从紫杉植物中提取紫杉醇的简化方法
紫杉醇生物体内合成过程
紫杉醇生物体内合成过程全文共四篇示例,供读者参考第一篇示例:紫杉醇是一种来源于紫杉树的天然化合物,具有很强的抗癌活性,被广泛应用于临床治疗各种癌症。
紫杉醇的生物体内合成过程极为复杂,需要多个酶和底物共同作用,经过一系列反应才能最终得到紫杉醇。
下面将具体介绍紫杉醇在生物体内的合成过程。
紫杉醇的生物体内合成过程主要发生在植物体内,具体是在紫杉树的树皮和树叶中。
紫杉树通过光合作用将二氧化碳和水转化为葡萄糖,并通过细胞壁和细胞质膜将葡萄糖输送到叶绿素细胞内。
在叶绿素细胞内,葡萄糖被进一步转化为异戊二烯醛,这是紫杉醇合成的起始物质。
接着,异戊二烯醛经过一系列酶的催化作用,逐步转化为异香树脑、异下角酯和芳亚麻酸。
这些中间产物经过进一步反应和转化,在经过多个酶催化反应后,最终合成为紫杉醇。
紫杉醇是一个高度复杂的生物合物,结构稳定,有很强的生物活性,能够有效抑制癌细胞的增殖和扩散。
紫杉醇的生物体内合成过程不仅仅发生在紫杉树中,还可以通过生物工程技术在其他微生物或植物中进行合成。
科学家们通过改造微生物或植物的基因组,使其拥有紫杉醇合成途径的相关基因和酶,从而实现紫杉醇的人工合成。
这种方法不仅可以提高紫杉醇的产量,还可以避免砍伐紫杉树等不可持续的开发方式,对环境保护和资源节约具有重要意义。
紫杉醇的生物体内合成过程是一个极为复杂的生物化学反应网络,需要多个酶和底物的协同作用,经历多个步骤才能最终合成出紫杉醇这种抗癌活性物质。
通过深入研究紫杉醇的生物合成机制,可以为生物医药领域的新药研发提供重要的参考和借鉴,有助于开发出更多高效的抗癌药物,促进健康医疗事业的发展。
希望未来能够进一步加强对紫杉醇生物合成的研究,推动这一领域的发展和进步。
【紫杉醇生物体内合成过程】。
第二篇示例:紫杉醇(Paclitaxel)是一种重要的治疗肿瘤的药物,具有广泛的疗效和应用。
而紫杉醇的主要来源是从紫杉树的树皮中提取得到,但是该方法存在诸多问题,比如提取难度大,产量低等。
紫杉醇提取技术
紫杉醇提取技术
紫杉醇提取技术是一种从红豆杉树(Taxus brevifolia)中提取的一种抗肿瘤药物。
以下是简要的提取步骤:
1. 切片:将红豆杉树干切成薄片。
2. 干燥:将切好的树干片放入干燥设备中,保持适当的温度和湿度,以减少水分。
3. 粉碎:将干燥后的树干片研磨成粉末。
4. 提取:将粉末与有机溶剂(如甲醇或乙醇)混合,进行超声波辅助提取。
提取次数和时间根据实验条件而异。
5. 过滤:将提取液与固体废物分离,使用滤纸或其他过滤设备。
6. 浓缩:将过滤后的提取液进行旋转蒸发或减压浓缩,去除大部分有机溶剂。
7. 回收:利用柱层析或其他分离技术,从浓缩液中分离出紫杉醇。
8. 纯化:通过结晶、重结晶等方法对紫杉醇进行纯化,得到高纯度的紫杉醇。
需要注意的是,实际操作过程中可能涉及到的设备和条件会根据不同实验室和研究者的方法而有所不同。
此外,提取紫杉醇的过程中要严格遵守实验安全规程,因为紫杉醇和其代谢产物具有毒性。
紫杉醇制药原理范文
紫杉醇制药原理范文
紫杉属植物的树皮富含紫杉醇,传统的提取方法是采用乙醇、甲醇等有机溶剂,通过浸泡、蒸馏、浓缩等步骤将紫杉醇从树皮中提取出来。
这种方法简单直接,但效率较低,产量有限,且存在伤害植物资源的问题。
改进的提取方法使用超声波辅助提取,其基本原理是通过超声波的震荡作用,提高溶剂与植物细胞壁之间的质传递效应,加速紫杉醇的释放。
在超声波处理下,植物细胞壁破裂,有利于紫杉醇与溶剂相互作用,提高提取效果。
除了传统的提取方法,现代生物技术也被用于紫杉醇的生产。
通过细胞培养、组织培养等方法,可以实现对紫杉醇的生物合成。
具体方法是将紫杉树中富含紫杉醇的细胞分离、培养,利用生物反应器中提供的适宜环境和营养物质,使细胞自身合成紫杉醇。
这种方法无需大量砍伐紫杉属植物,减少了对植物资源的损害,并且可以进行规模化生产。
经过提取得到的紫杉醇并不是最终药物,还需要进行结构修饰和半合成等步骤,以得到可供临床使用的药物形式。
这是因为紫杉醇本身对水溶性较差,不能有效地进入细胞内,导致药效降低。
结构修饰的方法包括改变紫杉醇的化学结构,引入水溶基团,增强药物的水溶性。
同时,还可以通过半合成的方法合成与紫杉醇类似结构的分子,提高药物的效果,降低毒副作用。
总的来说,紫杉醇的制药原理包括提取、生物合成、结构修饰和半合成等步骤。
这些步骤共同完成了从自然资源到药物的转化,为临床治疗提供了重要的药物。
随着生物技术的不断发展,紫杉醇的制备工艺也不断完善,为更好地开发和利用紫杉醇的抗肿瘤活性提供了可能性。
紫杉醇的提取工艺
紫杉醇的提取工艺
紫杉醇是从红豆杉中提取的一种天然抗癌药物,也是目前已知的抗癌效果最好的天然植物。
紫杉醇是由10个碳原子、12个氢原子、8个氮原子和4个氧原子组成的一个类分子。
紫杉醇是由紫杉树皮中提取出来的一种物质,在20世纪60年代就被美国FDA批准用于治疗晚期乳腺癌,在之后的几年里,紫杉醇被广泛地应用于癌症治疗领域。
在2000年之前,紫杉醇在治疗癌症方面取得了重大进展,但由于其毒性较强,使其应用受到了限制。
而近几年来,随着新药的不断问世、新技术的不断研发、新药品的不断开发,紫杉醇在抗癌药物中所占比重也逐渐提高。
紫杉醇与其他抗癌药物相比具有很大的优势。
一、紫杉醇的特点
1.药理作用
①抗肿瘤活性:紫杉醇对多种肿瘤细胞有明显抑制作用,具有增强微管蛋白聚合和细胞分裂周期阻滞的能力,其药理活性与环孢素A、甲氨蝶呤等药物类似。
②抗菌活性:紫杉醇对多种细菌有较强的抑制作用。
③抗过敏活性:对多种变态反应性疾病有治疗作用。
—— 1 —1 —。
紫杉醇的提取工艺研究资料讲解
紫杉醇的提取工艺研究紫杉醇提取纯化方法的研究进展紫杉醇是最早从红豆杉属植物中分离出来的三环二菇类化合物,是继阿霉素和顺铂之后最热点的抗癌新药。
紫杉醇具有复杂的化学结构,分子由3个主环构成二菇核,分子中有11个手性中心和多个取代基团,母环部分是一个复杂的四环体系,有许多功能基团和立体化学特征。
分子式C47H51NO14,分子量853.92。
同位素示踪表明, 紫杉醇只结合到聚合的微管上, 不与未聚合的微管蛋白二聚体反应。
细胞接触紫杉醇后会在细胞内积累大量的微管,这些微管的积累干扰了细胞的各种功能,特别是使细胞分裂停止于有丝分裂期,阻断了细胞的正常分裂。
通过Ⅱ-Ⅲ临床研究,紫杉醇主要适用于卵巢癌和乳腺癌,对肺癌、大肠癌、黑色素瘤、头颈部癌、淋巴瘤、脑瘤也都有一定疗效。
紫杉醇属于有丝分裂抑制剂,它的独特机制在于可以诱导和促进微管蛋白聚合,促进微管装配及阻止微管的生理解聚,由此抑制癌细胞纺锤体的形成,阻止有丝分裂的完成,使其停留在G2期和M期直至死亡,从而起到抗癌的作用。
迄今为止紫杉醇是唯一促进微管聚合的新型抗癌药。
这一新的发现引起了各国医药界的极大兴趣。
现在已有包括我国在内的十多个国家批准了紫杉醇类药物的正式生产。
目前有关紫杉醇研究的几个主要问题是:紫杉醇的提取;紫杉醇的人工合成;紫杉醇的临床应用(水不溶性问题的解决);紫杉醇的构效关系;紫杉醇的抗癌机理。
紫杉醇的抗癌机理1971年,Wani等报道了紫杉醇在一些实验体系中具有抗癌活性。
1978年,Schiff等发现紫杉醇在极低的浓度下(0.25μM)可以完全抑制Hela细胞的分裂,而且在对细胞4小时的培养过程中,对DNA、RNA和蛋白质的合成没有明显影响。
Hela细胞在与紫杉醇共同温育20小时后被阻断在G2后期和M期。
1979年Schiff等用浊度法进行了研究,发现紫杉醇能缩短微管在体外的聚合时间,使平衡向微管聚合方向移动,从而减小微管聚合临界浓度。
在有GTP时,紫杉醇可以和PC-tubulin结合,计量比为1:1。
获取紫杉醇的有效方法
获取紫杉醇的有效方法
获取紫杉醇的有效方法主要有两种:
1.提取法:从红豆杉中分离提取紫杉醇是早期获取紫杉醇的主要途径。
科研工作者们采集人工培育的红豆杉枝叶,利用溶剂萃取、固相萃取、超临界流体萃取、膜分离、色谱分离等分离提取方法,提取与紫杉醇结构类似的前体,如巴卡亭Ⅲ、10-去乙酰巴卡亭Ⅲ等,再借助化学修饰的大规模生产方法,得到医用紫杉醇原料药。
2.化学半合成法:为了缓解天然产物供应不足的问题,人们采用了化学/半化学合成的方法。
请注意,以上两种方法都需要专业的技术和设备,建议在专业人士的指导下进行。
紫杉醇半合成
紫杉醇半合成紫杉醇(Paclitaxel)是一种重要的抗肿瘤药物,具有广谱的抗癌活性。
它最初是从紫杉树(Taxus brevifolia)中提取得到的天然化合物,但因为紫杉树生长缓慢且含量较低,导致紫杉醇供应量非常有限。
为了满足市场需求,研究人员开始探索紫杉醇的半合成方法。
本文将介绍紫杉醇的半合成工艺以及其在抗癌药物研究中的应用。
紫杉醇的半合成方法主要通过对天然产物发酵提取得到的紫杉内酯(10-DAB)进行化学转化得到。
紫杉内酯是从紫杉树叶和枝条中提取的,并经过一系列的分离纯化步骤得到高纯度产品。
在半合成过程中,紫杉内酯与其他化学试剂反应,逐步完成紫杉醇的构建。
紫杉醇的半合成过程通常分为四个主要步骤:保护羟基、氧化、脱保护和酯化。
保护羟基是为了防止羟基的不受控制的反应,通常使用酯化试剂对羟基进行保护。
氧化步骤是为了将紫杉内酯中的部分羟基氧化为酮基,这一步骤通常使用臭氧处理或者氧化还原方法。
脱保护步骤是去除保护羟基的化合物,以恢复原始的羟基结构。
最后,通过酯化反应可以将羧酸与脱保护后的紫杉内酯反应,形成最终的紫杉醇。
紫杉醇半合成的另一个关键步骤是选择合适的化学试剂和反应条件。
由于紫杉内酯的结构非常复杂,选择合适的转化方法对于控制反应的选择性和高产率至关重要。
研究人员通过大量的实验和反应优化,逐渐发现了一系列有效的反应路径和条件,使得半合成过程更加高效和可控。
通过半合成方法得到的紫杉醇与天然紫杉醇在结构上是一致的,并且具有相似的抗癌活性。
因此,半合成的紫杉醇成为了工业化生产的主要方式。
目前市场上的紫杉醇主要是通过半合成的方式获得的,其纯度和质量可以得到有效的控制。
紫杉醇作为一种有效的抗肿瘤药物,广泛应用于临床治疗中。
它可以抑制肿瘤细胞的生长,阻断肿瘤血管的生成,并增强化疗药物的疗效。
因此,紫杉醇被广泛应用于治疗卵巢癌、乳腺癌、前列腺癌等多种恶性肿瘤。
半合成的紫杉醇在治疗方面具有较大的优势,它可以大规模生产,满足临床需求,并可以通过结构修饰得到更多的衍生物,进一步提高抗癌活性和减少副作用。
紫杉醇生物体内合成过程
紫杉醇生物体内合成过程
紫杉醇是一种天然产物,最初是从紫杉树(Taxus brevifolia)中提取的。
紫杉醇的生物体内合成过程涉及植物细胞中的多个生物
化学途径和酶的作用。
以下是紫杉醇在植物体内合成的一般过程:
1. 起始物质,紫杉醇的生物合成起始物质是丙酮和葡萄糖。
这
些起始物质通过植物体内的代谢途径被转化为更复杂的中间体。
2. 萘乙酰辅酶A的合成,在生物体内,丙酮和葡萄糖首先被转
化为萘乙酰辅酶A,这是紫杉醇合成途径的第一步。
3. 萘前体的合成,萘乙酰辅酶A接下来被转化为一系列的中间体,最终形成萘类化合物。
4. 萘类化合物的重排和环化,这些萘类化合物经过一系列酶催
化的反应,发生重排和环化反应,形成紫杉醇的前体物质。
5. 紫杉醇的合成,紫杉醇的前体物质最终被转化为紫杉醇,这
是通过多个酶催化的复杂反应完成的。
需要指出的是,紫杉醇的生物合成过程是一个复杂的生物化学过程,涉及多个酶的作用和多个中间产物的转化。
这个过程在植物细胞内进行,受到细胞内环境和调控因素的影响。
此外,紫杉醇的生物合成过程也是植物生物技术研究的热点之一,对其生物合成途径的研究有助于开发紫杉醇的生物合成技术,以满足医药和工业上对紫杉醇的需求。
紫杉醇的分离工艺
⒉紫杉醇的分离工艺红豆杉针叶、树皮、根的采集原料的干燥及研磨初级萃取次级萃取水相(含键合相)有机相色谱纯化纯品紫杉醇图11-4紫杉醇分离纯化工艺紫杉醇的分离纯化工作开展较早,最早的分离巩义市1966年采用400根试管的逆流分配色谱法,从12g太平洋红豆杉树皮中提取了少量紫杉醇,历时两年,这种工艺十分琐碎,收率极低。
随着相关科学技术的不断发展,分离工艺也获得了很大的改进。
一般来说,紫杉醇的分离工艺可以分为粗提和纯化两个阶段,分离纯化过程可用图11-4表示。
⒊紫杉醇粗提工艺粗提阶段的目的在于从原料液中尽可能多的提取目标产物,所得到的物料在进行后续的提纯直至获得纯品。
粗提过程中初级萃取和次级萃取所采用的溶剂不同可以导致除去杂质不同,不同时期研究者对这两个过程的研究结果列于表11-5中。
目前用于提取紫杉醇的最普遍的初级萃取剂是乙醇(甲醇)和水,采用95:5的甲醇和二氯甲烷的混合物,萃取时间35~60min;采用纯甲醇,所需萃取时间则为16~48h。
在大多数情况下还需对甲醇初级萃取物进行次级萃取。
一般是在初级萃取物中加入二氯甲烷和水的混合物,即液-液萃取,该方法可以有效地除去萃取液中50%(质量比)的非紫杉醇烷类物质。
如果采用一个较为复杂的分离体系,发现所有的紫杉醇都在氯仿相中。
次级萃取除了可采用各种有机溶剂进行液-液萃取外,还可以采用固相浸取法和超临界流体萃取法。
这两种方法的共同特点是有机溶剂用量少,减少了环境的污染。
若用枝叶为原料,由于枝叶特别是枝叶中含有许多色素和蜡质,无疑将大大增加紫杉醇的提取分离难度。
这要求首先在甲醇粗提取物中加入低极性溶剂如正已烷以除去此物质,该法可除去红豆杉枝叶中多达72%的可溶于正已烷的杂质。
五、正相色谱过程为核心的紫杉醇分离纯化工艺正相色谱是紫杉醇分离纯化工艺中普遍采用的方法,在早期紫杉醇分离纯化的研究中占有主导地位,至今仍在广泛应用。
在紫杉醇分离纯化过程中,正相色谱的突出优点是固定相价格廉价,用普通的硅胶即可,而且洗脱用流动相多为挥发性很强的有机溶剂,溶剂回收简单、能耗低。
提取紫杉醇初分离工艺
提取条件优化实验设计
单因素实验
分别考察溶剂种类、溶剂浓度、提取温度、提取时间等因素对紫杉醇提取效果的影响,确定各因素的最佳水平范 围。
正交实验
在单因素实验的基础上,选择对紫杉醇提取效果影响显著的因素,设计正交实验,进一步优化提取条件,确定最 佳工艺参数组合。
05 初分离工艺研究 与实施
初分离工艺流程设计
外观检查
01
观察预处理后的原料颗粒是否均匀、无杂质,颜色是
否正常,以判断预处理效果。
水分含量测定
02 采用水分测定仪等方法测定预处理后原料的水分含量
,确保其符合提取要求。
紫杉醇含量测定
03
采用高效液相色谱法等方法测定预处理后原料中紫杉
醇的含量,以评估预处理对紫杉醇提取效果的影响。
04 提取方法选择与 优化
03
其他方法
如滴定法、重量法等,可根据实际情况选择合适的方法进行质量检测。
检测方法验证与可行性评估
方法学验证
对所选定的检测方法进行方法学验证,包括线性范围、精密度、准确度、专属性等指标的评价,确保 方法的可靠性和准确性。
可行性评估
通过对实际样品进行检测,评估所选定方法的可行性,如回收率、重复性、稳定性等,为实际生产中 的质量控制提供依据。
提取方法选择依据
紫杉醇原料性质
不同产地的紫杉醇原料中紫杉醇含量和存在形式有所差异,应根据原料性质选择合适的提取方法。
提取效率
在保证紫杉醇纯度和收率的前提下,优先选择提取效率高的方法,以降低成本和提高生产效率。
环保性
在选择提取方法时,应考虑所用溶剂或萃取剂的毒性、可燃性和废弃物处理等问题,选择环保性好的方 法。
07 工艺流程改进与 经济效益评估
紫杉醇的提取制备
具体介绍
紫杉醇(paclitaxel,商品名Taxol)是从红豆杉属(Taxus spp)植 物中分离得到的一种具有独特抗癌作用的二萜类化合物。
分子式为C47H51NO14,分子量为853.89,外观为白色针状结晶,
熔点为213~216 ℃ ,比旋度为[α ]D20-49(MeOH),结构式如图。
乙酸乙 叶末 酯 /丙酮 质量/g /mL 浸膏 质量/g 浸膏 得率/%
ห้องสมุดไป่ตู้时间/h
普通浸提
索氏提取
60
60
200
200
48
8
7.60
12.44
12.5
20.7
在提取方式上索氏提取明显优于普通浸提,所用时间较少, 而且普通浸提过滤时由于粉末过于细微,很难过滤. 而索氏提取则 可直接得到提取液且无需过滤。
TLC 薄层板检测
将结晶产物 4℃低温离心后弃上清,沉淀溶解在甲醇中进行薄 层板点样检测。展开剂:氯仿/甲醇(体积比为12∶1);显色剂:茴 香醛/硫酸/乙醇(体积比为1∶3∶50)放置干燥箱内100℃烘干,10
min 或直接在紫外检测器下观察。紫杉醇的Rf值为0.6 左右. 薄层色
谱法检测的优点在于所用设备简单,分离、定量检测迅速,在一般实 验条件下就可以完成,但是该方法不能够测定紫杉醇的含量及纯度。
紫杉醇硅胶柱层析纯化
由于己烷沉淀法得到的样品中仍含有较多杂质,本试验采用了分 段梯度操作. 洗脱中以正己烷/丙酮作为流动相。 取1 g浸膏溶于5 mL 丙酮,加样于含15 g硅胶的层析柱,用正己 烷/丙酮(体积比为8∶2)洗脱,每5 mL 收集流份,不断减少流动相
中正己烷的含量,最终以正己烷/丙酮(体积比为5∶5)结束. 对所有
紫杉醇提取实验方案
紫杉醇提取实验方案实验名称:紫杉醇的提取实验探究条件:1、原材料:红豆杉树枝、红豆杉树皮、红豆沙树叶、三者混合;2、烘干时的温度:40?、60?、80?;3、粉碎状态:完全不粉碎、粉碎至40目、粉碎至60目、粉碎至80目、粉碎至100目; 4、有机溶剂选取:95%甲醇、95%乙醇、乙酸乙酯:丙酮=1:1;5、层析介质选取:硅胶、氧化铝、C18、苯基柱、树脂。
实验器材:实验仪器:实验原料:实验过程1、红豆杉枝叶、树皮、树枝:采集新鲜的红豆杉树枝、树皮、叶,用清水洗净;2、干燥与粉碎:于60?烘箱内干燥至恒重,用粉碎机粉碎至100目,分别准确称取过后的各种样品2g,置50mL磨口具塞三角瓶中; 筛3、有机溶剂提取:加入95%乙醇20mL,超声萃取30min,留上清液,沉淀复加20mL 95%乙醇,重复操作;4、浓缩:浓缩温度控制在45?5?,真空度控制在-0.07?00.1Mpa,浸提液浓缩至比重达到0.95~1.05时,将浓缩液放出到专用的储罐中;5、萃取:将计量后的浸提浓缩液注入萃取罐,加入醋酸乙酯(按物料:醋酸乙酯=1:1),萃取三次,将醋酸乙酯层重液排入指定贮罐,将贮罐内的醋酸乙酯液抽入浓缩锅进行初浓缩预处理,温度控制在45?5?,待浓缩液比重达到1.40?0.05时,将浓缩后的醋酸乙酯液排入指定贮罐中。
6、浸膏:合并上清液,过滤除渣,滤液于30?减压蒸干,得浸膏;下层清液作为10-DAB的原材料保存好,详细步骤见最后;7、固液萃取:浸膏用20mL甲醇溶解,加入石油醚(60,90?)(体积比1?1),振荡30min,脱脂;8、液液萃取:萃取余液用三氯甲烷(体积比2?1)振荡30min,褪色,若褪色不彻底应反复进行;9、沉淀:由于紫杉醇有在正己烷中沉淀这一特性,所以向液液萃取后得到的紫杉醇乙酸乙酯溶液中加入体积比为10:1的正己烷溶剂,将紫杉醇沉淀下来。
(较少时,紫杉醇不能完全沉淀;较多时,不但没有提高杂质去除量,还会造成正己烷使用量过大,溶剂浪费。
紫杉醇的提取方法
紫杉醇的提取方法
1. 嘿,你知道紫杉醇可以从红豆杉里提取吗?就像从宝藏中挖掘出珍贵的宝石一样!先把红豆杉的枝叶收集起来呀。
2. 想不想知道怎么提取紫杉醇呀?其实就和厨师精心烹饪一道美食差不多呢,得有合适的步骤。
可以用溶剂来浸泡红豆杉材料哦。
3. 紫杉醇的提取方法很神奇呢!就如同变魔术一样,把一些看似普通的东西变成宝贝。
比如通过萃取的方式来获取它。
4. 哇哦,提取紫杉醇真的挺有趣的呢!好比搭积木,一块一块地搭建出想要的成果。
可以利用层析法来进一步分离它哟。
5. 你晓得不,提取紫杉醇的过程有点像解谜!一步一步找到答案。
比如对提取液进行浓缩处理呀。
6. 嘿呀,紫杉醇的提取可不简单哦,但也超有意思的!就像一场冒险,需要勇气和智慧。
可以借助一些仪器来精准操作呢。
7. 哎呀,提取紫杉醇真的需要点技巧呢!这和钓鱼一样,得有耐心和方法。
可以根据它的特性选择合适的提取条件呀。
8. 哇,提取紫杉醇真的很让人着迷呀!如同探索一个未知的世界。
通过一系列的工艺就能把它提取出来啦。
9. 嘿,提取紫杉醇的方法你不想了解一下吗?这就像打开一个神秘的盒子,充满了惊喜。
比如调整温度和酸碱度来助力提取。
10. 哇塞,提取紫杉醇真的好有挑战性呀!但也超有成就感的呢!就好像攻克一个难关。
可以运用现代技术来提高提取效率哦。
我的观点结论:紫杉醇的提取方法多样且有趣,需要我们认真去探索和实践,才能更好地获取这一珍贵的物质。
原创不易,请尊重原创,谢谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从紫杉植物中提取紫杉醇的简化方法
红豆杉Taxus又名紫杉,也称赤柏松,生于海拔1000~1200m处的山地,是世界上公认的濒临灭绝天然珍稀植物,从其根、皮、茎、叶中提取的紫杉醇taxol是目前世界上最有效的抗癌药物之一。
全球每年大约需要1500~2500kg紫杉醇,而1 kg树皮仅能提取50~100mg。
10-脱乙酰巴卡亭Ⅲ又称10-脱乙酰基浆果赤霉素Ⅲ,10-deacetylbaccatinⅢ,10-DABⅢ为有抑制肿瘤作用的紫杉烷二萜类化合物。
Bissery等报道,可利用10-DABⅢ合成具有比紫杉醇更高抗癌活性的多烯他赛docetaxel。
紫杉醇主要存在于树杆和树皮中,10-DABⅢ主要存在于树叶中,其含量大大高于紫杉醇的含量。
红豆杉是国家珍稀保护植物,生长缓慢,如果直接从红豆杉树皮中提取紫杉醇,不仅资源有限,而且不利于资源保护。
以10-DABⅢ为原料采用酶催化半合成工艺方法来制备紫杉醇,可大大简化合成过程,使紫杉醇骨架修饰所需步骤更少,操作更简单,提高了紫杉醇合成的选择性和生产率,进而为在更大规模上进行紫杉醇生产提供了技术支持,最终使紫杉醇的化学合成半合成的产业化有了实现的可能。
目前文献报道从各种紫杉植物中提取紫杉醇的方法,均需经过繁冗的分离过程。
本实验采用了一种适合于以各种紫杉植物树叶或树枝做原料,通过极性梯度溶剂萃取的方法逐步脱除大量不相干杂质,得到合成紫杉醇的前体10-DABⅢ的方法,然后通过反相层析柱加成,即可获得抗癌活性成分紫杉醇;
材料与方法
1 材料与仪器
南方红豆杉Taxus mairei枝叶取自浙江宁海红豆杉种植基地,8年树龄。
10-DABⅢ对照品为Sigma公司产品,纯度98%;所用甲醇;乙醇、乙酸乙酯、乙酸丁酯、二氯甲烷、氯仿、正己烷、石油醚、乙腈等均为分析纯试剂。
JJ一1精密增力电动搅拌仪,江苏金坛市江南仪器厂;SENCO R一201旋转蒸发仪,上海申顺生物科技有限公司;玻璃硅胶柱为2cm×40cm,杭州常盛科教器具厂;UV一2802PC/PCS型分光光度计,UNICO上海仪器有限公司;Sigma一3K18低温离心机4℃,转速18000rmin;LabAlliance高效液相色谱仪美国SSI公司。
2 实验方法
取南方红豆杉枝叶研磨成细粉,于燥保存。
称取100g红豆杉细粉,45℃烘干,石油醚预处理,5L甲醇冷浸,辅以搅拌,超声40min,反复2次。
浸渍液过滤,减压浓缩至100mL。
加入75 mL正己烷萃取分液,重复操作2~3次。
弃去正己烷层,萃余液旋干溶剂,制成浸膏。
加入氯仿与水的混合液1:1反复提取。
氯仿层减压浓缩至10~15mL上柱,用硅胶正相色谱柱分离。
分段收集洗脱液,紫外监测,收集有效段合并浓缩,在甲醇/水中重结晶。
3 分析测试方法
采用反相高效液相色谱RP―HPLC方法检测。
分析柱为Kromasil C18柱250mm×4.6 mm,5μm,流动相为乙腈-水30:70,流速为2.0 mLmin,每次进样体积为10μl,进样间隙用纯乙腈对柱子进行梯度冲洗。
紫杉醇最大吸收波长为227nm,检测器测定波长为232nm,温度30℃,相关数据计算均采用峰面积归一化法。
结果
1 预处理
由于红豆杉枝叶中含有大量蜡质、植物色素诸如叶绿素等低极性杂质,故在提取前应首先加入低极性溶剂如正己烷、石油醚浸泡脱脂,以除去大量存在的此类非极性杂质,简化后续操作。
该法可除去红豆杉枝叶中多达72%的极性比10-DABⅢ小且可溶于正己烷的杂质。
2 有机溶剂粗提
目前用于紫杉烷类物质提取的最普通的初级萃取剂是乙醇甲醇和水,Xu等采用的是体积比95:5的甲醇和二氯甲烷的混合物,萃取时间为35~60min;而Hoke等和Powell等都选择的是纯甲醇,所需萃取时间为16~48h。
将南方红豆杉枝叶的细粉在45℃烘干,甲醇浸渍,搅拌过夜。
在搅拌的不同时间内其提取出的10-DABⅢ的含量。
可以看出,有机溶剂粗提时的浸渍搅拌时间应以12h左右为佳。
3 初级萃取
将甲醇萃取液减压旋蒸至干,得浸膏。
用10倍体积以甲醇浸膏的量为基准的纯净水分几次全部溶解,因目标产物10-DABⅢ不溶于水,故而形成悬浮液。
用石油醚或正己烷反复萃取,因目标产物不溶于非极性溶剂正己烷中,经此可基本去除极性比10-DABⅢ小的杂质。
在大多数情况下,还须对甲醇粗提物进行萃取操作。
一般是在初级萃取物中加入二氯甲烷和水的混合物,即液液萃取,该方法可有效除去萃取液中50%质量比的非紫杉烷类物质。
但实验发现要严格掌握好甲醇、二氯甲烷、水三者的比例,否则会出现提取不彻底,在两相中均含有目标产物,且还会有乳化现象发生。
本实验中是采用加入氯仿/水的混合溶液1:1将浸膏完全溶解然后进行液液萃取。
操作中应按照每次向水相中加入4~5倍体积的氯仿来进行,并轻轻振荡分页漏斗,以避免出现严重的乳化现象。
因实验中发现二氯甲烷在用碱液和水洗时不可避免严重乳化,造成目标产物损失难以回收,而氯仿因与目标产物极性相匹,对10-DABⅢ的溶解性更高,与水相分层界面明显,可在更大程度上实现目标产物10-DABⅢ与极性水溶性杂质的分离。
4 重结晶
将已检测确认的洗脱液收集,浓缩,制成浸膏。
在少量乙腈中重结晶。
滤出的残渣再用甲醇/水洗涤2~3次,即可得到10-DABⅢ的晶体,烘干,称重,共计79.16mg。
10-DABⅢ纯度达到91%,该步收率可达72%。
HPLC检测图谱
讨论
由于单一萜类化合物在植物中含量低,需要较多分离步骤才能纯化出来。
因此,采用有效的提取方法和缩短分离步骤提高每步的收率是成功的关键。
本研究利用萃取和层析方法相结合,使繁琐的分离步骤大为缩减,工艺路线为:红豆杉枝叶采集、粉碎,45℃烘于,石油醚预处理后用甲醇浸渍,同时辅以搅拌、超声。
然后过滤,滤液旋蒸以缩小体积,浓缩液用正己烷反复萃取之后再蒸干制成浸膏。
浸膏用氯仿/水反复抽提,萃取分液,得到氯仿的抽提物再上柱细分。
收集含有10-DABⅢ的洗脱段,旋蒸去除溶剂,适量乙腈溶解,进行重结晶,再用乙醇/水反复洗涤晶体,得到10-DABⅢ的纯品。
本工艺中采用的南方红豆杉树叶中10-DABⅢ的含量经测定为在1‰,得到的紫杉醇合成的前体物10-DABⅢ纯度大于90%,总收率达到7.9%,与文献相比较说明实验采用的原料及分离和纯化工艺都是可行的。
但由于本实验目前还处于实验室研究阶段,在重结晶操作环节中尚存在一些问题,如怎样去除残留溶剂对重结晶的影响及晶形的改善等还都需要进一步的研究。