第六章相关与回归分析

合集下载

第六章 相关分析与回归分析

第六章 相关分析与回归分析

b<0,y 有随 x 的增加而减少的趋势
●●●回归直线一定通过由观测值的平均值(x,y )所组成的点:
∵ yˆ a bx
a y bx
∴ yˆ y bx bx y b(x x)
当 xx 时, yˆ y,即回归直线通过点(x,y )
●直线回归方程配置的实例
实例:对表 6-1 的北碚大红番茄果实横径与果重进行回归分析
| r |愈接近于 1,相关愈密切 | r |愈接近于 0,相关愈不密切 0<r<1 时,为正相关 -1<r<0 时,为负相关 ●相关系数计算的实例: 实例:表 6-1 为番茄果实横径与果实重的观测值,求其相关性。
表 6-1 北碚大红番茄果实横径与果实重
果实横径(cm)
果重(g)
x
y
10.0
140
其中: r
n
[ x2 ( x)2 ][ y 2 ( y)2 ]
n
n
x、y——为两个变数的成对观测值 n——为观测值的对数(样本容量)
●●相关系数的性质:
●●●r 的符号取决于 x、y 离均差的乘积和(lxy 或 SP);符号的
性质表示两个变数之间的相关性质,即
r>0,表示正相关
r<0,表示负相关
∑y2=133071.0
n=10
a=-23.834
b=16.425
r=0.9931
结论:北碚大红番茄果实横径与果实重量的回归方程为:
yˆ 23.834 16.425 x
●回归关系的显著性测定——有 3 种方法。 ●●直线回归方程的方差分析
●●●y 的总变异的分解
SS y lyy ( y y)2 [( y yˆ) ( yˆ y)]2 ( y yˆ)2 ( yˆ y)2 2 ( y yˆ)(yˆ y) ( y yˆ)2 ( yˆ y)2 其中: 2 ( y yˆ )( yˆ y) =0

第六章相关及回归分析方式

第六章相关及回归分析方式

第六章 相关与回归分析方式第一部份 习题一、单项选择题1.单位产品本钱与其产量的相关;单位产品本钱与单位产品原材料消耗量的相关 ( )。

A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关2.样本相关系数r 的取值范围( )。

∞<r <+∞≤r ≤1 C. -l <r <1 D. 0≤r ≤101y x ββ=+上,那么x 与y 之间的相关系数( )。

A.r =0B.r =1C.r =-1D.|r|=14.相关分析与回归分析,在是不是需要确信自变量和因变量的问题上( )。

A.前者无需确信,后者需要确信 B.前者需要确信,后者无需确信5.直线相关系数的绝对值接近1时,说明两变量相关关系的紧密程度是( )。

6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。

7.下面的几个式子中,错误的选项是( )。

8.以下关系中,属于正相关关系的有( )。

9.直线相关分析与直线回归分析的联系表现为( )。

10.进行相关分析,要求相关的两个变量( )。

A.都是随机的B.都不是随机的11.相关关系的要紧特点是( )。

B.某一现象的标志与另外的标志之间存在着必然的关系,但它们不是确信的关系12.相关分析是研究( )。

13.现象之间彼此依存关系的程度越低,那么相关系数( )。

01y x ββ=+中,假设10β<,那么x 与y 之间的相关系数( )。

A. r=0B. r=1C. 0<r <1D. —l <r <0 15.当相关系数r=0时,说明( )。

A.现象之间完全无关B.相关程度较小16.已知x 与y 两变量间存在线性相关关系,且210,8,7,100xy xy n σσσ===-=,那么x 与y 之间存在着( )。

17.计算估量标准误差的依据是( )。

A.因变量的数列B.因变量的总变差18.两个变量间的相关关系称为( )。

第6章 相关与回归分析习题解答

第6章 相关与回归分析习题解答

第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。

答:错。

应是相关关系。

单位成本与产量间不存在确定的数值对应关系。

2.相关系数为0表明两个变量之间不存在任何关系。

答:.错。

相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。

3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。

答:对,因果关系的判断还有赖于实质性科学的理论分析。

4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。

答:错。

两者是精确的函数关系。

5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。

答:对。

6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。

答:对。

因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。

二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。

答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。

然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。

第六章-相关与回归

第六章-相关与回归
(1)r 为无单位的相对数值,可直接用于不同资料
间相关程度的比较。
(2)1≤r≤1,0≤|r|≤1。 |r|越接近于1,说明两变量的相关程度越强; |r|越接近于0,两变量的相关程度越差。
(3)r=0表示x与y无相关, r<0表示负相关, r>0表示正相关, |r|=1为完全相关。
二、样本相关系数的计算
(x1,y1),(x2,y2),…,(xn,yn)。
前面已经指出,要研究两种变量间的关系,最简单的方 法是把一系列观测数据在坐标中用散点图表示,如果散点 大致分布在一条直线附件,就可以判断两者为直线回归关 系。这种关系可用直线回归方程表示。则总体直线回归方 程为:
yi xi i (i=1,2,…,n) i服 N 0 从 ,2,且相互独
相关变量间的关系一般分为两种: 一种是平行关系,是研究变量间关系的强弱程度,此
时我们不关心在它们之间是谁影响了谁,谁是因,谁是果, 变量间的地位是平等的。如黄牛的体长和胸围之间的关系, 猪的背膘厚度和眼肌面积之间的关系等都属于平行关系。
另一种是因果关系,即一个变量的变化受另一个或几 个变量的影响。如仔猪的生长速度受遗传特性、营养水平、 饲养管理条件等因素的影响,子代的体高受亲本体高的影 响。
N 1N 1 (XX X)Y ( Y Y)
(XX)Y (Y) (XX)2 (YY)2
r SP xy
xy(x)n(y)
SSxSSy
x2(nx)2y2(ny)2
其中:
SPxy— 变量x和变量y的离均差乘积和简称乘积和 SSx — 变量x 的离均差平方和 SSy — 变量y 的离均差平方和
相关系数r 的特点:
变量。
例如,进行药物疗效试验 时,应用不同的剂量 (x),分析疗效(y)如 何受到药物剂量的影响及 其变化规律。这里规定的

统计学原理-第六章--相关与回归分析习题

统计学原理-第六章--相关与回归分析习题

第六章相关与回归分析习题一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。

2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。

3.相关系数的取值范围是。

4.完全相关即是关系,其相关系数为。

5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。

6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。

7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。

8.回归方程y=a+bx中的参数a是,b是。

在统计中估计待定参数的常用方法是。

9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。

10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。

11.用来说明回归方程代表性大小的统计分析指标是。

二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系B圆周的长度决定于它的半径C家庭的收入和消费的关系D数学成绩与统计学成绩的关系2.相关系数r的取值范围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元B减少70元C增加80元D减少80元4.假设要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程y =a+b x。

生统:第六章一元回归及简单相关分析

生统:第六章一元回归及简单相关分析

S XX
17 . 92
a y b x 108 . 57 11 . 16 2 . 4 81 . 79
2回0归21方/6程/19:
Yˆ 81 . 79 11 . 16 X
20
• 图10-4为该例的散点图和回归线。
2021/6/19
21
• 例:下表为某品系小麦的穗长与穗重的数据,根据 表中数据求回归方程,并预测穗长40厘米的麦穗 重。
2021/6/19
6
2021/6/19
7
2021/6/19
8
图a和b两变量间关系是直线型,图c曲线型。图a的两个变 量关系较图b密切,且正向,图b负向。
散点图表示两个变量间关系的定性研究。
2021/6/19
9
P177-179
表10-1、图10-1单位叶面积干物质和NaCl含量之 间呈直线关系,点不完全在一直线上。 表10-2、图10-2增加每一NaCl含量下的观测次数, 取平均数做散点图基本为一直线。 实际中,不能进行多次的重复,在有限点上,用回 归方法将其理论关系推导出来。
间的关系。
2021/6/19
1
1、按两变量相关的程度分类
(1)完全相关:一变量的值定后,另一变量的值可 通过某公式求出来,即一个变量的值可由另一个变 量所完全决定。
(2)不相关:变量之间完全没有任何关系。一个变 量的值不能提供另一个变量的任何信息。
(3)统计相关(不完全相关) :介于上述两种情况之
12
回归分析需满足以下假定:
(1) X 的任一观测值都对应着 一个 Y的分布,
Y ~ N ( X , 2) (2)随机误差 是给定 X , Y的观测值与直
线 Y .X 的离差 , 是相互独立 , 且作正态分布。

6.2第六章 多元回归和相关、偏相关.

6.2第六章 多元回归和相关、偏相关.
(一) 多元回归的线性模型和多元回归方程式
若依变数Y 同时受到m 个自变数X1、X2、…、Xm 的 影响,且这m 个自变数皆与Y 成线性关系,则这m+1 个变数的关系就形成m 元线性回归。
一个m元线性回归总体的线性模型为:
Y j 0 X 0 1 X 1 j 2 X 2 j m X mj j
Ry·12…m的存在区间为[0,1]。
(二) 多元相关系数的假设测验
令总体的多元相关系数为 ,则对多元相关系数的
假设测验为H0: 0 对HA: 0 ,
F 测验 :
F

2R2 1(1 R 2 )
(10·16)

其中的
1 =m, 2
=n-(m+1),R2为
t bi i
sbi
(10·11)
服从 n (m 1) 的 t 分布,可测验 bi 的显著性。
2. F 测验
U Pi
bi2 c(i 1)(i 1)
U Pi 就是y对xi的偏回归平方和, 1 。
F

U Pi Q y/12m /[n (m
1)]
c11 c12 c1M
R 1
(cij ) M M


c 2 1 cM 1
c 2 2 cM 2
c2M

c MM

令xi 和xj 的偏相关系数为rij·,解得 cij 后即有
rij·cij cii cjj
③评定各个自变数对依变数的相对重要性,以便研 究者抓住关键,能动地调控依变数的响应量。
第一节 多元回归
一、多元回归方程 二、多元回归的假设测验 三、最优多元线性回归方程的统计选择 四、自变数的相对重要性

06第六章 相关与回归分析

06第六章 相关与回归分析

3 r — 只是对线性相关关系的 度量 。
2014-3-30
第六章 相关与回归分析
17
2.2 相关系数的特征及判别标准
2. 相关关系密切程度的划分 — 无直线相关; 1 r 0 . 3 2 0 . 3 r 0 . 5 — 低度相关; 3 0 . 5 r 0 . 8 — 显著相关 — 高度相关 4 r 0 . 8
2
y y
0.1017 0.00937 0.0827 0.0677 -0.0143 0.0207 -0.0373 -0.0913 -0.0763 -0.1453
y y x x y y
2
0.01034289 0.00877969 0.00651249 0.00458329 0.00020449 0.00042849 0.00139129 0.00833567 0.00582169 0.02111209
ˆ yi
x n ,y n
残差平方和
Q x1 ,y1
0
2014-3-30
y
i
ˆ yi
2
2 ˆ ˆ yi yˆ y !!! β0 β2 xi i i — 1最小的直线


x
第六章 相关与回归分析
29
3.2 一元线性回归模型的参数估计
最小二(平方)乘法:
别 自、因变量—随机变量 因变量是随机变量
2014-3-30
第六章 相关与回归分析
12
1.5 相关分析与回归分析的关系
注意:
1. 进行相关和回归分析时要坚持定性分
析和定量分析相结合的原则,在定性 分析的基础上开展定量分析。
2. 只有当变量间存在高度相关时,才进

第六章相关与回归分析

第六章相关与回归分析

80 可支配收
60

18 25 45 60 62 75 88 92 99 98
40
20
0
0
20
40
60
80
可支配收入
2019/8/7
10
如图四个散点图中,适合用线性回归模型拟合其中两个变量 的是( )
A.①② B.①③ C.②③ D.③④
任务二 进行相关分析
2.1 相关关系的测定 2.2 相关系数 2.3 相关系数的特点
2.1 相关关系的测定 P189
1. 单相关系数的定义 X 、Y 的协方差
总体 相关系数:

CovX ,Y VarX VarY
样本
r
X

的标准n1差
x x Yy的 标y 准差
相关系数:
1
n

xx
2

1 n

y y
2
2019/8/7
13
2.2 相关系数 P222
120
100
80
60
300
400
500
600
700
800
2019/8/7
人均 收入
900
5
1.2 相关关系的种类 P188
分类标志
类别
相关程度 完全相关 不完全相关 不相关
相关方向 正相关 负相关
相关形式 线性相关 非线性相关
变量多少 单相关 复相关 偏相关
2019/8/7
6
1.3 相关分析和回归分析 P189 相关分析 — 用一个指标来表明现象间相
互依存关系的密切程度。
相关系数 r
r
较大 — 现象间依存关系强

统计学原理-第六章--相关与回归分析习题

统计学原理-第六章--相关与回归分析习题

A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。

经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。

应用统计学第六章回归分析

应用统计学第六章回归分析

非线性回归模型的预测与应用
预测
使用非线性回归模型可以对未来的因变量值进行预测。通过将自变量代入模型,可以计算出未来的因变量值。
应用
非线性回归模型在许多领域都有广泛的应用,如经济学、生物学、医学等。例如,在经济学中,可以使用非线性 回归模型来研究商品价格与销售量之间的关系;在生物学中,可以使用非线性回归模型来研究药物剂量与疗效之 间的关系。
回归分析的分类
一元线性回归分析
研究一个自变量和一个因变量之间的线性关 系。
非线性回归分析
研究自变量和因变量之间的非线性关系。
多元线性回归分析
研究多个自变量和一个因变量之间的线性关 系。
逻辑回归分析
用于研究分类因变量的概率预测,常用于二 元分类问题。
02
线性回归分析
一元线性回归
一元线性回归的数学模型为
回归分析的基本思想
探索自变量和因变量之间 的相关关系
回归分析通过收集数据并利用统计方法来探 索自变量和因变量之间的相关关系。
建立数学模型
基于收集的数据,通过最小二乘法等方法来拟合一 个最佳的数学模型,以描述自变量和因变量之间的 关系。
预测和推断
利用建立的数学模型,可以对因变量的取值 进行预测,并对自变量对因变量的影响进行 推断。
线性回归模型的预测与应用
01
线性回归模型的主要目的是进行 预测和分析。
02
通过输入自变量的值,可以预测 因变量的值。
在实际应用中,线性回归模型可 以用于各种领域,如经济、金融 、医学、农业等。
03
在应用线性回归模型时,需要注 意模型的适用性和局限性,并根
据实际情况进行调整和改进。
04
03
非线性回归分析

第六章spss相关分析和回归分析

第六章spss相关分析和回归分析

第六章SPSS相关分析和回归分析第六章SPSS相关分析与回归分析6.1相关分析和回归分析概述客观事物之间的关系大致可归纳为两大类,即,函数关系:指两事物之间的一种一一对应的关系,如商品的销售额和销售量之间的关系。

,相关关系(统计关系):指两事物之间的一种非一一对应的关系,例如家庭收入和支出、子女身高和父母身高之间的关系等。

相关关系乂分为线性相关和非线性相关。

相关分析和回归分析都是分析客观事物之间相关关系的数量分析方法。

6. 2相关分析相关分析通过图形和数值两种方式,有效地揭示事物之间相关关系的强弱程度和形式。

6.2. 1散点图它将数据以点的的形式画在直角坐标系上,通过观察散点图能够直观的发现变量间的相关关系及他们的强弱程度和方向。

6.2.2相关系数利用相关系数进行变量间线性关系的分析通常需要完成以下两个步骤:第一,计算样本相关系数r;,+1之间,相关系数r的取值在-1,R>0表示两变量存在正的线性相关关系;r〈0表示两变量存在负的线性相关关系,R,1表示两变量存在完全正相关;r, -1表示两变量存在完全负相关;r, 0表示两变量不相关,|r|>0.8表示两变量有较强的线性关系;r <0.3表示两变量之间的线性关系较弱第二,对样本来自的两总体是否存在显著的线性关系进行推断。

对不同类型的变量应采用不同的相关系数来度量,常用的相关系数主要有Pearson 简单,相关系数、Spearman等级相关系数和Kendall相关系数等。

6. 2. 2. 1 Pearson简单相关系数(适用于两个变量都是数值型的数据)(,)(,)yy, ixxi,r 22(,), (,) yy,, ixxiPearson简单相关系数的检验统计量为:rn, 22t,6. 2. 2. 2 Spearman等级相关系数Spearman等级相关系数用来度量定序变量间的线性相关关系,设计思想与Pearson 简1, r(,)xyii单相关系数相同,只是数据为非定距的,故计算时并不直接采用原始数据,而是利(,)xy(,)UViiii用数据的秩,用两变量的秩代替代入Pearson简单相关系数计算公式中,于是xyii其中的和的取值范禺被限制在1和n之间,且可被简化为:2nn6D, i22,,,,,其中rDUV1 (),, iii,, 2, nn(l)iillnn22DUV,, (),, iii,, llii,如果两变量的正相关性较强,它们秩的变化具有同步性,于是的值较小,r趋向于1;nn22DUV,, (),, iii,, Uii,如果两变量的正相关性较弱,它们秩的变化不具有同步性,于是的值较大,r趋向于0;,在小样本下,在零假设成立时,Spearman等级相关系数服从Spearman分布; 在大样本下,Spearman等级相关系数的检验统计量为Z统计•量,定义为:Zrn,, 1Z统计量近似服从标准正态分布。

第六章回归分析

第六章回归分析
2. 对每一个自变量都要单独进行检验 3. 应用 t 检验 4. 在多元线性回归中,回归方程的显著性检验不再等价于
回归系数的显著性检验
回归系数的显著性检验
1. 提出假设
– H0: i = 0 (自变量 xi 与 因变量 y 没有线性关系) – H1: i 0 (自变量 xi 与 因变量 y有线性关系)
2. 计算检验的统计量 t
3. 确定显著性水平,并进行决策
▪ tt2,拒绝H0; t<t2,接受H0
异方差性
多元回归 中的问题
• 方差不齐性:随机误差项的方差不齐性 • 异方差性带来的问题: • 参数估计值不是有效的
– 参数的显著性检验失效 – 回归方程的应用效果极不理想 • 诊断:残差图分析法 • 处理方法:加权最小二乘法
误差等分散性假设: 特定X水平的误差,除了应呈随机
化的常态分布,其变异量也应相等,称为误差等分散性。
一元线性回归模型的假定
Yˆ1
f ( y) uY (x1)
E( ) 0
2 2 2
y ( x1)
y ( x2 )
y ( xi )
y
x0 x x1 x x2 x x3
Yˆ a bX
x
一元线性回归分析
共线性分析表
共线性问题
残差值统计量,包括预测值、残差值、 标准化预测值、标准化残差。观察是
否在三个标准差以内
满足残 差为正 态分布 的假设
Y值为预测值 的累积比率, X轴为观测值 的累积比率, 散点图最好呈 直线分布而满 残差为正态分
布的假设
Y轴为标准化残差,用于观测残差是否随因变量而变化, 如果随之发生变化,表明方差不齐性
2. 检验方法是将回归离差平方和(SSR)同剩余离差平方和 (SSE)加以比较,应用 F 检验来分析二者之间的差别是 否显著 – 如果是显著的,因变量与自变量之间存在线性关系 – 如果不显著,因变量与自变量之间不存在线性关系

第六章相关分析与回归分析

第六章相关分析与回归分析

+
-
x+x0
+yy0
+


0
x
x
第六章 相关分析与回归分析
STAT
coxv,y()0则r>0,说明x和y之间为正线性
相关;
coxv,y()0则r<0,说明x和y之间为负线性
相关;
coxv,y()0则r=0,说明x和y之间不存在线
性相关。
第六章 相关分析与回归分析
2、标准差 x 和 y 的作用
第六章 相关分222470, 64098 y26383 .48 , 7 5x7y1114.448633 STAT
r
nxyxy
nx2(x)2 ny2(y)2

1011144.486133371.785276.127
三、相关表和相关图
STAT
相关表
将某一变量x按其数值大小顺序排 列,然后再将与其相关的另一个变量y 对应值平行排列,观察x由小到大变化 时,y的变化情况。
第六章 相关分析与回归分析
八个同类工业企业的月产量与生产费用
企业编号
1 2 3 4 5 6 7 8
月产量(千吨)X
1.2 2.0 3.1 3.8 5.0 6.1 7.2 8.0
联系
STAT
(1)有函数关系的变量间,由于有测 量误差及各种随机因素的干扰,可表 现为相关关系;
(2)对具有相关关系的变量有深刻了 解之后,相关关系有可能转化为或借 助函数关系来描述。
第六章 相关分析与回归分析
• 例:判断下列关系是什么关系? • 1)物体体积随温度升高而膨胀,随压力加大而STAT
第六章 相关分析与回归分析
正相关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
4
函数关系的例子
▪ 某种商品的销售额(y)与销售量(x)之间的关 系可表示为 y = p x (p 为单价)
▪ 圆的面积(S)与半径之间的关系可表示为S =
r2
▪ 企业的原材料消耗额(y)与产量(x1) 、单位产 量消耗(x2) 、原材料价格(x3)之间的关系可 表示为y = x1 x2 x3
1
第一节 第二节 第三节 第四节 第五节
相关与回归分析的基本概念 简单线性相关分析 线性回归分析 多元线性相关与回归分析*** 非线性相关与回归分析***
2
第一节 相关与回归分析的基本 概念
一、函数关系与相关关系
1.函数关系
当一个或几个变量取一定的值 时,另一个变量有确定值与之 相对应,我们称这种关系为确 定性的函数关系。
3
(函数关系)
(1)是一一对应的确定关系
(2)设有两个变量 x 和 y , y
变量 y 随变量 x 一起变化,
并完全依赖于 x ,当变量 x 取某个数值时, y 依确
定的关系取相应的值,则 称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变
பைடு நூலகம்
量,y 称为因变量
(3)各观测点落在一条线上
温度(x3)之间的关系 ▪ 收入水平(y)与受教育程度(x)之间的关系 ▪ 父亲身高(y)与子女身高(x)之间的关系
8
二、相关关系的种类
(1)
(2)
(3)
(4)
图中(1)、(2)为线性相关,(3)、(4)为非线性相关。
9
1.按相关关系的程度划分可分为 完全相关,不完全相关和不相关。
2.按相关形式划分可分为 线性相关和非线性相关。
16
简单说:
1、相关分析是回归分析的基础 和前提; 2、回归分析是相关分析的深入 和继续。
17
第二节 简单线性相关分析
一、相关关系的判断
定性分析:是依据研究者的理论知识和实 践经验,对客观现象之间是否存在相关关 系,以及何种相关关系作出判断。
定量分析:在定性分析的基础上,通过编 制相关表、绘制相关图、计算相关系数等 方法,来判断现象之间相关的方向、形态 及密切程度。
一个变量唯一确定;
y
(3)当变量 x 取某个值时,变 量 y 的取值可能有几个;
(4)各观测点分布在直线周围。
x
7
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)之间的关系 ▪ 商品的消费量(y)与物价(x)之间的关系 ▪ 商品销售额(y)与广告费支出(x)之间的关系 ▪ 粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、
消费 物价 收入
12
三、相关分析与回归分析
(一)概念:
就是用一个指标来表明现象间相互
1.相关分析 依存关系的密切程度。广义的相关
分析包括相关关系的分析(狭义的 相关分析)和回归分析。
2.回归分析
是指对具有相关关系的现象,根据 其相关关系的具体形态,选择一个 合适的数学模型(称为回归方程 式),用来近似地表达变量间的平 均变化关系的一种统计分析方法。
3.按相关的方向划分可分为 正相关和负相关
4.按相关关系涉及的变量多少划分可分为 单相关、复相关和偏相关。
5.按相关性质划分可分为 “真实相关”和“虚假相关”。
10
说明: 正相关:两个相关现象间,当一个变量的数
值增加(或减少)时,另一个变量的数值也 随之增加(或减少),即同方向变化。 例如收入与消费的关系。 负相关:当一个变量的数值增加(或减少) 时,而另一个变量的数值相反地呈减少(或 增加)趋势变化,即反方向变化。 例如物价与消费的关系。
11
两个变量之间的相关,称为单相关。
当所研究的是一个变量对两个及以上其他变 量的相关关系时,称为复相关。
例如,某种商品的需求与其价格水平以及收 入水平之间的相关关系便是一种复相关。
在某一现象与多种现象相关的场合,假定其 他变量不变,专门考察其中两个变量的相关 关系称为偏相关。
例如,在假定人们的收入水平不变的条件下, 某种商品的需求与其价格水平的关系就是一 种偏相关。
5
2. 相关关系:
当一个或几个相互联系的变量取 一定数值时,与之相对应的另一变量 的值虽然不确定,但它仍按某种规律 在一定的范围内变化。
现象之间客观存在的不严格、不 确定的数量依存关系,称为具有不确 定性的相关关系。
6
(相关关系)
(1)变量间关系不能用函数关 系精确表达;
(2)一个变量的取值不能由另
14
3.相关分析所涉及的变量一般都是随 机变量,而回归分析中因变量是随机 的,自变量则作为研究时给定的非随 机变量。
15
(三)相关分析与回归分析的联系
相关分析和回归分析有着密切的联系,它 们不仅具有共同的研究对象,而且在具体 应用时,常常必须互相补充。相关分析需 要依靠回归分析来表明现象数量相关的具 体形式,而回归分析则需要依靠相关分析 来表明现象数量变化的相关程度。只有当 变量之间存在着高度相关时,进行回归分 析寻求其相关的具体形式才有意义。
13
(二)相关分析与回归分析的区别
1.在相关分析中,不必确定自变量和因变 量;而在回归分析中,必须事先确定自变量、 因变量,而且只能从自变量去推测因变量, 不能从因变量去推断自变量。
2.相关分析不能指出变量间相互关系的具体 形式;而回归分析能确切的指出变量之间相 互关系的具体形式,它可根据回归模型从已 知量估计和预测未知量。
第六章 相关与回归分析
相关与回归分析,是研究具有非确定性依 存关系现象的一种统计分析方法。广义说, 相关分析包括回归分析,二者在内容和方 法上都非常接近,严格说,二者有区别, 又相辅相成。
相关分析侧重研究具有非确定性依存关系 的变量间关系的紧密程度和相关方向。
回归分析主要研究如何用数学方程式描述 具有非确定性依存关系的变量间关系。
18
定量分析
相关表:将自变量x的数值按照从小到 大的顺序,并配合因变量y的数值一一 对应而平行排列的表。 例:为了研究分析某种劳务产品完成 量与其单位产品成本之间的关系,调 查30个同类服务公司得到的原始数据 如表。
19
完成量(小时) 20 30 20 20 40 30 40 80 80 50 40 30 20 80 50 单位成本(元/小时)18 16 16 15 16 15 15 14 14 15 15 16 18 14 14
相关文档
最新文档