金属热处理名词解释

合集下载

金属表面处理及热处理加工与表面处理的区别

金属表面处理及热处理加工与表面处理的区别

金属表面处理及热处理加工与表面处理的区别一、金属表面处理的概念及作用1. 金属表面处理是指对金属材料表面进行加工、修饰,以改善其表面性能、保护和美化的一种工艺。

它是金属加工中不可缺少的环节之一,能够提高金属零件的使用寿命、使用性能和外观质量。

2. 金属表面处理的作用主要包括防腐、防锈、提高表面硬度、改善耐磨性、改善电化学性能等。

通过表面处理,可以使金属零件在使用过程中具有更好的耐磨、耐蚀和耐高温性能,从而延长其使用寿命。

二、热处理加工的概念及作用1. 热处理加工是指通过对金属材料进行加热、保温和冷却等工艺过程,以改变其组织结构和性能的一种加工方法。

热处理加工能够提高金属材料的硬度、强度、韧性和耐磨性,从而提高材料的使用性能。

2. 热处理加工的作用主要包括改善金属材料的力学性能、提高耐热性和耐磨性、消除材料内部应力和变形等。

通过热处理,可以实现对金属材料的精密控制,使其具有更加优质的力学性能和使用寿命。

三、金属表面处理与热处理加工的区别1. 目的不同:金属表面处理主要是为了改善表面性能,如耐腐蚀、耐磨等;而热处理加工旨在改善整体材料的力学性能,如硬度、强度等。

2. 方法不同:金属表面处理多采用化学处理、机械加工等方式,以在表面形成一层保护膜或改变表面状态;而热处理加工则通过加热、保温和冷却等工艺过程改变材料的组织结构和性能。

3. 范围不同:金属表面处理更偏向于表面的零部件加工和改良;热处理加工则涉及到整体材料的加工和性能提升。

四、个人观点及总结在金属加工领域,金属表面处理和热处理加工都扮演着十分重要的角色。

金属表面处理能够改善金属零件的表面性能,从而提高其使用寿命和稳定性;而热处理加工则能够提升整体材料的力学性能,使其在各种特殊条件下都能够保持优质的性能特性。

两者相辅相成,为金属加工领域的高质量发展提供了重要支撑。

在以后的工程实践中,我会更加注重金属材料的综合加工处理,同时加强对金属表面处理和热处理加工的深入学习和实践应用,以提高自己在金属加工领域的专业技能和水平。

金属热处理正火

金属热处理正火

金属热处理正火金属热处理是一种通过加热和冷却的方式改变金属材料的物理和化学性质的工艺。

其中,正火是一种常用的金属热处理方法之一。

正火的目的是通过控制加热温度和冷却速率,使金属材料达到理想的组织和性能。

正火的工艺过程包括加热、保温和冷却三个阶段。

在加热阶段,金属材料被加热到一定温度,以使其组织发生相应的变化。

保温阶段是为了保持材料在一定温度下的一段时间,使其达到热平衡。

最后,在冷却阶段,金属材料以一定的速率冷却,形成理想的组织结构。

正火的主要目的是改变金属材料的组织结构和性能。

通过正火处理,可以增加材料的强度、硬度和耐磨性,提高其抗蠕变性和抗疲劳性能。

此外,正火还可以改善材料的可加工性,并减少内应力和变形。

正火的关键是控制加热温度和冷却速率。

加热温度应根据金属材料的组织和性能要求进行选择。

过高的加热温度会导致晶粒长大、晶界清晰度下降,从而降低材料的强度和硬度。

过低的加热温度则可能导致组织不均匀,影响性能。

冷却速率的选择也十分重要,过快或过慢的冷却速率都会对材料的性能产生负面影响。

正火的应用广泛,特别是在钢铁行业。

钢材经过正火处理后,可以改变其组织,提高其硬度和强度,从而满足不同领域的需求。

例如,汽车制造业常用正火处理来提高车辆零部件的耐磨性和强度,以保证其在复杂工况下的可靠性。

机械制造业也广泛应用正火处理来改善机械零件的性能,提高其使用寿命和可靠性。

在正火处理中,除了控制加热温度和冷却速率外,还需要注意一些其他因素。

首先,材料的初始状态和化学成分会对正火效果产生影响。

不同的金属材料和不同的合金元素对正火处理的响应是不同的,需要根据具体情况进行选择和调整。

其次,正火的时间也是一个重要的参数。

保温时间过长或过短都会影响组织的形成和性能的改善。

此外,正火后的材料还需要进行适当的回火处理,以消除残余应力和提高材料的稳定性。

金属热处理正火是一种重要的工艺方法,通过控制加热温度和冷却速率,可以改善金属材料的组织和性能。

金属热处理和调制的区别

金属热处理和调制的区别

金属热处理和调制的区别
《金属热处理与调制的区别》
金属热处理和金属调制是两种不同的金属加工技术,在金属材料的加工过程中,它们各有各的特点和应用范围。

首先,金属热处理是指通过对金属材料进行加热和冷却过程,改变其晶格结构和性能的方法。

这种技术可以提高金属材料的硬度、韧性、耐磨性等性能,常用于制造工具、零部件等领域。

金属热处理可以分为退火、正火、淬火、回火等不同的处理工艺,每种工艺都有特定的加热温度、保温时间和冷却方式。

而金属调制是指通过改变金属的晶粒大小、形状和分布,来调整金属材料的力学性能和表面性能。

这种技术一般是通过加工变形或压制方法来实现,比如轧制、挤压、拉拔、锻造等工艺。

金属调制可以提高金属的综合性能,如提高强度、韧性、疲劳寿命等。

它常用于航空航天、汽车、船舶等高端制造领域。

因此,金属热处理和金属调制虽然都是用于改变金属材料性能的方法,但其原理和应用范围有所不同。

金属热处理注重对金属结构和性能的改变,而金属调制注重对金属晶粒的控制和调整。

在实际生产中,需要根据不同的金属材料和要求,选择合适的加工方法,以达到理想的效果。

热处理名词解释:退火、正火、淬火、回火

热处理名词解释:退火、正火、淬火、回火

热处理名词解释:退火、正火、淬火、回火金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。

其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。

钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。

另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。

在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。

早在公元前770——前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。

白口铸铁的柔化处理就是制造农具的重要工艺。

公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。

中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。

随着淬火技术的发展,人们逐渐发现冷剂对淬火质量的影响。

三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。

这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。

中国出土的西汉(公元前206——公元24)中山靖王墓中的宝剑,心部含碳量为0.15——0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。

但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。

1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。

金属学与热处理重要名词解释

金属学与热处理重要名词解释

7、弹性模量与刚度:金属在弹性范围内,应力与应变的比值σ/ε称为弹性模量E,也称为杨氏模量。

E标志材料抵抗弹性变形的能力,用以表示材料的刚度。

14、断裂韧性:金属材料阻止裂纹失稳扩散的属性或材料的韧性。

1、金属特性:金属在固态下具有以下特征:①具有良好的导电性和导热性;②具有正的电阻温度系数;③具有良好的反射能力、不透明性和金属光泽;④具有良好的塑性变形能力。

4、晶体与晶体特性:原子(或分子)在三维空间呈有规则的周期性排列的一类物质称为晶体。

晶体特性:①晶体中的原子(或分子)在三维空间呈有规则的周期性排列;②具有确定的熔点;③具有各向异性;④具有规则的几何外形。

5、空间点阵:将刚球模型中的刚球抽象为纯粹的几何点,得到一个由无数几何点在三维空间规则排列而成的列阵,称之为空间点阵。

6、晶格与晶胞:描述原子(离子、分子)或原子团在晶体中排列方式的几何空间格架称为结晶格子,简称晶格。

从晶格选取一个能够完全反映晶体特征的最小几何单元。

这个有代表性的最小几何单元称为晶胞。

7、晶面与晶向:在晶体中,有一系列原子所组成的平面称为晶面;任意两个原子之间的连线称为原子列,其所指方向称为晶向。

8、晶面指数与晶向指数:为确定晶面和原子列在晶体中的空间位向所采用的统一符号,分别称为晶面指数与晶向指数。

9、晶面族(或晶向族):某些晶面(或晶向)上的原子排列相同但空间位向不同,它们在晶体学上属等同晶面(或晶向),可归并为一个晶向族称为晶面族(或晶向族)。

10、配位数与致密度:晶格中任一原子周围与其最近邻且等距离的原子数目称为配位数;一个晶胞内原子所占体积与晶胞体积之比称为致密度。

12、多晶型转变或同素异构转变:具有多晶型的金属在温度或压力变化时,由一种晶体结构变为另一种晶体结构的过程叫多晶型转变或同素异构转变。

14、点缺陷:在三维尺度上都很小的晶体缺陷,一般不超过几个原子间距。

点缺陷主要有空位、间隙原子和置换原子等。

15、线缺陷:在二维尺度上很小,而在三维尺度上很大的晶体缺陷,包括刃型位错、螺型位错、混合位错。

金属热处理基本知识

金属热处理基本知识

金属热处理基本知识金属热处理是一种通过加热和冷却来改变金属结构和性能的工艺,广泛应用于工业制造过程中。

本文将介绍金属热处理的基本知识,包括常见的热处理方法、热处理的目的以及热处理对金属材料性能的影响。

一、常见的热处理方法1. 固溶处理固溶处理是一种通过加热金属至其固溶温度,然后迅速冷却以增加金属的硬度和强度的方法。

常见的固溶处理方法包括淬火和时效处理。

淬火是将金属加热至固溶温度,然后迅速冷却以形成固溶体,从而提高金属的硬度和强度。

时效处理是在淬火后,将金属加热至适当温度保持一段时间,以达到固溶体中的晶粒溶解和析出硬化相的目的,提高金属的综合性能。

2. 马氏体转变马氏体转变是一种通过加热金属至马氏体起始温度,然后迅速冷却以在金属中形成马氏体组织的方法。

马氏体转变可以显著提高金属的强度和硬度,同时还可以改善其耐磨性能和韧性。

常见的马氏体转变方法包括淬火和回火。

淬火是将金属加热至马氏体起始温度,然后迅速冷却以形成马氏体,进而提高金属的硬度和强度。

回火是在淬火后,将金属加热至适当温度保持一段时间,使马氏体转变为较为稳定的组织,从而提高金属的韧性。

3. 回火处理回火处理是一种通过加热金属至适当温度,然后保温一段时间以改善金属的组织和性能的方法。

回火处理可以降低金属的硬度和强度,提高其韧性和延展性。

不同的回火处理参数可以得到不同的金属组织和性能。

常见的回火处理方法包括低温回火、中温回火和高温回火,分别适用于不同的金属材料和应用需求。

二、热处理的目的金属热处理的主要目的是改善金属材料的组织和性能,以满足特定的工艺和使用要求。

具体来说,热处理可以实现以下几个方面的目标:1. 提高金属的硬度和强度:通过热处理,可以使金属中的晶体细化,晶体界面增多,从而提高金属的硬度和强度。

2. 改善金属的韧性和延展性:热处理可以消除金属中的内应力和缺陷,减少晶界的孔洞,从而提高金属的韧性和延展性。

3. 提高金属的耐磨性和耐蚀性:通过调整金属的组织和相态,热处理可以增加金属的耐磨性和耐蚀性,提高其在恶劣环境下的使用寿命。

金属学与热处理名词解释汇总

金属学与热处理名词解释汇总

金属学与热处理名词解释汇总热处理:在生产中,通过加热、保温和冷却,使钢发生固态相变,借此改变其内部组织结构,从而达到改善力学性能的目的的操作被称为热处理。

正火:将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。

淬火:将钢加热到Ac3或Ac1以上的某一温度,保温一定时间,然后取出进行水冷或油冷获得马氏体的热处理工艺。

等温淬火:将奥氏体化的工件淬入温度稍高于Ms的熔盐中,等温保持足够时间,使过冷奥氏体恒温发生贝氏体转变,待转变结束后取出在空气中冷却的处理方法称为等温淬火。

分级淬火:将奥氏体化的工件淬入温度稍高于或稍低于Ms的熔盐中,待工件内外温度均匀后,从熔盐中取出置于空气中冷却至室温,以获得马氏体组织,这种处理方法称为分级淬火。

单液淬火:将奥氏体化的工件投入一种淬火介质中,直至转变结束。

双液淬火:将奥氏体化的工件先放入一种冷却能力强的冷却介质冷却一定时间,当冷却至稍高于Ms后立即将工件取出并放入另外一种冷却能力缓一些的冷却介质冷却,使之转变为马氏体的热处理工艺。

回火:将淬火钢加热到低于临界点A1某一温度,保温一定时间,然后冷却到室温的一种热处理工艺。

回火索氏体:淬火碳钢500~650℃回火时,得到粗粒状渗碳体和多边形铁素体所构成的复相组织。

回火屈氏体:淬火碳钢350~500℃回火时,得到细粒状渗碳体和针状铁素体所构成的复相组织。

回火马氏体:淬火碳钢在250℃以下回火时,得到的过饱和的α固溶体和弥散分布的碳化物组成的复相组织。

退火:是将钢加热到临界点以上或以下的某一温度,保温一定时间后,随炉冷却的一种热处理工艺。

它是热处理工艺中应用最广、种类最多的一种工艺,不同种类的退火目的也各不相同。

等温退火:将亚共析钢工件加热到A3以上20〜30°C,保温一定时间,然后在Arl以下珠光体转变区间的某一温度进行等温,使之转变为珠光体后出炉空冷的一种热处理工艺。

金属热处理

金属热处理

四、渗金属 指以金属原子渗入钢的表面层的过程。它是使 钢的表面层合金化,以使工件表面具有某些合金钢、 特殊钢的特性,如耐热、耐磨、抗氧化、耐腐蚀等。 生产中常用的有渗铝、渗铬、渗硼、渗硅等。
表面淬火
将钢件的表面通过快速加热到临界温度以上, 但热量还未来得及传到心部之前迅速冷却,这样就 可以把表面层被淬在马氏体组织,而心部没有发生 相变,这就实现了表面淬硬而心部不变的目的。适 用于中碳钢。
热处理工艺曲线示意图
热处理可以提高零件的强度、硬度、 韧性、弹性。热处理是改善原材料或毛 坯的工艺性能、保证产品质量、延长使 用寿命、挖掘材料潜力不可缺少的工艺 方法。铁碳合金状态图是确定热处理工 艺的重要依据。
铁碳合金状态图铁碳合金状态图.doc
金属热处理是机械制造中的重要工艺之 一,与其它加工工艺相比,热处理一般不 改变工件的形状和整体的化学成分,而是 通过改变工件内部的显微组织,或改变工 件表面的化学成分,赋予或改善工件的使 用性能。其特点是改善工件的内在质量, 而这一般不是肉眼所能看到的。 金属热处理工艺大体可分为整体热处理、 表面热处理、局部热处理和化学热处理等。
七:固溶处理: 指将合金加热到高温单相区恒温保持, 使过剩相充分溶解到固溶体中后快速冷却, 以得到过饱和固溶体的热处理工艺。 固溶处理的目的 主要是改善钢和合金的塑性和韧性,为 沉淀硬化处理作好准备等。
八、沉淀硬化(析出强化) 指金属在过饱和固溶体中溶质原子偏聚区 和(或)由之脱溶出微粒弥散分布于基体中 而导致硬化的一种热处理工艺。如奥氏体沉 淀不锈钢在固溶处理后或经冷加工后,在 400~500℃或700~800℃进行沉淀硬化处理, 可获得很高的强度。
二、正火 指将钢材或钢件加热到Ac3 或Acm(钢的上临界 点温度)以上30~50℃,保持适当时间后,在静止 的空气中冷却的热处理的工艺。 正火的目的 主要是提高低碳钢的力学性能,改善切削加工性, 细化晶粒,消除组织缺陷,为后道热处理作好组织 准备等。 正火主要用于 1、取代完全退火 2、用于普通结构件的最终热处理 3、用于过共析钢,以减少或消除网状二次渗碳 体,为球化退火做好准备

金属工艺第5-7章答案

金属工艺第5-7章答案

作业第六章钢的热处理一、名词解释1、钢的热处理—是采用适当的方式对金属材料或工件进行加热、保温和冷却,以获得预期的组织结构与性能的工艺。

2、等温冷却转变—工件奥氏体化后,冷却到临界点以下的某一温度区间等温保持时,过冷奥氏体发生的相变。

3、连续冷却转变—工件奥氏体化后,以不同冷速连续冷却时过冷奥氏体发生的相变。

4、马氏体—碳或合金元素在α—Fe中的过饱和固溶体。

5、退火—将工件加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。

6、正火—工件加热奥氏体化后在空气中冷却的热处理工艺。

7、淬火—工件加热奥氏体化后,以适当方式冷却获得马氏体或(和)贝氏体组织的热处理工艺。

8、回火—工件淬硬后,加热到Ac1以下的某一温度,保持一定时间,然后冷却到室温的热处理工艺。

9、表面热处理—为了改变工件表面的组织和性能,仅对其表面进行热处理的工艺。

10、真空热处理—在低于一个大气压(10-1~10-3Pa)的环境中加热的热处理工艺。

11、渗碳—为了提高工件表面碳的质量分数,并在其中形成一定的碳含量梯度,将工件在渗碳介质中加热、保温,使碳原子渗入的化学热处理工艺。

12、渗氮—在一定温度下,与一定介质中,使氮原子渗入工件表面的化学热处理工艺。

二、填空题1、整体热处理分为退火、正火、淬火和回火等。

2、表面淬火的方法有感应加热表面淬火、火焰加热表面淬火、接触电阻加热表面淬火、电解液表面淬火等。

3、化学热处理包括渗碳、渗氮、碳氮共渗和渗硼等。

4、热处理工艺过程由加热、保温和冷却三个阶段组成。

5、共析钢在等温转变过程中,其高温转变产物有: P(珠光体) 、 S(索氏体) 和 T(托氏体) 。

6、贝氏体分上贝氏体和下贝氏体两种。

7、淬火方法有:单液淬火、双液淬火、马氏体分级淬火和贝氏体等温淬火等。

8、常用的退火方法有:完全退火、球化退火和去应力退火等。

9、常用的冷却介质有油、水、空气等。

10、常见的淬火缺陷有过热与过烧、氧化与脱碳、硬度不足与软点、变形与开裂等11、感应加热表面淬火,按电流频率的不同,可分为高频感应加热、中频感应加热和工频感应加热三种。

金属热处理原理与工艺

金属热处理原理与工艺

金属热处理原理与工艺金属热处理是指对金属材料进行加热处理来改变其组织结构和性质的一种方法。

这种方法可以通过控制加热温度和保温时间等参数来实现不同的处理效果。

金属热处理可以改善金属的硬度、强度、韧性、延展性、耐磨性、耐腐蚀性等性能,从而满足不同的工业应用需求。

金属热处理的原理金属热处理的原理基于金属的组织结构和性质随温度的变化而变化。

当金属材料受到热加工时,温度升高会导致金属晶粒的尺寸增加,晶粒之间的间距变大,这使得金属的塑性和韧性增加。

而当金属材料受到冷加工时(如锻造、轧制),由于冷加工过程中金属材料处于冷却状态,因此晶粒不会发生明显的变形,而是保持原来的晶粒组织。

这种组织结构会使金属变得更加硬而脆,但相应的韧性和延展性会降低。

金属热处理的工艺金属热处理的工艺包括加热、保温和冷却等步骤。

根据不同的处理效果,这些步骤的温度和时间可以做出相应的调整。

以下是几种常见的金属热处理方法:1. 灭火处理:灭火处理是指将金属加热至高温后迅速冷却至室温的处理过程。

这种处理可以改变金属的组织结构,从而提高其硬度和强度。

灭火处理通常适用于需要较高硬度和强度的金属制品。

2. 固溶处理:固溶处理是指将金属加热至一定温度后进行保温,使固态的金属中的固溶体中的扰动原子可以逸出到基体里。

这种处理可以改变金属的组织结构,从而提高其韧性和延展性。

固溶处理通常适用于需要具有良好机械性能和耐腐蚀性的金属制品。

3. 时效处理:时效处理是指将金属加热至一定温度进行保温,然后迅速冷却后再进行再加热保温的过程。

这种处理可以使金属的晶粒长大并沉淀出一些固相化合物,从而提高金属的强度和硬度。

时效处理通常适用于需要高强度和高韧性的金属制品。

4. 钝化处理:钝化处理是指将金属制品加热至一定温度后,在空气或氧化性环境中,使其表面形成一层韧性较强的氧化皮。

这种处理可以使金属制品具有较好的耐腐蚀性。

金属热处理是一种重要的金属加工工艺,可以通过控制加热温度、保温时间和冷却速率等参数来实现不同的处理效果,以满足不同的工业应用需求。

金属材料热处理工艺(详细工序及操作手法)

金属材料热处理工艺(详细工序及操作手法)

金属材料热处理工艺(详细工序及操作手法)一、热处理的定义热处理是指金属在固态下经加热、保温和冷却,以改变金属的内部组织和结构,从而获得所需性能的一种工艺过程。

热处理的三大要素:①加热( Heating)目的是获得均匀细小的奥氏体组织。

②保温(Holding)目的是保证工件烧透,并防止脱碳和氧化等。

③冷却(Cooling)目的是使奥氏体转变为不同的组织。

热处理后的组织加热、保温后的奥氏体在随后的冷却过程中,根据冷却速度的不同将转变成不同的组织。

不同的组织具有不同的性能。

二、热处理工艺1.退火操作方法:将钢件加热到Ac3+30-50度或Ac1+30-50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。

目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。

应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料;2.一般在毛坯状态进行退火。

2.正火操作方法:将钢件加热到Ac3或Acm 以上30-50度,保温后以稍大于退火的冷却速度冷却。

目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。

应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。

对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。

对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。

3.淬火操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。

目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。

应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。

热处理基本概念解释

热处理基本概念解释

基本概念解释1、热处理把金属材料在固态范围内通过一定的加热,保温和冷却以改变其组织和性能的一种工艺。

热处理形式主要有:退火、正火、淬火、回火、调质处理、表面热处理等。

退火:将金属或合金的材料制件加热到相变或部分相变温度,保温一段时间,然后缓慢冷却的一种热处理工艺。

正火:将钢加热到完全相变以上的某一温度,保温一定的时间后,在空气中冷却的一种热处理工艺。

淬火:将钢加热到相变或部分相变温度,保温一段时间后,快速冷却的热处理工艺。

回火:将经过淬火的钢,重新加热到一定温度(相变温度以下),保温一段时间,然后冷却的热处理工艺。

调质处理:将钢件淬火,随之进行高温回火,这种复合工艺称调质处理。

表面热处理:改变钢件表面组织或化学成分,以其改面表面性能的热处理工艺。

2 、力学性能力学性能是指金属材料在外力作用下所表现出来的特性。

1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。

材料单位面积受载荷称应力。

2、屈服点(бs):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生0.2%L。

时应力值,单位用牛顿/毫米2(N/mm2)表示。

3、抗拉强度(бb)也叫强度极限指材料在拉断前承受最大应力值。

单位用牛顿/毫米2(MPa)表示。

4、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。

5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。

6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(HBS、HBW)和洛氏硬度(HKA、HKB、HRC)7、冲击韧性(Ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(J/cm2).3、工艺性能指材料承受各种加工、处理的能力的那些性能。

8、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。

9、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。

金属材料与热处理名词解释

金属材料与热处理名词解释

金属材料与热处理名词解释(总26页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除名词解释沸腾钢:1 只用一定量的弱脱氧剂锰铁对钢液脱氧,因此钢液含氧量较高。

2 在沸腾钢的凝固过程中,钢液中碳和氧发生反应而产生大量气体,造成钢液沸腾,这种钢由此而得名。

3 沸腾钢钢锭宏观组织的特点是,钢锭内部有大量的气泡,但是没有或很少有缩孔。

钢锭的外层比较纯净,这纯净的外层包住了一个富集着杂质的锭心。

4 沸腾钢钢锭的偏析较严重,低温冲击韧性不好,钢板容易时效,钢的力学性能波动性较大。

镇静钢:1 镇静钢在浇注之前不仅用弱脱氧剂锰铁而且还使用强脱氧剂硅铁和铝对钢液进行脱氧,因而钢液的含氧量很低。

2 强脱氧剂硅和铝的加入,使得在凝固过程中,钢液中的氧优先与强脱氧元素铝和硅结合,从而抑制了碳氧之间的反应,所以镇静钢结晶时没有沸腾现象,由此而得名。

3 在正常操作情况下,镇静钢中没有气泡,但有缩孔和疏松。

与沸腾钢相比,这种钢氧化物系夹杂含量较低,纯净度较高。

镇静钢的偏析不像沸腾钢那样严重,钢材性能也较均匀。

树枝状偏析:(枝晶偏析)1依据相图,钢在结晶时,先结晶的枝干比较纯净,碳浓度较低,而迟结晶的枝间部分碳浓度较高。

2研究指出,在钢锭心部等轴晶带中枝晶偏析的特点是,在枝干部分成分变化很小,这部分占有相当宽的范围,在枝晶或者两个相邻晶粒之间,富集着碳、合金元素和杂质元素,而且达到很高的浓度。

枝干结晶时,在相当宽的范围内造成碳和合金元素、杂质元素的贫化(选择结晶),这种贫化成了枝晶间浓度特高的前提。

3为减少枝晶偏析的程度,可对铸钢和钢锭进行扩散退火。

区域偏析:在整个钢锭范围内发生的偏析因为选择结晶,杂质元素和合金元素被富集在晶枝近旁的液相中。

在凝固速度不是很高的情况下,枝晶近旁液相中杂质元素能够借扩散和液体的流动而被转移到很远的地方。

随着凝固的进展,杂质元素在剩余的钢液中不断富集,各种元素在整个钢锭或铸件的范围内发生了重新分布,即产生了区域偏析。

钢的热处理名词解释

钢的热处理名词解释

钢的热处理名词解释
钢是最常用的金属材料之一,它是用铁和其他合金材料制成的。

钢的热处理是一种常见的金属材料处理方法,它可以改变金属材料的性能和结构。

因此,热处理是许多领域的生产所必需的过程。

具体而言,钢的热处理通常指对钢进行加热、保温和冷却处理,以便改善其物理和机械性能,或用于制造特定结构的钢结构。

可以说,热处理是钢特性和性能形成的基础,也是生产行业发展的一个重要关键点。

此外,钢的热处理可以分为淬火、回火、正火和温处理等几种,其中淬火是最常用的一种,淬火是指将钢放入特定温度的水或油中,使钢中的碳原子以溶解的形式分散,以改善钢的抗弯强度和韧性,增加钢的硬度和韧性。

此外,回火是一种常见的热处理方法,通常用于减轻钢的抗弯强度,提高其韧性和延展性,以便更好地抵抗重复疲劳。

回火处理钢时,应该注意,可以利用不同的温度控制,以使其内部构型在一定的温度下发生改变。

此外,正火是钢的热处理的另一种方法,它的作用是使钢变得更加柔韧,以增加其韧性和伸长性。

正火也可以用于改变钢的组织结构,以改善其物理和机械性能。

最后,温处理是钢的热处理的另一种方法,它的作用是改变钢的组织结构,从而改善其物理和机械性能。

通过温处理,可以调节钢的硬度、韧性和组织,以达到一定的性能需求。

总之,钢的热处理是改变金属材料性能的重要过程,可以改善钢的物理和机械性能,以及改变钢的组织结构,从而提高工艺性能。

钢的热处理通常可以分为淬火、回火、正火和温处理,它们都在众多领域发挥重要作用,为社会和工业发展做出了巨大贡献。

热处理的名词解释

热处理的名词解释

热处理的名词解释
热处理是一种通过将金属制品加热到一定温度下进行处理的工艺,目的是改变金属的组织结构和性能,以提高其力学性能、耐磨性、耐腐蚀性等。

热处理主要分为四个步骤:加热、保温、冷却和清洗。

根据处理的目的和金属的特性,可以采用不同的热处理方法,如退火、正火、淬火、调质、沉淀硬化等。

退火是最常见的热处理方法之一,通过加热金属至一个适当的温度,然后缓慢冷却,以减少金属的硬度和提高其塑性。

退火可以改善金属的加工性能,减小内应力,并提高材料的韧性。

正火是一种使金属充分加热到适当温度后迅速冷却的热处理方法。

正火可以提高金属的硬度和强度,但会降低其塑性。

正火常用于钢材的热处理,例如生产弹簧、刀具等。

淬火是一种迅速冷却金属的方法,使其快速形成马氏体组织。

通过淬火,金属可以获得高硬度和高强度,但会导致金属变脆。

油淬、水淬和盐淬等是常用的淬火方法,不同淬火介质的选择会对金属的性能产生影响。

调质是一种在淬火后加热金属至适当温度后冷却的热处理方法。

调质可以提高金属的韧性和耐磨性,同时保持相对较高的硬度和强度。

调质常用于制造机械零件、汽车零件等。

沉淀硬化是一种通过加热金属至适当温度后冷却,使其产生弥
散分布的沉淀物,从而提高金属的硬度和强度的热处理方法。

沉淀硬化常用于合金材料的处理,例如高强度铝合金。

热处理工艺对于提高金属材料的性能至关重要。

通过热处理,可以改变金属的晶粒结构、调整相的比例和分布、消除内应力、提高金属的机械性能和抗腐蚀能力。

热处理广泛应用于航空航天、汽车、机械制造、电子等行业,对于改善产品的质量和性能具有重要意义。

热处理名词解释

热处理名词解释

金属热处理:所谓金属热处理,是借助于一定的热作用(有时兼之以机械作用、化学作用或其他作用)来人为地改变金属合金内部的组织和结构,从而获得所需要的性能的工艺操作。

均匀化退火:扩散退火,是用于消除或减少铸态合金非平衡状态的热处理。

基于回复、再结晶的退火:将冷变形后的金属加热到一定的温度,会发生回复、再结晶,变形织构也会发生变化,从而在一定程度上消除了由冷变形造成的亚稳定状态,使金属材料获得所需组织、结构和性能。

基于固态相变的退火:这是一种以固态金属合金经高温保温和冷却所发生的扩散型相变为基础的热处理。

淬火:将金属合金从固态下的高温状态以过冷或过饱和形式固定到室温,或使高温相在冷却时转变成另一种晶体结构的亚稳状态,称为淬火。

淬火过程中晶体结构不发生变化叫无多型性转变的淬火,若淬火时金属合金的晶体结构类型发生改变,则称为有多型性转变的淬火。

时效或回火:室温保持或加热使过饱和固溶体分解的热处理。

化学热处理:将热作用和化学作用有机地结合起来的一种热处理。

形变热处理:是一种将塑性变形的形变强化和热处理时的相变强化结合,使成型工艺与获得最终性能统一起来的一种综合工艺。

临界浓度:凡组元浓度大于k的合金,在该种铸造的冷却条件下均会出现非平衡过剩相。

k浓度称为临界浓度。

聚集与球化:所谓聚集就是过剩相质点粗化过程,其特征是小尺寸质点溶解而大尺寸质点长大。

球化是聚集的一种特殊形式,即非等轴的过剩相质点转变为接近于等轴的形状。

淬火效应:金属工件加热到一定温度后,浸入冷却剂(油、水等)中,经过冷却处理,工件的性能更好,更稳定。

冷变形储能:冷变形后金属的自由能增量,它是冷变形金属发生组织变化的驱动力。

回复:回复过程的本质是点缺陷运动和位错运动与重新组合。

原位再结晶:随着退火温度升高或退火时间延长,多边化和胞状亚组织形成的亚晶会通过亚晶界迁移和亚晶粒合并的方式逐渐粗化。

在一定条件下,亚晶可长到很大尺寸,这种情况称为原位再结晶。

低温退火的硬化效应:某些金属及合金在回复退火温度下,硬度、强度特别是屈服极限和弹性极限不仅不降低,反而升高,这种现象称为低温退火的硬化效应。

热处理名词解释

热处理名词解释

第一章金属的加热1、对流传热:热量的传递依靠发热体与工件之间流体的流动进行。

2、辐射传热:温度大于绝对零度的物体从表面放出波长为(0.4~40)×10-6m范围内的辐射能被另一物体吸收后变为热能。

3、传导传热:热量的传递仅靠传热物质质点间的相互碰撞。

4、强迫流动:用外加动力强制流体运动。

5、层流:强迫流动时流体沿着工件表面一层层有规则的流动。

6、紊流:流体的不规则运动。

7、随炉加热:即工件装入炉中后,随着炉子升温而加热,直至所需加热温度。

8、预热加热:即工件现在已升温至较低温度的炉子中加热,到温后再转移至预定工件加热温度的炉中加热至工件达到所要求的温度。

9、到温入炉加热:又称热炉装料加热,即先把炉子升到工件要求的加热温度,然后再把工件装入炉中进行加热。

10、高温入炉加热:即工件装入较工件要求加热温度高的炉内进行加热,直至工件达到要求温度。

11、内氧化:氧沿晶界或其他通道向内扩散,与晶界附近的Si、Mn等元素结合成氧化物的现象。

12、碳势:纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量。

13、露点:气氛中水蒸气开始凝结成雾的温度,即在一个大气压力下,气氛中水蒸气达到饱和状态时的温度。

14、半脱碳层:碳钢脱碳层组织自表面至中心,由铁素体加珠光体组织逐渐过渡到珠光体,再至相当于钢原始含碳量的退火组织。

15、全脱碳层:碳钢脱碳层区碳浓度分布曲线有突变,碳层组织表面为单一的铁素体区,向里为铁素体加珠光体逐渐过渡到相当于钢原始含碳量缓冷组织。

16、光亮热处理:工件热处理后,不因氧化等原因使工件表面颜色变暗,光洁度降低,而仍保持热处理前原来工件表面光亮状态。

17、保护气氛:在工件加热时保持其表面不氧化、脱碳的气氛。

18、吸热式气氛:用天然气、丙烷气、城市煤气及其他有机物质为原料,以一定的比例与空气混合,在装有镍触媒的高温(930~1050℃)炉内进行不完全燃烧而得的一种混合气体。

第五章钢的热处理

第五章钢的热处理

第五章钢的热处理一、名词解释1.过冷:结晶只有在理论结晶温度以下才能发生,这种现象称为过冷。

2.枝晶偏析:在一个枝晶范围内或一个晶粒范围内不均匀的现象叫做枝晶偏析。

3.二次相:由已有固相析出的新固相称为二次相或次生相。

4.铁素体:碳在α—Fe中的固溶体称为铁素体。

5.奥氏体:碳在γ—Fe中的固溶体称为奥氏体。

6.莱氏体:转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体。

7.珠光体:转变产物为铁素体和渗碳体的机械混合物,称为珠光体。

8.变质处理:又称为孕育处理,是一种有意向液态金属中加入非自发形核物质从而细化晶粒的方法。

9.共晶转变:在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变过程。

10.包晶转变:在一定温度下,由一定成分的液相包着一定成分的固相,发生反应后生成另一一定成分新固相的反应。

二、填空题1、金属的结晶过程由晶核形成和晶核长大两个基本过程组成。

2、金属结晶过程中,细化结晶晶粒的主要方法有控制过冷度、变质处理和振动、搅拌3、当固溶体合金结晶后出现枝晶偏析时,先结晶出来的枝晶轴含有较多的高熔点组元。

4、在实际生产中,若要进行热锻或热轧时,必须把钢加热到奥氏体相区。

5、在缓慢冷却条件下,含碳0.8%的钢比含碳1.2%的钢硬度低强度低。

三、选择题1.铸造条件下,冷却速度越大,则(A.过冷度越大,晶粒越小)2.金属在结晶时,冷却速度越快,其实际结晶温度(B.越低)3.如果其他条件相同,下列各组铸造条件下,哪种铸锭晶粒细?(A.金属模铸造B.低温铸造A.铸成薄片A.浇注时振动)4.同素异构体转变伴随着体积的变化,其主要原因是(致密度发生变化)5.实际金属结晶时,可通过控制形核N和长大速度G的比值来控制晶粒大小,要获得细晶粒,应采用(A.增大N/G值)6.二元合金在发生共晶转变时,各相组成是(D.三相共存)7.二元合金在发生共析转变时,各相的(B.质量固定,成分发生变化)10.产生枝晶偏析的原因是由于(D.液、固相线间距大,冷却速度也大)11.二元合金中,铸造性能最好的是(B.共晶合金)14.在下列方法中,可使晶粒细化的方法是(D.变质处理)四、判断题1。

金属热处理工艺

金属热处理工艺

金属热处理工艺金属热处理,又称金属热处理工艺,是指在热处理设备中将金属材料经过一定的温度,时间和处理环境的变化,以改变材料的性能的工艺方法。

它可以分为固定、装配、冷处理和热处理四大类工艺。

热处理是机械加工中重要的一环,它是改变金属材料结构和性能的有效方法。

通过热处理可以改变金属材料的组织结构、提高它的硬度、强度、抗拉强度和塑性,改善金属材料的使用性能,以适应其他过程的要求,从而满足机械性能的要求。

热处理可以分为四种基本工艺:回火、正火、凝固和淬火。

回火是一种加热金属材料,使材料达到一定温度,然后将其放在稳定的环境中,使其恢复机械性能,有效改善金属材料的硬度、强度、抗拉强度和塑性,以改善材料的使用性能而被称为回火。

正火是一种加热金属材料,使其达到一定温度,然后冷却凝固,以改善金属材料的冷却性能而被称为正火。

凝固是一种加热金属材料,使其达到一定温度,然后慢慢冷却凝固,使金属材料的结构和性能达到最佳。

淬火是一种加热金属材料,使其达到一定的温度和时间,然后冷却凝固,使钢材有一定的淬火硬度,以改善金属材料的耐磨性能而被称为淬火。

金属热处理工艺还可以分为表面处理工艺和表面金属热处理工艺,主要用于改变金属材料的表面性能。

表面处理工艺可以分为氧化处理和热处理。

氧化处理包括涂装、渗氮、氧化处理和渗碳处理等。

热处理工艺包括热处理、熔炼处理、热处理和热处理表面金属处理等。

金属热处理的质量是非常重要的,它直接影响着金属产品的性能和使用寿命。

因此,在金属热处理中,必须采用严格的质量控制技术,对加工过程中的温度变化、温度超标、温度不均匀度以及处理环境进行严格检测,确保金属热处理的质量。

金属热处理工艺是一种重要的工艺,它的作用在机械加工中越来越重要。

如果金属热处理工艺在加工过程中未得到足够重视,将会严重影响机械性能,甚至破坏产品的使用寿命。

因此,在加工中,金属热处理工艺必须得到正确的应用,以便提高金属加工产品的性能,提高产品的质量和使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.奥氏体本质晶粒度
是根据标准实验条件,在930土10℃,保温足够时间(3-8小时)后,测定的钢中奥体晶粒的大小。

2.奥氏体实际晶粒度
指在某一热处理加热条件下,所得的晶粒尺度。

3.珠光体晶粒
在片状珠光体中,片层排列方向大致相同的区域称为珠光体团。

4.二次珠光体转变
由于贝氏体转变的不完全性,当转变温度较高时,未转变的奥氏体在随后的保温过程中有可能会发生珠光体转变,此时的珠光体转变称为二次珠光体转变。

5、马氏体转变
是一种固态相变,是通过母相宏观切变,原子整体有规律迁移完成的无扩散相变。

6、形变马氏体
由形变诱发马氏体转变生成的马氏体称为形变马氏体。

7、马氏体异常正方度
“新形成的马氏体”,正方度与碳含量的关系并不符合公式给出的关系,这种现象称为马氏体的异常正方度
8、马氏体相变塑性
相变塑性:金属及合金在相变过程中塑性增长,往往在低于母相屈服极限的条件下即发生了塑性变形,这种现象称为相变塑性。

钢在马氏体转变时也会产生相变塑性现象,称为马氏体的相变塑性
9.相变冷作硬化
马氏体形成时的体积效应会引起周围奥氏体产生塑性变形,同时马氏体相变的切变特性,也将在晶体内产生大量微观缺陷,如位错、孪晶、层错等。

这些缺陷在马氏体逆转变过程中会被继承,结果导致强度明显升高,而塑性韧性下降,这种现象被称为相变冷作硬化。

10、位向关系
在固态相变母相与新相之间所保持的晶体学空间取向关系称为位向关系。

11、K-S关系
在固态相变母相与新相之间所保持的晶体学位向关系,例如:奥氏体向马氏体转变时新旧两相之间就维持这种位向关系(111)γ// (110) α,<110> γ// <111> α
12、组织遗传
指非平衡组织重新加热淬火后,其奥氏体晶粒大小仍然保持原奥氏体晶粒大小和形状的现象。

13、相遗传
母相将其晶体学缺陷遗传给新相的现象称为相遗传。

14、反稳定化
在热定化上限温度Mc以下,热稳定程度随温度的升高而增加;但有些钢,当温度达到某一温度后稳定化程度反而下降的现象。

15、热稳定化
淬火冷却时,因缓慢冷却或在冷却过程中于某一温度等温停留,引起的奥氏体稳定性提高,而使马氏体转变迟滞的现象,称为奥氏体的热稳定化
16、机械稳定化
在Md以上的温度下,对奥氏体进行塑性变形,当变形量足够大时,可以使随后的马氏体转变因难,Ms点降低,残余奥氏体量增多。

这种现象称为机械稳定化。

17、TTT曲线
是过冷奥氏体等温转变图,是描述过冷奥氏体等温转变形为,即等温温度、等温时间和转变产物的综合曲线。

18、应变诱发再结晶
在等温条件下,由于应力和应变不断增加而诱发的再结晶称为应变诱发再结晶。

19、原位形核
在原碳化物基础上发生成分变化和点阵重构,形成更稳定的碳化物。

20、独立形核
原碳化物回溶到母相中,而新的、更稳定的碳化物在其他部位重新形核长大。

21、二次硬化
通常淬火钢回火时,硬度随回火温度的升高是逐渐下降的,但当钢中含有某些特殊类型碳化物形成元素时,回火温度达到某一温度后,硬度反而随回火温度的升高而升高的现象,称为二次硬化。

22、第二类回火脆性
随回火温度的升高,冲击韧性反而下降的现象,称为“回火脆性”。

在450~650℃之间出现的回火脆称为第二类回火脆,也称为高温回火脆性。

23、回火抗力
在合金钢中,由于合金元素的作用,M分解温度将推向高温,即在较高温度下回火,仍然可以保持σ相具有一定的过饱和度和细小的碳化物,使钢保持较高的强度和硬度。

通常把这种性质称为回火稳定性。

24、回火脆性
随回火温度的升高,冲击韧性反而下降的现象,称为“回火脆性”
25、回火稳定性
在合金钢中由于相合金元素的作用,M分解温度将推向高温,即在较高温度下回火,仍然可以保持σ相具有一定的过饱和度和细小的碳化物,使钢保持较高的强度和硬度。

通常把这种性质称为回火稳定性。

或:合金元素阻碍a相中碳含量的降低和碳化物颗粒长大,而使火钢在回火时保持高强度、高要度的性质,称为回火稳定性。

26、抗回火性
在合金钢中,由于合金元素的作用,M分解温度将推向高温,即在较高温度下回火,然可以保待σ相具有一定的过饱和度和细小的碳化物,使钢保持较高的强度和硬度。

通常把这种性质称为回火稳定性。

27、人工时效
是指在较高温度下进行的时效,将固溶体合金固溶处理后,将其加热到某一温度,经保温后所发生的时效。

28、自然时效
是指在较低温度下进行的时效,一般是指室温下搁置时所发生的时效(将固溶体合金固溶处理后,在室温下放置所发生的时效)。

29、时效硬化
时效合金随第二相的析出,强度硬度升高而塑性下降的现象称为时效硬化
30、调幅分解
某些固溶体合金,在一定条件下,能够不经过形核过程,分解为晶体结构相同成份在一定范围内连续变化的两相,即溶质原子富集与溶质原于贫化的两相,这种固态相变称为调幅分解。

相关文档
最新文档