. 5D. 6二、填空题6. 已知点A(2,3)和B(6,1),则直线AB的斜率为________。
7. 解方程10x + 5 = 45,得x = ________。
8. 实数x满足x² - 6x + 8 = 0,则x = ________。
9. 已知数列的前4项分别为1,2,3,4,满足此数列的通项公式是an = ________。
10. 若一个锐角的余角的度数是40°,则该锐角的度数是________。
三、解答题11.(解答题)小明乘坐公交车上学,从家到学校的路程是12km。
他每天乘坐40分钟的公交车,然后步行15分钟到达学校。
问小明上学需要多长时间?12.(解答题)一架飞机从A点出发,以每小时600km的速度直飞到C点,再以每小时480km的速度直飞到B点。
已知AC的距离是BC的2倍,飞机总共飞行了8小时。
求AC的距离为多少?13.(解答题)市场上有两种铅笔,甲品牌的铅笔包装重500g而乙品牌的铅笔包装重400g,小明购买了若干盒甲品牌铅笔和若干盒乙品牌铅笔,总包装重1.5kg。
山东省潍坊市中考数学真题(解析版)
A. 对10个国家出口额的中位数是26201万美元
B. 对印度尼西亚的出口额比去年同期减少
C. 去年同期对日本的出口额小于对俄罗斯联邦的出口额
D. 出口额同比增速中,对美国的增速最快
∴∠FAD=90°,
∵∠AFE=30°,
∴∠AGF=∠AOF=60°,故B正确,
∵∠GAE=∠GEA=30°,
∴GA=GE,
∵FG=2AG,
∴FG=2GE,
∴点G是线段EF的三等分点,故C正确,
∵AF=AE,∠FAE=120°,
∴EF= AF,故D错误,
故答案为:D.
【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形.
B、根据折线图可知,对印度尼西亚的出口额比去年同期增长 ,选项说法错误,不符合题意;
C、去年同期对日本的出口额为: ,对俄罗斯联邦的出口额为: ,选项错误,不符合题意;
D、根据折线图可知,出口额同比增速中,对越南的增速最快,选项错误,不符合题意.
故选:A.
【点睛】此题考查了中位数的概念和折线统计图和柱状图,解题的关键是正确分析出图中的数据.
【详解】解:A、 ,选项运算正确;
B、 ,选项运算错误;
C、 是最简分式,选项运算错误;
D、 ,选项运算错误;
故选:A.
【点睛】此题综合考查了代数式的运算,关键是掌握代数式运算各种法则解答.
10.如图,在直角坐标系中,点A是函数y=﹣x图象上的动点,1为半径作⊙A.已知点B(﹣4,0),连接AB,当⊙A与两坐标轴同时相切时,tan∠ABO的值可能为_______.
山东省潍坊市中考数学真题试卷和答案
山东省潍坊市2017年中考数学真题试卷和答案一、选择题(每小题3分,满分36分)。
1 •下列算式,正确的是()A. a3X a2=a 6B. a3 -^a=a3C. a2+a 2=a 4D. (a2)2=a42 .如图所示的几何体,其俯视图是()A. \/B. 2丿C Q D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A. 1 X103B. 1000 X108C. 1 X1011 D . 1 X10144 .小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,- 1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是(). (- 1,1)C. (1,- 2)D . (- 1,- 2)5 .用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.Romm 川歯2 A . B 与 C B . C 与 D C . E 与 F D . A 与 B6.如图,Z BCD=90AB,//DE ,则Za 与Zp 满足( )=C0 °B =3 Z a .Za + zp =907 .甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了 10次,甲、乙 两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平 均数与方差两个因素分析,应选(平均数 9A .甲B .乙C .丙D .丁方差 厂一丙 ・・丁8.—次函数y=ax+b 与反比例函数y=——,其中ab v 0,a 、b 为常数,它们 在同一坐标系中的图象可以是( 1)CB.9.若代数式]一•有意义,则实数x 的取值范围是(A . x >1B . x >2C . x > 1D . x >210 .如图,四边形ABCD 为。
真题潍坊市中考数学试卷含答案解析版
真题潍坊市中考数学试卷含答案解析版一、选择题(共15小题,每小题2分,共30分)在每小题给出的四个选项中,只有一个选项是正确的。
1、已知函数f(x)=3x+2,那么f(5)的值是多少?A) 13B) 16C) 17D) 20解析:将x=5代入函数f(x)=3x+2,计算得f(5)=3(5)+2=15+2=17,因此答案选C。
2、已知一个等差数列的公差为3,首项为5,那么第5项的值是多少?A) 11B) 14C) 17D) 20解析:根据等差数列公式an=a1+(n-1)d,其中an为第n项,a1为首项,d为公差。
将n=5,a1=5,d=3代入公式,计算得a5=5+(5-1)×3=5+4×3=5+12=17,因此答案选C。
3、已知一个等差数列前四项的和为26,公差为3,那么该等差数列的第一项是多少?A) 2B) 5C) 8D) 11解析:根据等差数列前n项和公式Sn=n(a1+an)/2,其中Sn为前n项的和,a1为首项,an为第n项。
将Sn=26,n=4,d=3代入公式,得到26=4(a1+a4)/2=2(a1+a4),又a4=a1+3,代入得26=2(a1+a1+3)=2(2a1+3),解方程得a1=5,因此答案选B。
4、已知一个等差数列前四项的和为26,公差为3,那么该等差数列的前五项的和是多少?A) 35B) 40C) 45D) 50解析:根据等差数列前n项和公式Sn=n(a1+an)/2,将Sn=26,n=4,d=3代入公式,得到26=4(a1+a4)/2=2(a1+a4),又a4=a1+3,代入得26=2(a1+a1+3)=2(2a1+3),解方程得a1=5。
前五项的和为S5=5+8+11+14+17=55,因此答案选C。
二、填空题(共4小题,每小题8分,共32分)1、已知函数f(x)=2x-3,那么f(4)的值是________。
解析:将x=4代入函数f(x)=2x-3,计算得f(4)=2(4)-3=8-3=5。
潍坊市中考数学试卷及答案(Word解析版)
潍坊市初中学业水平考试数学试题一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.实数0.5的算术平方根等于( ).A.2B.2C.22 D.21 答案:C .考点:算术平方根。
点评:理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.答案:A .考点:轴对称图形与中心对称图形的特征。
点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。
. 3.,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制资金达865.4亿元.数据“865.4亿元”用科学记数法可表示为( )元.A.810865⨯ B.91065.8⨯ C.101065.8⨯ D.1110865.0⨯答案:C .考点: 科学记数法的表示。
点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).答案:B .考点:根据实物原型画出三视图。
点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数答案:D .考点:统计量数的含义.点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑.与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度. 6.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).答案:C .考点:变量间的关系,函数及其图象.点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。
潍坊市中考数学试卷含答案解析(版)
潍坊市中考数学试卷含答案解析(版)潍坊市中考数学试卷含答案解析(版)一、选择题(共30小题,每小题4分,共120分)1. (3x – 1)(2x + 3)的乘积等于下列哪个多项式?A) 6x^2 + 7x – 3B) 6x^2 - 7x + 3C) 6x^2 - 7x - 3D) 6x^2 + 7x + 3答案:A解析:使用分配律展开,得到(3x * 2x + 3x * 3 - 1 * 2x - 1 * 3),整理得6x^2 + 7x - 3。
2. 以下三个指数恒等式中正确的是:A) (2^3)^4 = 2^7B) (2^2)^3 = 2^6C) (2^4)^3 = 2^12D) (2^5)^2 = 2^10答案:B解析:根据指数的乘法法则,我们将幂相乘。
(2^2)^3 = 2^(2*3) = 2^6。
3. 简化根式√12 + 2√27 - 3√48的结果是:A) 5√2B) 2√5C) 3√2D) 4√3答案:B解析:将根式依次应用化简公式,√12 + 2√27 - 3√48 = 2√3 + 2(3√3) - 3(4√3) = 2√3 + 6√3 - 12√3 = -4√3。
根式√3可化简为√3 * 1 = √3。
4. 若正整数a、b满足a:b = 4:5,且a+b=180,那么a的值等于:A) 100B) 80C) 60D) 48答案:B解析:根据题意得到的等式是a/b = 4/5,将其转化为a = (4/5) * b。
将a + b = 180代入,得到(4/5) * b + b = 180,化简得到b = 80,代入a = (4/5) * b,可得到a = 64。
因此,a的值等于80。
5. 若平行四边形ABCD中,∠A = 80°,则∠C的度数是:A) 80°B) 100°C) 120°D) 140°答案:B解析:平行四边形的对角线互相平分,所以∠C = 180° - ∠A = 180°- 80° = 100°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年山东省潍坊市中考数学试卷一、选择题:本大题共12小题,每小题3分1.(3分)(2016•潍坊)计算:20•2﹣3=()A.﹣ B.C.0 D.82.(3分)(2016•潍坊)下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A. B.C.D.3.(3分)(2016•潍坊)如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.4.(3分)(2016•潍坊)近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011 B.1.3×1011 C.1.26×1011D.0.13×10125.(3分)(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b6.(3分)(2016•潍坊)关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°7.(3分)(2016•潍坊)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.8.(3分)(2016•潍坊)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+19.(3分)(2016•潍坊)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.210.(3分)(2016•潍坊)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣11.(3分)(2016•潍坊)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣ B.﹣ C.﹣D.﹣12.(3分)(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题:本大题共6小题,每小题3分13.(3分)(2016•潍坊)计算:(+)=.14.(3分)(2016•潍坊)若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.15.(3分)(2016•潍坊)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩的总成绩是分.16.(3分)(2016•潍坊)已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.17.(3分)(2016•潍坊)已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.18.(3分)(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.三、解答题:本大题共7小题,共66分19.(6分)(2016•潍坊)关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.20.(9分)(2016•潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.21.(8分)(2016•潍坊)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.22.(9分)(2016•潍坊)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)23.(10分)(2016•潍坊)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24.(12分)(2016•潍坊)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.25.(12分)(2016•潍坊)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2016年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分1.(3分)(2016•潍坊)计算:20•2﹣3=()A.﹣ B.C.0 D.8【分析】直接利用负整数指数幂的性质结合零指数幂的性质分析得出答案.【解答】解:20•2﹣3=1×=.故选:B.【点评】此题主要考查了负整数指数幂的性质和零指数幂的性质,正确掌握相关性质是解题关键.2.(3分)(2016•潍坊)下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A. B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2016•潍坊)如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.【分析】根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中解答即可.【解答】解:图中几何体的俯视图是C选项中的图形.故选:C.【点评】本题考查的是简单几何体的三视图,掌握主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形是解题的关键.4.(3分)(2016•潍坊)近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011 B.1.3×1011 C.1.26×1011D.0.13×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1256.77亿用科学记数法可表示为1.3×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.6.(3分)(2016•潍坊)关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°【分析】由方程有两个相等的实数根,结合根的判别式可得出sinα=,再由α为锐角,即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选B.【点评】本题考查了根的判别式以及特殊角的三角形函数值,解题的关键是求出sinα=.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.7.(3分)(2016•潍坊)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【分析】先连接OP,易知OP是Rt△AOB斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP=AB,由于木杆不管如何滑动,长度都不变,那么OP就是一个定值,那么P点就在以O为圆心的圆弧上.【解答】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.【点评】本题考查了轨迹,直角三角形斜边上的中线,解题的关键是知道直角三角形斜边上的中线等于斜边的一半.8.(3分)(2016•潍坊)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.【点评】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.9.(3分)(2016•潍坊)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.2【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.【点评】本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.10.(3分)(2016•潍坊)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,级的:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B.【点评】此题主要考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键.11.(3分)(2016•潍坊)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣ B.﹣ C.﹣D.﹣【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×﹣(﹣×32)=﹣π.故选A.【点评】本题考查扇形面积公式、直角三角形30度角性质、等边三角形性质等知识,解题的关键是学会分割法求面积,属于中考常考题型.12.(3分)(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.【点评】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.二、填空题:本大题共6小题,每小题3分13.(3分)(2016•潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(3分)(2016•潍坊)若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.【分析】直接利用同类项的定义得出关于m,n的等式,进而求出答案.【解答】解:∵3x2n y m与x4﹣n y n﹣1是同类项,∴,解得:则m+n=+=.故答案为:.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.15.(3分)(2016•潍坊)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩的总成绩是77.4分.【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【解答】解:根据题意,该应聘者的总成绩是:70×+80×+92×=77.4(分),故答案为:77.4.【点评】此题考查了加权平均数,解题的关键是熟记加权平均数的计算方法.16.(3分)(2016•潍坊)已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是﹣3<x<﹣1.【分析】根据反比例函数过点(3,﹣1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故答案为:﹣3<x<﹣1.【点评】本题考查了反比例函数的性质以及反比例函数图象上点的坐标特征,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由点的坐标结合反比例函数图象上点的坐标特征求出k值,再根据反比例函数的性质找出去增减性是关键.17.(3分)(2016•潍坊)已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA 的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.【点评】本题考查了轴对称﹣最短路线问题,解直角三角形,正确的作出图形是解题的关键.18.(3分)(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是(2n﹣1,2n﹣1).【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.【解答】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).故答案为(2n﹣1,2n﹣1).【点评】本题考查一次函数图象上点的特征,正方形的性质等知识,解题的关键是学会从特殊到一般的探究方法,利用规律解决问题,属于中考填空题中的压轴题.三、解答题:本大题共7小题,共66分19.(6分)(2016•潍坊)关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.【分析】由于x=是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为t.依题意得:3×()2+m﹣8=0,解得m=10.又t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10.【点评】此题考查了根与系数的关系,一元二次方程的根的定义,把方程的根代入原方程就可以确定待定系数m的值.20.(9分)(2016•潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.【分析】(1)由C等级频数为15,占60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.【点评】此题考查了列表法或树状图法求概率以及扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2016•潍坊)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.【点评】此题主要考查了正方形的性质以及圆周角定理和矩形的判定等知识,正确应用正方形的性质是解题关键.22.(9分)(2016•潍坊)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)【分析】延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.【解答】解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.(10分)(2016•潍坊)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【分析】(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,根据不等关系:净收入为正,列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.【点评】本题用分段函数模型考查了一次函数,二次函数的性质与应用,解决问题的关键是弄清题意,分清收费方式.24.(12分)(2016•潍坊)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.【解答】(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴==,同理,=,∴MN=AC;(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=DG2=3,解得,DG=2,则cos∠EDG==,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.【点评】本题考查的是菱形的性质和旋转变换,掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等是解题的关键.25.(12分)(2016•潍坊)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.。