1.2算法和算法的描述

合集下载

1.2算法和算法的描述习题解答

1.2算法和算法的描述习题解答
求三角形面积问题
自然语言描述 1. 输入 、b、c的值 输入a、 、 的值 2. 判定是否符合三边规律若 不符合输出“ 不符合输出“不能构成三 角形”至第5步 角形”至第 步 3. 利用公式计算三角形面积 4. 输出“三角形面积”; 输出“三角形面积” Area 5. 结束
猴子吃桃问题
开 始 a=1,i=1
矮个子里的高个子和高个子里的矮个 子的比较
自然语言描述的算法 1. 比较 行中共挑出的 个高个子,选出其中最矮 比较10行中共挑出的 个高个子, 行中共挑出的10个高个子 的一个并记录 2. 令10人返回原位置 人返回原位置 3. 比较 列中共挑出的 个矮个子,选出其中最高 比较10列中共挑出的 个矮个子, 列中共挑出的10个矮个子 的一个并记录 4. 比较两个纪录 5. 结束
a=2(+1) ,i=i+1
i<4
否 输出a 输出

结束
三个数比较大小
自然语言的算法 1、输入 个整数 、b、c。 个整数a、 、 。 、输入3个整数 2、将a与b比较,把大值赋 比较, 、 与 比较 给a,小值赋给 。 ,小值赋给b。 3、将a与c比较,把大值赋 比较, 、 与 比较 给a,小值赋给 。 ,小值赋给c。 (此时 为三者最大 此时a为三者最大 此时 为三者最大) 4、将b与c比较,把大值赋 比较, 、 与 比较 给b,小值赋给 。 ,小值赋给c。 (此时 、b、c已按大小顺序 此时a、 、 已按大小顺序 此时 排好) 排好 5、按顺序输出 、b、c。 、按顺序输出a、 、 。
1000内勾股数 内勾股数
自然语言描述的算法 1. 对每一个 做下一步 对每一个a做下一步 2. 对每一个 做下一步 对每一个b做下一步 3. 对每一个 做下一步 对每一个c做下一步 4. 判定是否满足勾股定理若 满足则输出该组数字 5. 结束

1.2算法和算法的描述

1.2算法和算法的描述

复习与巩固
伪代码4 I=1 Do if I mod 3=0 then print I end if I=I+1 Loop until I>100 伪代码5 I=1 Do if I mod 3=0 then print I end if I=I+1 Loop while I≦100
1.农夫带羊到右岸,独自返回左岸; 2.农夫把菜带到右岸,返回时白羊带回左岸; 3.农夫带狼到右岸,独自返回左岸; 4.农夫把羊带到右岸,完成过河。
3
一、算法
1、算法的概念 算法是在有限步骤内求解某一问题所使 用的一组定义明确的规则。通俗地说,算法 就是求解某一问题的方法,是能被机械地执 行的动作或指令的集合。
三、算法在解决问题中的地位和作用
表1-6中 两个程序的效率比较
指标 运行结果 用辗转相除法设计的程序 最大公约数= 用穷举法设计的程序 最大公约数=
运行时间 通用性
□较长 □较好
□较短 □较差
□较长 □较好
□较短 □较差
由此看来,算法是程序设计的核心,是程序设计的灵 魂。算法的好坏,直接影响着程序的通用性和有效性,影 响着问题解决的效率。
用自然语言 描述算法
缺点:
自然语言具有歧义性,容易导致算法执行的不确定性。 自然语言描述的算法太长。 当算法中循环和分支较多时,很难清晰地表示出来。 自然语言表示的算法不便翻译成计算机程序设计语言。
用流程图描述算法
优点:描述清晰简洁,不依赖计算机和计算机程序设计语言。 缺点:画起来费事,难以阅读,难以修改。 优点:书写方便,格式紧凑,易于理解,便于向计算机 程序设计语言过度。 缺点:由于语言的种类繁多,伪代码的语句不容易规范。
二、算法的描述

高中信息技术《算法与程序设计》优质教案、教学设计

高中信息技术《算法与程序设计》优质教案、教学设计

《算法与程序设计》
1.2 算法描述与设计
教学设计
单位:授课人:
《算法描述与设计》教学设计
为了更形象、直观地表示算法,我们引入了流程图
,学生学习流也叫程序框图。

下面,同学们学习“韩信点兵”问题的
流程图表示。

开始
1n
n 被3 、5 、7 整Y
除后余数为
2 、
3 、2
N
n+1n
输出n 的值
结束
流程图描述算法常用的框图主要有以下几个:
在流程图的基础上,专业软件开发人员一般采用伪代码来描述算法。

伪代码是一种介于自然语言和计算机语言之间的一种算法描述,不是真正的程序语言代码,所以没有严格的语法限制,书写格式也比较自由,只要把意思表达清楚就可以了。

例如,判断闰年伪代码算法描述如下:
输入年份y
IF y 能被4 整除THEN
IF y 能被100 整除THEN
IF y 能被400 整除
输出“是闰年”
附:《算法描述与设计》流程图作品评价量表
《算法描述与设计》流程图作品评价量表
说明:1、作品评价等级分为A、B、C、D 四个等级。

2、在对应的作品等级下画“√”。

算法及算法的表示

算法及算法的表示

1.常用的流程符号
l
起止框:表示算法的开始和结束。
l
处理框:表示初始化或运算赋值等操作。
l
输入输出框:表示数据的输入输出操作。
l
判断框:表示根据一个条件成立与否,决定执
行两种不同操作中的其中一个。
l
流程线:表示流程的方向。
8
算法及算法的表示
2.三种基本结构的表示
(1) 顺序结构
顺序结构是简单的线性结构, 各框按顺序执行。其流程图如图 1-4所示 (2) 选择(分支)结构
直到型循环:执行过程是先执行“语句组”,再判断条 件,条件为真时,一直循环执行语句组,一旦条件为假,结 束循环,执行循环紧后的下一条语句。如图3-6(b)所示。
10
算法及算法的表示
图1-6 循环结构流程图
11
算法及算法的表示
例1-1的算法用流程 图表示如图1-7所示
例1-2的算法用流程图表示如图 1-8所示
C语言程序设计
算法及算法的表示
1.1 算法概述
算法概念
1 广义: 算法是为完成一项任务所应当遵照的一步一步
的规则的、精确的、无歧义的描述,它的总步数是 有限的。 2 狭义:
算法是解决一个问题采取的方法和步骤的描述
2
算法及算法的表示
例1-1 输入三个数,然后输出其中最大的数。 算法可以写成: (1) 输入A,B,C。 (2) 若A>B,则MAX ← A;否则MAX←B。 (3) 若C>MAX,则MAX← C。 (4) 输出MAX,MAX即为最大数。
第 (6)步。 (6)打印输出Max
4
算法及算法的表示
1.2 算法的特性
1.有穷性:算法须在执行有穷多个计算步骤后终止 2.确定性:算法的每个步骤必须都是精确定义的、无二 义性的; 3.有效性:算法中的每一个步骤必须有效地执行,并能 得到确定结果; 4.输入:一个算法中可以没有输入,也可以有一个或多 个输入信息 5.输出:一个算法应有一个或多个输出

十大经典排序算法(动图演示)

十大经典排序算法(动图演示)

⼗⼤经典排序算法(动图演⽰)0、算法概述0.1 算法分类⼗种常见排序算法可以分为两⼤类:⽐较类排序:通过⽐较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为⾮线性时间⽐较类排序。

⾮⽐较类排序:不通过⽐较来决定元素间的相对次序,它可以突破基于⽐较排序的时间下界,以线性时间运⾏,因此也称为线性时间⾮⽐较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前⾯,⽽a=b,排序之后a仍然在b的前⾯。

不稳定:如果a原本在b的前⾯,⽽a=b,排序之后 a 可能会出现在 b 的后⾯。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执⾏时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述⽐较相邻的元素。

如果第⼀个⽐第⼆个⼤,就交换它们两个;对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对,这样在最后的元素应该会是最⼤的数;针对所有的元素重复以上的步骤,除了最后⼀个;重复步骤1~3,直到排序完成。

1.2 动图演⽰1.3 代码实现function bubbleSort(arr) {var len = arr.length;for (var i = 0; i < len - 1; i++) {for (var j = 0; j < len - 1 - i; j++) {if (arr[j] > arr[j+1]) { // 相邻元素两两对⽐var temp = arr[j+1]; // 元素交换arr[j+1] = arr[j];arr[j] = temp;}}}return arr;}2、选择排序(Selection Sort)选择排序(Selection-sort)是⼀种简单直观的排序算法。

1.2算法的描述教学反思

1.2算法的描述教学反思

本堂课主要讲授三种描述算法的方法,后面要求学生通过“三角形面积问题”课后练习巩固流程图描述算法的方法。

总体感觉比较好。

学生能跟着一起思考问题,同时保持了较好的课堂纪律。

对此堂课,本人有如下反思:
本堂课的优点:多次运用对比,联系前后的知识点及例子,瞻前顾后,显得课堂紧促条理;分总结合,注意对所讲知识点进行小结,再进行下面的环节,可以帮助学生梳理知识点;善于运用课堂激励,不断夸奖和鼓励学生,激起他们的学习动力。

缺点:一方面讲话语速过快;另一方面练习题难度较大,具体问题的算法层面没有讲清楚,部分学生不理解解题步骤,自然无法顺利画出流程图。

导致这样的原因是部分学生(优生)讲出了解题思路,于是作为教师我没有细致分析解题思路,学生在这里花费了过多时间。

启示如下:其一,教学要面向绝大多数学生,有时甚至是全体学生,不能被部分优生左右了教学进度。

要兼顾大家,考虑大多数学生的情况。

其二,教师不宜讲得过多,应该让学生自己去探索、发现,从中学到知识,切忌满堂灌的填鸭式教学。

其三,发扬“捧”、“扬”、“夸”的课堂激励机制,学生在轻松夸奖的气氛下思维会更活跃,同时积极性更高,更愿意配合教学。

保持好的心情去上课。

以微笑示人,学生也会有好心情去学习。

1.2 算法和算法的描述[粤教版]

1.2  算法和算法的描述[粤教版]

给出伪代码描述,学生用自然语言及流程图描述
设:MAX为评委给出的最高分;MIN为评委给出的最底分;N为评委给 出的分数个数;X为评委给出的分数;S为评委分数总和。 用伪代码描述如下: N=1 S=0 输入第一个评委给出的分数→X S=S+X MAX=X MIN=X N=N+1 IF N>10 THEN 输出 (S-MAX-MIN)/8;结束 ELSE 输入下一个评委给出的分数→X S=S+X IF X>MAX THEN MAX=X IF X<MIN THEN MIN=X END IF 返回”N=N+1”这一步
关于“算法”的概念
算法是解决问题方法的精确描述。 在编程领域,算法可以进一步定义为“算法就 是用计算机求解某一问题的方法,是能被机械 地执行的动作或指令的有穷集合。”

关于算法的特征
作为一个算法应该具有以下5个特征: 1. 0个或多个输入:一个算法应具有0个或多个 输入数据,0个是指在算法中已指定了初始 值。 2. 至少1个输出:一个算法至少要有一个输出 数据,以告知人们算法运行的结果。若没有 任何输出,则这一算法不具备意义、不具有 价值。 3. 有穷性(有限性):一个算法必须在经过有 限个步骤之后正常结束。
优点:符合人们日常的表达习惯,容易理解。 缺点:书写较烦、容易出现歧义,对复杂的问 题难以表达准确,不能被计算机直接识别和执 行。
用流程图描述算法

流程图,也称为程序框图,它由一系列的流程 符号组成,是算法的一种图形化表示方法。
常见的流程符号
图形符号 符号名称
起止框
功能
表示算法的开始或结束 表示输入输出操作 表示处理或运算的功能 用来根据给定的条件是否满足决定 执行两条路径中的某一路径 表示程序执行的路径,箭头代表方 向

C语言-算法及其描述方法

C语言-算法及其描述方法
C语言 算法及其描述方法
1 算法的概念
1.1 算法的概念
解决一个问题的方法(或步骤),称为 算法。
1.2 简单算法举例
例2.1 求1×2 × 3 × 4 × 5。 如果求100!, 需要多少个步骤?
方法一:
S1:先求1 × 2,得到结果2。
S2:将步骤1得到的乘积再乘以3,得到结果6。 S3:将6再乘以4,得24。 S4:将24再乘以5,得到120。即最后的结果。
例:求1×2 × 3 × 4 × 5,即5!=?
S1:使t=1
S2:使i=2
S3:使t×i, 乘积仍放在变量t中,即t=t×i
S4:使i的值加1,即i=i+1
S5:如果i的值不大于5,返回重新执行步骤
S3以及其后的步骤S4和S5;否则,算法结
束。
N
开始 t=1 i=2
t=t×i i=i+1
i >5?
Y
结束
图1
2.2三种基本结构
(1) 三种基本结构 ☆ 顺序结构
a
A
B
b
☆ 选择结构 又称选取结构,或称分支结构。
a
成立
P
不成立
A
B
a
成立
不成立
P
A
b
b
图a
图b
☆ 循环结构
又称重复结构,即反复执行某一部分的操作。有 两类循环结构:
a. 当型(While型)循环结构
b. 直到型(Until型)循环结构
方法二:
S1:使变量t=1
如果求100!,需要多少个步 骤?怎样修改?
S2:使变量i=2i
S4:使i的值加1,即 i=i+1
S5:如果i的值不大于5,返回重新执行步骤S3以 及其后的步骤S4和S5;否则,算法结束。

c++ 算法

c++ 算法

输出最大公因子n
(a)当型循环结构
输出最大公因子n
(b)直到型循环结构
图 欧几里德算法的N-S图表示
1.2.4 伪代码表示
伪代码是介于自然语言和计算机程序语言之间的一种表示算法的工具。 它用文字和符号描述问题的求解方法和步骤,而不使用图形符号。 书写方便,格式紧凑,清晰易读好理解,也更容易转化为某一计算机程序语 言表示的程序。 和图形工具相比较,便于修改,但直观性能较弱。 欧几里德算法的一种伪代码描述 Begin(算法开始) Read(m,n) m mod n→r while r≠0 do {n→m r→n m mod n→r } write(n) End(算法结束)
例:鸡兔同笼问题
一个笼子里有一些鸡和兔,现在只知道里面一共有35个头,94只脚,问 鸡和兔各有多少只?试设计一个求解的算法,并用自然语言描述出来。 分析问题 设所求的鸡数是x,兔数是y,已知笼子里的头数是a,脚数是b,依题意得到如 下的方程组: x+y=a
{
2x+4y=b
解方程组得:x=2a-b/2, y=b/2-a
1.1.1 什么是算法
算法(algorithm)一词源于算术(algorism),算术方法的原义是一 个由已知推求未知的运算过程。后来,人们把它推广到一般,指算法是 在有限步骤内求解某一问题所使用的一组定义明确的规则,甚至把进行 某一工作的方法和步骤也称为算法。
有关算法(Algorithm)一词的定义不少,但其内涵基本上是一致的。
最为著名的定义是计算机科学家克努思D.E.Kunth在其巨著《计算机 程序的艺术》( Art of Computer Program)第一卷中所做的有关描 述。其非形式化的定义是:一个算法,就是一个有穷规则的集合,其 中规则定义了一个解决某一特定类型问题的运算序列。

1.2 基本算法语句

1.2 基本算法语句
输出x,y
结束
输出、输入和赋值语句基本上对应算法中的顺序结构
语句n
语句n+1
利用输入、输出语句可以实现信息的录入和结果的输出
一、输入语句 输入语句的一般格式 INPUT “提示内容”;变量 如: INPUT “n=”; n
说明: 1. 输入语句的作用是实现算法的输入数值功能; 注: 2. 提示内容提示用户输入什么样的数值,必须用双引号“”括 所有指令(INPUT、PRINT 起来,双引号中的内容会原封不动地在屏幕上显示出来。、 3.变量是指程序在运行时其值是可以变化的量;一般用字母 、 IF 、ELSE 、DO 、UNTIL 或字符串表示 WEND等等)后面必须加空格, 4.输入语句要求输入的值只能是具体的常数,不能是函数、 否则程序无法执行。 变量或表达式;输入语句不具有计算功能。 5.提示内容与变量之间用分号(;)隔开,若输入多个变量, 变量与变量之间用逗号(,)隔开.
输出x
输出“请输入正确的整数”
结束
多个条件语句嵌套时,各自的IF、ELSE、END IF要对齐, 使程序语句清晰,一目了然。如表示下面分段函数: x 1 (x 0) 开始 y 0 (x 0) x 1 (x 0) 输入x
x<0?


y=x+1
x=0?


y=0
MOD 和 \(注意与表示“÷”的“/”不同)
\ 表示取商
MOD 表示取余数 如17÷5商3余2 则语句 a=17 MOD 5 b=17\5
MOD前后也要加空格
分别表示将余数2赋给a,将商3赋给b
四、条件语句
条件语句是处理条件结构的算法语句 . 条件语句的一般格式 只含一个“分支”的条件结构 写成条件语句为

数据结构(C++描述)

数据结构(C++描述)

树形结构抽象描述示意图
例 1-7 设一个数据结构的抽象描述为D=(K,R),其中 K={1,2,3,4},而R={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}, 则它 的逻辑结构用图描述见图1-6。
1
2
3 图 1-6
4 图形结构抽象描述示意图
1.2 算法的描述 1.2.1 基本概念 1.算法(algorithm) 通俗地讲,算法就是一种解题的方法。更严格地说, 算法是由若干条指令组成的有穷序列,它必须满足下 述条件(也称为算法的五大特性): (1)输入:具有0个或多个输入的外界量(算法开始 前的初始量) (2)输出:至少产生一个输出,它们是算法执行完后 的结果。
在一个函数定义前加上inline前缀就成为内联函数。 使用内联函数可减少函数调用和参数传递的系统开销。
1.3 算法分析
1.3.1 时间复杂度 1. 时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的, 必须上机运行测试才能知道。但我们不可能也没有必要 对每个算法都上机测试,只需知道哪个算法花费的时间 多,哪个算法花费的时间少就可以了。并且一个算法花 费的时间与算法中语句的执行次数成正比例,哪个算法 中语句执行次数多,它花费时间就多。一个算法中的语 句执行次数称为语句频度或时间频度。记为T(n)。
(10)C++的作用域
在C++中,每个变量都有一个作用域。在函数内声明 的变量,仅能在该函数内部有效,在类中声明的变量, 可以在该类内部有效,在整个程序中都能使用的变量, 为全局变量,否则称为局部变量。若一个全局变量与 一个局部变量同名,则该范围内全局变量不起作用。 若要使之起作用,可以使用域操作符::来实现。
例1-8 求下列算法段的语句频度

C 语言与程序设计

C 语言与程序设计

本课程的性质、目的与任务 本课程的性质、
C语言与程序设计是计算机专业和非计算机专业的一门技
术基础选修课程,大学一年级或大二年级开设。 术基础选修课程,大学一年级或大二年级开设。 通过本课程的学习使学生更好地了解和应用计算机, 通过本课程的学习使学生更好地了解和应用计算机,培养 学生应用计算机独立解决问题的能力, 学生应用计算机独立解决问题的能力,让学生真正掌握一门使 用计算机的语言工具, 用计算机的语言工具,为学生今后无论是从事计算机或非计算 机工作都奠定了良好的、扎实的计算机语言基础。 机工作都奠定了良好的、扎实的计算机语言基础。
<
C语言程序设计
C语言概述
9种控制语句: if( )~else~ for( )~ while( )~ do~while( ) continue break switch goto return
<
C语言程序设计
C语言概述
例 C语言与Pascal语言比较 C语言 Pascal语言 含义 { } BEGIN….END 复合语句 if(e) s; IF(e) THEN s 条件语句 int i ; VAR i:INTEGER 定义i为整型变量 int a[10]; VAR a:ARRAY[1..10] OF INTEGER 定义整型数组a int f(); FUNCTION f():INTEGER 定义f为返值整型的函数 int *p; VAR p:↑INTEGER 定义p为指向整型变量的指针 i+= 2; i=i+2 赋值i+2⇒i i++,++i; i=i+1 i自增值 结论:C比 Pascal简练,源程序短。
C
Smalltalk 80 C++ Java

算法概述

算法概述
在下面的讨论中,对所有n, f(n)≥0,g(n) ≥0
18
⑴ 渐近上界记号O
定义1.2 如果存在正的常数C和自然数N0,使得当 N≥N0时有f(N)≤Cg(N),则称函数f(N)当N充分 大时上有界,且g(N)是它的一个上界,记为 f(N)=O(g(N))。
大O符号用来描述增长率的上限,表示f(N)的 增长最多像g(N)增长的那样快。
– 只关心T*(N)的阶,不考虑它的常数因子;
– 假设算法中用到的所有不同的元运算各执行一次所需要 的时间都是一个单位时间。
注意:采用渐近复杂性来衡量效率的方法得出的不 是时间量,而是一种增长趋势的度量。
在算法分析中,经常遇到如下类型的复杂性,它们 的阶分别是:
1
常数级
logn 对数级
n
线性级
定义1.4 若存在3个正的常数C1、C2和N0,对于任意
N≥N0,都有C1g(N)≥f(N)≥C2g(N),则称 f(N)=θ(g(N))。//即是在俩个值之间 θ符号意味着f(N)与g(N)同阶,用来表示算法 的精确阶。//意味着同阶就是意味着俩者极限 相差一个常数。
23
⑷ 非紧上界记号o
这个上界的阶越低,结果就越有价值。
19
按照大O的定义,容易证明它有如下运算规则: O(f(n))+O(g(n)) = O(max{f(n),g(n)}) O(f(n))+O(g(n)) = O(f(n)+g(n)) O(f(n))*O(g(n)) = O(f(n)*g(n)) O(cf(n)) = O(f(n)) g(n)= O(f(n)) → O(f(n))+O(g(n)) = O(f(n))
编程任务: 给定金币阵列的初始状态和目标状态,编程计算按 金币游戏规则,将金币阵列从初始状态变换到目标 状态所需的最少变换次数。

算法与程序设计复习知识点

算法与程序设计复习知识点

算法与程序设计复习知识点算法与程序设计复习知识点一、算法基础1.1 算法的定义与特点1.2 算法的描述方式:伪代码、流程图1.3 算法的复杂度分析:时间复杂度、空间复杂度1.4 常见的算法设计策略:分治法、动态规划、贪心法、回溯法、分支限界法二、基本数据结构2.1 线性表:数组、链表、栈、队列2.2 树与二叉树:二叉树的遍历、线索二叉树2.3 图:图的存储方式、图的遍历算法、最短路径算法、最小树算法三、排序算法3.1 插入排序:直接插入排序、希尔排序3.2 交换排序:冒泡排序、快速排序3.3 选择排序:简单选择排序、堆排序3.4 归并排序3.5 基数排序四、查找算法4.1 顺序查找4.2 折半查找4.3 哈希查找五、字符串匹配算法5.1 朴素的模式匹配算法5.2 KMP算法5.3 Boyer-Moore算法5.4 Rabin-Karp算法六、动态规划6.1 背包问题:0-1背包、完全背包6.2 最长公共子序列问题6.3 最短路径问题七、图算法7.1 深度优先搜索(DFS)7.2 广度优先搜索(BFS)7.3 最小树算法:Prim算法、Kruskal算法7.4 最短路径算法:Dijkstra算法、Floyd算法7.5 拓扑排序算法附件:附件一:算法复杂度分析表附件二:常用数据结构图示法律名词及注释:1.算法:根据一定规则解决特定问题的步骤和方法。

2.伪代码:一种介于自然语言和编程语言之间的描述方式,用于表示算法的思路和流程。

3.流程图:用图形化的方式表示算法的执行流程和控制结构。

4.复杂度分析:对算法运行时间和所需空间的量化评估。

5.时间复杂度:表示算法运行时间与输入规模之间的关系。

6.空间复杂度:表示算法所需内存空间与输入规模之间的关系。

7.分治法:将原问题划分为多个相互独立且具有相同结构的子问题来求解的方法。

8.动态规划:将一个复杂问题分解为多个简单的子问题来求解,并将结果保存以供重复使用的方法。

1.2算法的描述与设计精品PPT课件

1.2算法的描述与设计精品PPT课件
我要感谢你,能遇到你这样着淤 泥而不 染的女 子,将 我引领 到纯净 无污染 的文字 世界中 。当我 看到你 ,我的 内心由 平静变 得美丽 而激动 ,由激 动变得 一片坦 然。是 你,给 了我燥 热的内 心一份 美丽的 清凉; 是你, 将我让 我看到 同一世 界不同 女人的 卓越风 姿;是 你,让 我爱上 一位你 这样正 直婉约 的女子 。 文字的夏天,因为你,送给我无 限明媚 的阳光 ,赠予 我满目 红白交 映的清 新。从 此,我 更爱文 字的世 界,因 为你, 在雨中 的世界 是最迷 人的。 你若白 衣仙子 ,从天 上飘来 人间, 不紧给 人观赏 ,还给 我们带 来动静 相宜的 舞蹈, 夏风吹 来轻歌 曼舞, 夏雨飘 来荷韵 点点。 雨荷, 雨荷, 这就是 你的名 字,多 么诗情 画意, 多么湿 润飘曳 ,是人 间的仙 子,是 洒脱的 美丽。 是你, 雨荷仙 子,教 会了我 ,看文 要看高 雅的文 ,写文 要写高 雅的文 字,做 人要做 正直高 雅的女 子。
如果你要学做人,一定从好人做 起,而 后做一 个有趣 的人。 人只有 灵魂有 趣了, 才会会 变得真 的有趣 。并不 是讲一 两个从 书上看 来的笑 话段子 就是有 趣,它 囊括你 生活中 的方方 面面, 包括你 的言行 举止, 包括你 的生活 习惯, 包括你 的思想 境界… … 秋日,夜晚长情,言语柔软。此 时,我 只有一 颗心跳 动。关 于人生 的所有 ,我无 法在遥 控板上 一一设 定。倘 若我只 能做一 天和尚 ,我打 算,就 在今天 认真地 敲一天 钟。至 于以后 ,庭前 落花误 春意, 唯有今 宵秋日 夜语漫 漫。
流程图
流 程 图
流程图
流程图描述
也称为程序框图,它是算法的一种图形化表 示方法。
描述“韩信点兵”算法的两种方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章揭开计算机解决问题的神秘面纱
1.2算法和算法的描述
1.在程序设计中算法是指()
A.对解决问题的方法和步骤的描述
B. 以上都不对
C.计算公式
D.计算方法
2.下列关于算法的叙述不正确的是( )
A.算法具有确定性、可行性、有限性等基本特征
B.任何一个问题的算法都只有一种
C.常见的算法描述方法有自然语言、流程图法、伪代码法等D.算法是解决问题的有序步骤
3.以下哪个是编程的核心,是解决问题的方法和步骤( ) A.算法设计B.代码编写C.调试运行D.界面设计
4.以下哪个不是算法的描述方法()
A.伪代码描述法
B.自然语言描述法
C.流程图描述法
D. 顺序法
5.图形符号在算法在流程图描述中表示()
A.处理或运算的功能
B.算法的开始或结束
C.用来判断条件是否满足需求
D.输入输出操作
6.以下哪个图形是流程图中表示“输入输出”功能的图形( )
A.△B.□C D.◇
7.图形符号“口”在算法流程图描述中表示( )
A.用来判断条件是否满足要求B.处理或运算
C.算法的开始或结束D.输入输出操作
8.图形符号“◇"在算法流程图描述中表示( ) A.用来判断条件是否满足需求B.处理或运算C.算法的开始或结束D.输入输出操作9.流程图是描述什么的常用方式( )
A.数据结构B.计算规则C.算法D.程序10.算法与程序的关系描述正确的是( )
A.程序决定算法,是算法设计的核心
B.算法决定程序,是程序设计的核心
C.算法就是对程序的描述
D.算法和程序之间无关系。

相关文档
最新文档