电磁学12-1PPT课件
合集下载
大学物理《电磁学》PPT课件
欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。
大学物理《电磁学》PPT课件
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
电磁学PPT课件
电磁学PPT课件
目录
• 电磁学基本概念与原理 • 静电场分析与应用 • 恒定电流与稳恒磁场研究 • 电磁波传播与辐射特性探讨 • 电磁学在日常生活和工业生产中应用实例
01
电磁学基本概念与原理
Chapter
电场与磁场定义及性质
01
电场
由电荷产生的特殊物 理场,描述电荷间的 相互作用。
02
磁场
由运动电荷或电流产 生的特殊物理场,描 述磁极间的相互作用 。
3
方程组中各量的含义及相互关系
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
电磁波产生、传播和接收过程
电磁波的产生
变化的电场和磁场相互激发,形 成电磁波。
电磁波的传播
电磁波在真空或介质中传播,速度 取决于介质的性质。
电磁波的接收
通过天线等接收装置,将电磁波转 换为电信号进行处理。
描述稳恒磁场的方法
介绍描述稳恒磁场的物理量,如磁感应强度、磁通量等,并给出相 应的定义和计算公式。
稳恒磁场的性质
列举稳恒磁场的基本性质,如磁场的叠加性、磁场的无源性等。
洛伦兹力与霍尔效应原理
洛伦兹力的定义和公式
阐述洛伦兹力的概念,即运动电荷在磁场中所受到的力,并给出 相应的计算公式。
霍尔效应的原理
03
电场性质
对电荷有力的作用, 具有能量和动量。
04
磁场性质
对运动电荷或电流有 力的作用,也具有能 量和动量。
库仑定律与高斯定理
01
02
03
库仑定律
描述真空中两个静止点电 荷之间的相互作用力,与 电荷量的乘积成正比,与 距离的平方成反比。
目录
• 电磁学基本概念与原理 • 静电场分析与应用 • 恒定电流与稳恒磁场研究 • 电磁波传播与辐射特性探讨 • 电磁学在日常生活和工业生产中应用实例
01
电磁学基本概念与原理
Chapter
电场与磁场定义及性质
01
电场
由电荷产生的特殊物 理场,描述电荷间的 相互作用。
02
磁场
由运动电荷或电流产 生的特殊物理场,描 述磁极间的相互作用 。
3
方程组中各量的含义及相互关系
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
电磁波产生、传播和接收过程
电磁波的产生
变化的电场和磁场相互激发,形 成电磁波。
电磁波的传播
电磁波在真空或介质中传播,速度 取决于介质的性质。
电磁波的接收
通过天线等接收装置,将电磁波转 换为电信号进行处理。
描述稳恒磁场的方法
介绍描述稳恒磁场的物理量,如磁感应强度、磁通量等,并给出相 应的定义和计算公式。
稳恒磁场的性质
列举稳恒磁场的基本性质,如磁场的叠加性、磁场的无源性等。
洛伦兹力与霍尔效应原理
洛伦兹力的定义和公式
阐述洛伦兹力的概念,即运动电荷在磁场中所受到的力,并给出 相应的计算公式。
霍尔效应的原理
03
电场性质
对电荷有力的作用, 具有能量和动量。
04
磁场性质
对运动电荷或电流有 力的作用,也具有能 量和动量。
库仑定律与高斯定理
01
02
03
库仑定律
描述真空中两个静止点电 荷之间的相互作用力,与 电荷量的乘积成正比,与 距离的平方成反比。
电磁学全套ppt课件
感生电动势
由于磁场变化而产生的感应电动势。 其大小与磁通量变化的快慢有关,即 与磁通量对时间的导数成正比。
自感和互感现象在生活生产中应用
自感现象
当一个线圈中的电流发生变化时,它所产生的磁通量也会发生变化,从而在线圈自身中 产生感应电动势。自感现象在电子线路中有着广泛的应用,如振荡电路、延时电路等。
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
电流产生条件
导体两端存在电压差,形成电场 ,使自由电子定向移动形成电流
。
电流方向规定
正电荷定向移动的方向为电流方向 ,负电荷定向移动方向与电流方向 相反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
联系专业电工进行处理。
THANKS
感谢观看
特点介绍
正弦交流电具有周期性、连续性、可变性等 特点。其电压和电流的大小和方向都随时间 作周期性变化,且波形为正弦曲线。
三相交流电传输优势分析
传输效率高
三相交流电采用三根导线 同时传输电能,相比单相 交流电,其传输效率更高 ,线路损耗更小。
由于磁场变化而产生的感应电动势。 其大小与磁通量变化的快慢有关,即 与磁通量对时间的导数成正比。
自感和互感现象在生活生产中应用
自感现象
当一个线圈中的电流发生变化时,它所产生的磁通量也会发生变化,从而在线圈自身中 产生感应电动势。自感现象在电子线路中有着广泛的应用,如振荡电路、延时电路等。
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
电流产生条件
导体两端存在电压差,形成电场 ,使自由电子定向移动形成电流
。
电流方向规定
正电荷定向移动的方向为电流方向 ,负电荷定向移动方向与电流方向 相反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
联系专业电工进行处理。
THANKS
感谢观看
特点介绍
正弦交流电具有周期性、连续性、可变性等 特点。其电压和电流的大小和方向都随时间 作周期性变化,且波形为正弦曲线。
三相交流电传输优势分析
传输效率高
三相交流电采用三根导线 同时传输电能,相比单相 交流电,其传输效率更高 ,线路损耗更小。
大学物理:电磁学PPT
N F4
O
F2 B
en
M,N F1
O,P B
F2
en
l1 l1 M F1 sin F2 sin Il2 B l1 sin ISB sin 2 2 M IS B m B 线圈有N匝时 m NIS
2 电流元的磁场
dB
P *
I
Idl
0 Idl dB er 2 4 r
——毕奥-萨伐尔定律
r
3
磁场的叠加原理
B Bi
i
B dB
例 1: 判断下列各点磁感强度的方向和大小.
1 8 2Βιβλιοθήκη dB 0 1、 5 点 :
7
Idl
R
6 5 4
例 5:
一半径为R,均匀带电Q的薄球壳。 求球壳内外任意点的电场强 度。
0 r R 如图,过P点做球面S1 E dS E dS 0 E 0
S1 S1
r
P
+ + +
+
S +1
O
如图,过P点做球面S2 rR E dS E dS Q / 0
rB
(electric potential )
点电荷电场 中的电势:
V
Q 40 r
电势的叠加 原理:
V Vi
i
点电荷电场中常取 无穷远处为电势零点
点电荷的电场线和等势面:
两平行带电平板的电场线和等势面:
+ + + + + + + + + + + +
大学物理电磁学总结(精华)ppt课件(2024)
34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流
。
电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制
电磁学基本知识ppt课件
S B dS
在匀强磁场中,若磁感应强度B与横截面S垂直, 上式可写为: Ф=BS
穿过任一闭合面的磁通为零,用公式表示为:
S B dS 0
(3) 磁场强度 把用来表达磁场强弱的物理量,称为磁场强度,
用H来表示,单位为安/米(A/m)。磁场强度只与产 生磁场的宏观传导电流大小及导体的形状有关,而与
④ 验证:列出的总方程数应该等于所设的支路电 流的个数。
【例1.7】图1.16所示电路中,已知电源电动势E1=18V, E2=6V;电阻R1=6Ω,R2=R3=3Ω。试用基尔霍夫电流和 电压定律求图中的电流I1、I2、I3 【解】根据基尔霍夫电流定律,对节点A
I1+I2-I3=0
图1.16
I1R1-I2R2=E1-E2 I2R2+I3R3=E2
一个元件或一段电路上既有电压的参考方向, 也有电流的参考方向,如果这两个参考方向一致, 称之为关联参考方向,反之,称为非关联参考方向。 如图1.5所示。
图1.4
图1.5
(3) 电动势 电动势就是反映电源内部电源力(即非电场力)
做功能力的物理量,它的大小反映电源力做功能力 的大小,用E
图1.3
E W Q
(1) 磁感应强度是反映磁场中某一点磁场性质的基本
物理量。用大写字母B表示,它是一个矢量,它的方 向就是置于磁场中该点的小磁针的N极指向,它的大 小等于单位正电荷垂直于磁场方向以单位速度运动时
数学表达式为: B F qv
(2) 穿过某一横截面S的磁感应强度B的通量称为磁通
量,简称磁通,用Φ表示,单位为韦伯(Wb),磁通
是:“在任一瞬间,对电路的任一节点,流入该节
点的电流之和等于流出该节点的电流之和。”其数
在匀强磁场中,若磁感应强度B与横截面S垂直, 上式可写为: Ф=BS
穿过任一闭合面的磁通为零,用公式表示为:
S B dS 0
(3) 磁场强度 把用来表达磁场强弱的物理量,称为磁场强度,
用H来表示,单位为安/米(A/m)。磁场强度只与产 生磁场的宏观传导电流大小及导体的形状有关,而与
④ 验证:列出的总方程数应该等于所设的支路电 流的个数。
【例1.7】图1.16所示电路中,已知电源电动势E1=18V, E2=6V;电阻R1=6Ω,R2=R3=3Ω。试用基尔霍夫电流和 电压定律求图中的电流I1、I2、I3 【解】根据基尔霍夫电流定律,对节点A
I1+I2-I3=0
图1.16
I1R1-I2R2=E1-E2 I2R2+I3R3=E2
一个元件或一段电路上既有电压的参考方向, 也有电流的参考方向,如果这两个参考方向一致, 称之为关联参考方向,反之,称为非关联参考方向。 如图1.5所示。
图1.4
图1.5
(3) 电动势 电动势就是反映电源内部电源力(即非电场力)
做功能力的物理量,它的大小反映电源力做功能力 的大小,用E
图1.3
E W Q
(1) 磁感应强度是反映磁场中某一点磁场性质的基本
物理量。用大写字母B表示,它是一个矢量,它的方 向就是置于磁场中该点的小磁针的N极指向,它的大 小等于单位正电荷垂直于磁场方向以单位速度运动时
数学表达式为: B F qv
(2) 穿过某一横截面S的磁感应强度B的通量称为磁通
量,简称磁通,用Φ表示,单位为韦伯(Wb),磁通
是:“在任一瞬间,对电路的任一节点,流入该节
点的电流之和等于流出该节点的电流之和。”其数
大学物理电磁学PPT课件
磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍
《电磁学》PPT课件
新型电磁材料与技术
超构材料、拓扑电磁学、量子电磁学等
电磁学与其它学科的交叉融合
电磁生物学、电磁化学、电磁信息学等
电磁学在高新技术领域的应用
5G/6G通信、太空探测、新能源技术等
未来电磁学技术发展趋势展望
高性能计算与仿真技术、智能电磁感知与 调控技术等
感谢您的观看
THANKS
正弦交流电路基本概念
1
正弦交流电路是指电流和电压随时间按正弦规律 变化的电路。正弦交流电具有周期性、连续性和 可叠加性等特点。
2
正弦交流电的基本参数包括振幅、频率、相位和 初相位等,这些参数决定了正弦交流电的性质和 特征。
3
正弦交流电路的分析方法包括时域分析法和频域 分析法,其中频域分析法在复杂交流电路分析中 具有重要意义。
处于静电平衡状态的导体,其内部电场被屏蔽,使得外部电场无法对 导体内部产生影响。
电介质极化现象及机理
1 2 3
电介质极化
电介质在静电场作用下,其内部正负电荷中心发 生相对位移,形成电偶极子,这种现象称为电介 质极化。
极化机理
电介质极化的机理包括电子极化、原子极化和取 向极化等。不同电介质在静电场中的极化程度不 同,这与其内部结构有关。
超导材料在电磁领域应用前景
01
超导材料的基本特 性
零电阻、完全抗磁性
02
超导材料在电磁领 域的应用
超导磁体、超导电缆、超导电机 等
03
超导材料应用前景 展望
高温超导材料、超导电子学器件 等
太赫兹技术发展现状和挑战
太赫兹技术的概念和特点
介于微波和红外之间的电磁波
太赫兹技术发展现状
太赫兹源、太赫兹探测器、太赫兹波谱仪等
2024版电磁学电子教案ppt课件
2024/1/29
电子技术
电磁学在电子技术领域有 着广泛应用,如电子器件、 集成电路、电子计算机等。
能源技术
电磁感应原理在能源技术 领域有着重要应用,如发 电机、电动机、变压器等。
5
课程目标与学习方法
课程目标
掌握电磁学的基本概念和原理,理解 电磁现象的本质和规律,培养分析和 解决电磁问题的能力。
学习方法
2024/1/29
8
电场强度与叠加原理
2024/1/29
电场强度的定义和物理意义
01
描述电场的力的性质,电场强度的矢量性
点电荷的电场强度
02
点电荷周围电场强度的分布和计算
叠加原理
03
多个点电荷产生的电场强度的叠加,电场强度的叠加满足矢量
叠加原理
9
高斯定理及其应用
2024/1/29
高斯定理的内容和物理意义
2024/1/29
44
电磁感应实验:法拉第圆盘发电机
3. 调整磁场发生装置,使磁场 方向垂直于圆盘表面。
4. 手动旋转圆盘或利用电机驱 动圆盘旋转,观察电流表的变化
41
磁场实验:霍尔效应测量
3. 调整磁场发生装置,使磁场 方向垂直于霍尔元件表面。
2024/1/29
4. 记录电压表的读数,并计算 磁场的强度。
5. 改变磁场方向或电流方向, 重复实验,观察霍尔电势的变 化规律。
42
电磁感应实验:法拉第圆盘发电机
实验目的
了解电磁感应原理,掌握法拉第圆盘发电机的使用方法。
3
电磁学定义与发展历程
2024/1/29
定义
电磁学是研究电和磁的相互作用以 及电磁场性质的科学分支。
发展历程
电子技术
电磁学在电子技术领域有 着广泛应用,如电子器件、 集成电路、电子计算机等。
能源技术
电磁感应原理在能源技术 领域有着重要应用,如发 电机、电动机、变压器等。
5
课程目标与学习方法
课程目标
掌握电磁学的基本概念和原理,理解 电磁现象的本质和规律,培养分析和 解决电磁问题的能力。
学习方法
2024/1/29
8
电场强度与叠加原理
2024/1/29
电场强度的定义和物理意义
01
描述电场的力的性质,电场强度的矢量性
点电荷的电场强度
02
点电荷周围电场强度的分布和计算
叠加原理
03
多个点电荷产生的电场强度的叠加,电场强度的叠加满足矢量
叠加原理
9
高斯定理及其应用
2024/1/29
高斯定理的内容和物理意义
2024/1/29
44
电磁感应实验:法拉第圆盘发电机
3. 调整磁场发生装置,使磁场 方向垂直于圆盘表面。
4. 手动旋转圆盘或利用电机驱 动圆盘旋转,观察电流表的变化
41
磁场实验:霍尔效应测量
3. 调整磁场发生装置,使磁场 方向垂直于霍尔元件表面。
2024/1/29
4. 记录电压表的读数,并计算 磁场的强度。
5. 改变磁场方向或电流方向, 重复实验,观察霍尔电势的变 化规律。
42
电磁感应实验:法拉第圆盘发电机
实验目的
了解电磁感应原理,掌握法拉第圆盘发电机的使用方法。
3
电磁学定义与发展历程
2024/1/29
定义
电磁学是研究电和磁的相互作用以 及电磁场性质的科学分支。
发展历程
大学物理《电磁学》PPT课件
一、磁的基本现象 1.磁现象的初期认识 我国是世界上最早发现和应用磁现象的国家之 一,早在公元前300百年就发现磁铁吸引铁的现象。 在十一世纪我国已制造出指南针(司南) (compass)。《山海经》中有“山中有磁石者,必 有赤金。”《水经注》记载,秦始皇的阿房宫有 “北阙门”用磁石做成的,以防刺客。
S
B
m BS
②均匀磁场,S 法线方向与磁场方向成 角
S
n
B
m BS cos B S
③磁场不均匀,S 为任意曲面 d m BdS cosθ B dS ④S 为任意闭合曲面
S
m B dS
S
m BdS cos θ B dS
一位专栏作家幽默地评论道:
正当全世界都在为人们成双成对庆贺 的时候,物理学家却为他们找到了孤独的 磁单极子而欢呼雀跃!
斯坦福大学的这个探测结果只是一个不能重现 的孤立事件,在没有其它实验室认同的情况下,是 不能作为对磁单极子的认定结论的。
所有磁现象可归结为
产
运动电荷 A
生
A的 磁场
作
用于
+
运动电荷 B
2 2 B Bx B y 0.1T
Bz tan 0.57 Bx
300
~1012T ~106T ~7×104T ~0.3T ~10-2T ~5×10-5T ~3×10-10T
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
2.电场与磁场的相对性
S1
m B dS 0
S2
磁感应线是闭 合的,因此它在任 意封闭曲面的一侧 穿入,必在另一侧 全部穿出。
S
B
m BS
②均匀磁场,S 法线方向与磁场方向成 角
S
n
B
m BS cos B S
③磁场不均匀,S 为任意曲面 d m BdS cosθ B dS ④S 为任意闭合曲面
S
m B dS
S
m BdS cos θ B dS
一位专栏作家幽默地评论道:
正当全世界都在为人们成双成对庆贺 的时候,物理学家却为他们找到了孤独的 磁单极子而欢呼雀跃!
斯坦福大学的这个探测结果只是一个不能重现 的孤立事件,在没有其它实验室认同的情况下,是 不能作为对磁单极子的认定结论的。
所有磁现象可归结为
产
运动电荷 A
生
A的 磁场
作
用于
+
运动电荷 B
2 2 B Bx B y 0.1T
Bz tan 0.57 Bx
300
~1012T ~106T ~7×104T ~0.3T ~10-2T ~5×10-5T ~3×10-10T
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
2.电场与磁场的相对性
S1
m B dS 0
S2
磁感应线是闭 合的,因此它在任 意封闭曲面的一侧 穿入,必在另一侧 全部穿出。
2024版年电磁学全套课件完整版x
静电屏蔽
利用导体静电平衡的特性实现静电屏蔽的原理及 应用。
2024/1/27
10
介质中静电场传播规律
电介质的极化
电介质在静电场中的极化现象及 极化机制,包括电子极化、原子 极化和取向极化等。
介质中的电场强度
电介质中的电场强度与自由电荷 和极化电荷的关系,以及介质中 的高斯定理。
介质中的电位移矢量
电位移矢量的定义及物理意义, 以及介质中的电位移矢量与电场 强度的关系。
2024/1/27
电磁环境与健康关系研究
关注电磁辐射对人类健康的影响,开展相关 研究和评估工作。
32
感谢您的观看
THANKS
2024/1/27
33
2024/1/27
普朗克公式
为了解释黑体辐射的实验结果,德国物理学 家普朗克在1900年提出了一个公式,即普朗 克公式。该公式描述了黑体辐射的能量分布 与频率、温度之间的关系,并引入了量子化
的概念,为量子力学的建立奠定了基础。
24
康普顿散射实验和汤姆逊模型
要点一
康普顿散射实验
要点二
汤姆逊模型
康普顿散射是指X射线或伽马射线与物质相互作用时,光子将 部分能量转移给电子,使电子获得动能并从原子中逸出的现 象。康普顿散射实验证实了光具有粒子性,即光子的存在。
2024/1/27
14
磁感应强度计算方法
磁感应强度的定义
磁感应强度是描述磁场强弱和方向的物理量,用B表示,单位为特斯拉(T)。
磁感应强度的计算方法
根据毕奥-萨伐尔定律和安培环路定理,可以计算载流导线或电流回路在空间任一点产生的磁感应强度。
2024/1/27
15
霍尔元件工作原理及应用
电磁学Electromagnetics教学PPT课件
第三章 电磁感应 电磁场的相对论变换
第四章 电磁介质
第五章 电路
第六章 麦克斯韦电磁理论 电磁波 电磁单位制
合计
学时数 16 12 8 10 20 6 72
2021/3/7
温州大学物理与电子信息学院6
课程意义与学习方法
课程意义
电磁学发展过程
电场和电场线
2021/3/7
法拉第及其夫人
温州大学物理与电子信息学院7
静电基本现象与规律
所有实 验结论:
2021/3/7
自然界中只存在两种电荷;而且,同种电荷相 互排斥,异种电荷相互吸引
温州大学物理与电子信息学1院6
静电基本现象与规律
电荷检验存储与起电机
2021/3/7
验电器
范德格拉夫起电机
温州大学物理与电子信息学1院7
静电基本现象与规律
静电感应与电荷守恒定律
f r2
他测出不大于 0.02(未发 表,100年以 后Maxwell整 理他的大量手稿,才将此 结果公诸于世。
2021/3/7
温州大学物理与电子信息学2院4
静电基本现象与规律
库仑实验: 精度与十三年前Cavendish的实验精度相当
库仑是扭称专家;只测电斥力——扭称 实验,数据只有几个,且不准确(由于 漏电),不是大量精确的实验;
半导体:介于两者 之间的物体
2021/3/7
温州大学物理与电子信息学1院9
静电基本现象与规律
砷化镓
砷化镓(GaAs)半导 体材料与传统的硅材料 相比,它具有很高的电 子迁移率、宽禁带、直 接带隙,消耗功率低的 特性,电子迁移率约为 硅材料的5.7倍。因此, 广泛应用于高频及无线 通讯中制做IC器件。所 制出的这种高频、高速、 防辐射的高温器件,通 常应用于激光器、无线 通信、光纤通信、移动 通信、GPS全球导航等
大学物理电磁学ppt完整版
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
总复习课-电磁学-大学物理第三版公开课获奖课件百校联赛一等奖课件
解:将圆环分割为无限多种电流元Idl;
电流元在轴线上产 生旳磁感应强度 dB
y
为:
dB 0 I dl sin 900
Idl
er
r
dB
4 r2
dl
er
I Ro
xP
x
dB
0Idl 4r 2
将dB 沿 x 轴和 y 轴分解。 Idl
由对称性可知,dl 和 dl’ 在 P 点产生旳 dB 在 x 方
dB
0 4
Idl sin
r2
3)求B:
Bx dBx
By dBy
B Bxi By j Bzk
Bz dBz
(5)有限长直导线
(6)无限长直导线 (7)圆电流圆心处
B
0I 4a
cos1
cos
2
B 0I
2 a
B 0I
2R
(8)安培环路定 理及其应用
B dl 0 Iint
R1
R2
Q
dr
Q
ln R2
R12 rl0
2 l0 R1
C
Q U
2
ln
l 0
R2
R1
3.球形电容器 已知R1 ,R2 ,0
球对称:E 4 r2
qi
0
R2
U E dl R1 Edr
Q
E 40 r2
R2 Q
R1 40
dr r2
Q
4 0
1 R1
1 R2
Q
-Q
C
Q U
4 0
R1R2 R2 R1
解:球对称
1、球体内(r<R)
r
球内作高斯面S,
qi
V
电流元在轴线上产 生旳磁感应强度 dB
y
为:
dB 0 I dl sin 900
Idl
er
r
dB
4 r2
dl
er
I Ro
xP
x
dB
0Idl 4r 2
将dB 沿 x 轴和 y 轴分解。 Idl
由对称性可知,dl 和 dl’ 在 P 点产生旳 dB 在 x 方
dB
0 4
Idl sin
r2
3)求B:
Bx dBx
By dBy
B Bxi By j Bzk
Bz dBz
(5)有限长直导线
(6)无限长直导线 (7)圆电流圆心处
B
0I 4a
cos1
cos
2
B 0I
2 a
B 0I
2R
(8)安培环路定 理及其应用
B dl 0 Iint
R1
R2
Q
dr
Q
ln R2
R12 rl0
2 l0 R1
C
Q U
2
ln
l 0
R2
R1
3.球形电容器 已知R1 ,R2 ,0
球对称:E 4 r2
qi
0
R2
U E dl R1 Edr
Q
E 40 r2
R2 Q
R1 40
dr r2
Q
4 0
1 R1
1 R2
Q
-Q
C
Q U
4 0
R1R2 R2 R1
解:球对称
1、球体内(r<R)
r
球内作高斯面S,
qi
V
大学物理第12章 电磁感应和麦克斯韦电磁理论
计算
m
i >0,说明 i 与回路假设的绕行方向相同 i <0,说明 i 与回路假设的绕行方向相反
22
[例1] 一螺绕环,截面积S=210-3m2,单位长度上匝数
n=5000匝/m。在环上有一匝数N=5的线圈M,电阻
R=2,如图。调节可变电阻使通过螺绕环的电流I 每 秒降低20A。求(1)线圈M 中产生的感应电动势 i和感 应电流Ii;(2)求2秒内通过线圈M 的感应电量qi 。
2. 导体不动,磁场随时间变化 感应电动势 动生电动势
感生电动势
产生原因、 规律不相同 都遵从电磁感应定律
27
1. 动生电动势
动生电动势是由于导 体或导体回路在恒定磁场 中运动而产生的电动势。
典型装置 导线 ab在磁场中运动电 动势怎么计算?
a
v
l
中学:单位时间内切割磁感应线的条数
磁棒插入线圈回路时,线圈中感应电流 产生的磁场阻碍磁棒插入,若继续插入则须 克服磁场力作功。感应电流所释放出焦耳热,
S
N
v
是插入磁棒的机械能转化来的。
ε
20
楞次定律是能量 守恒定律的一种表现.
+ B
+
+ +
+ +
+ +
+ + + + + + + +
+ + + + + +
+ Fm +
机械能
M
23
解:(1)由安培环路定律
B 0 nI
通过线圈M的全磁通
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
0
>0 方向从 a 到 b
解法二:
d
dt
如图作闭合环路,该回路中的
磁通量不变,故总电动势
总 0 ab bc ca
又 ca 0
故 ab bc
B z
cb
a
(2) 动生电动势的解释
非静电力-
b
洛仑兹力的分力
f ev B
l
c 宏观上起电源中非静电力的作用,
沿导线的积分表现为动生电动势;
感生电场为 绕着中心轴的圆环
(4) 感生电动势的计算 方法一:
L E感 dl
S
B dS t
方法二:法拉第电磁感应定律 dm
dt
(1)求闭合线圈的感生电动势 (2)求一段导线的感生电动势。
例1 B
空间均匀的磁场限制在半径为R, 的方向平行柱轴 的圆柱内,
且有
dB dt
c
求:E感生
分布
f ev B
a
f
F df
Vv
v V
宏观上表现为导体受到的安培力;
总的洛仑兹力与电荷的合速度垂直,不做功
二、感生电动势 感生电场
(1)感生电动势 感生电场
感生电动势:磁感应强度变化产生的感应电动势
洛仑兹力
B
电荷受的力 库仑力
t
推广的电场力:凡作用于静止电荷上的力 推广的电场:凡能提供电场力的空间
第十二章 电磁感应
§12.1 法拉第电磁感应定律
§12.2 动生电动势-感生电动势
§12.3 自感和互感 §12.4 磁场能量 §12.5 麦克斯韦电磁场理论
§12.1 法拉第电磁感应定律
一、电磁感应现象
楞次定律
闭合回路中感应电流的方向, G 总是使它所激发的磁场来阻 止引起感应电流的磁通量的 变化。
感生电场是
E感 dS 0
无源场
静电场、感生电场、静磁场的比较
静电场
场
q0i
E静 dS i
0
感生电场
E感 dS 0
有源场
无源场
L E静 dl 0
无旋场 保守场
L E感 dl
B dS S t
涡旋场 非保守场
稳恒磁
B dS 0
无源场
B dl L
0
I oi
i
涡旋场
非保守场
解:
L E感 dl
B dS S t
E感生
ห้องสมุดไป่ตู้
dl
E感生
2
r
dB dt
r2
L
r dB r R, E感生 2 dt
r
O
L E感 dl
B dS S t
E感生 dl E感生 2 r
L
而 B dS dB R2
S t
dt
故
E感生
2
r
dB dt
R2
故 r R,
R2 dB E感生 2r dt
dt dt
dt
d dt
i
i
d
dt
N V
磁链 S
若通过每匝的磁通量相同,则
d dt
Nm
d
dt
3、感应电流
dm
B
dt
I 1 dm
R R dt
方向与相同
N
感应电量
V
S
qi
t2 Idt 1
t1
R
t2 t1
dm
m1
m2
R
例1:一长直导线通入电流I,距其a处有一矩形线圈, 长度为L1,宽度为L2,在t=0时,线圈以速度V水平
设 ab L 求:导线ab中的电动势
z
B
b
a
a
利用 d v B d l
解:规定a到b为正方向,取线元dl
v
B
vB
rB
lB sin
B
z
d (v B)dl vBdl sin
b
r
B sin2 ldl L
d B sin2 ldl
a
l
dl v
B
B L2 sin 2
i
di b
a
V
c
d
方法一:取由d到a方向的线元dl
a
v B d l ld 0 vBdl Blv
方法二:法拉第定律
闭合线圈的磁通量
Blxt
d
dx
i
dt
Bl dt
Blv
方向:由d a
ba
l
V
c
O
d
x
ba
lε
c
d
例1 在空间均匀的磁场中 B Bz 导线ab绕Z轴以 匀速旋转,与Z轴夹角为
B
N
V S
感应电动势:回路中由于磁通量的变化而引起的驱动 感应电流的电动势
二、法拉第电磁感应定律 1、法拉第电磁感应定律
dm
dt
B
dm
dt
B
G
G
N
dm 0
V dt
S
0
N
V S
dm 0
dt
0
2、磁链
若线圈回路有N匝,通过每匝的磁
B
通量为 1,2 N
则总感应电动势为
d1 d2 dN
电子的洛仑兹力为
f ev B
非静电力- 洛仑兹力的分力
ev B E非 e v B
则da上动生电动势为
b l
c
a V
df
a
a
E非 d l v B d l
d
d
a
d v B d l
ba
求动生电动势的一般步骤:
((12))规任以定取及积d(分lv线路 元B线),的 d考方l察向的该,正处即负vdl方方B向向
bvt a vt
0I 2 x
L1dx
I
0IL1 ln b vt 2 a vt
则
dm
dt
0 IL1 2
b
v vt
a
v vt
a
V
O dx x
b
x
§12.2 动生电动势-感生电动势
dm
dt
m B S
动生电动势:S变化
感生电动势:B变化
B
ba
V
c
d
N
V S
一.动生电动势 (1) 动生电动势
向右做匀速直线运动,如图。求t时刻线圈中的感应 电动势。
I
a
V
b
分析: dm
dt
m B S
载流导线 B 0I
解:
2 a
I
如图取平行于电流的一长条面积元,
其上
B 0I
2 x
a
V
通过面积元的磁通量为
dm
B
dS
0I 2 x
L1dx
O dx x
b
x
通过线圈的磁通量为
m dm B d S
(3) 感生电场的方向判断
L E感 dl
S
B dS t
B
n
线元面元方向:
选与B平行的方向为面积
正方向;与B呈右手螺旋 为线元正方向;
dl
E感
方向判断:楞次定律
若 B 0 电动势、感生电场方向为顺时针方向 t
若 B 0 电动势、感生电场方向为逆时针方向 t
I
B B 0
n
t
磁场为 绕着中心轴的圆环
电场
静电场:遵循库仑定律 感生电场:变化磁场产生的电场
(2)感生电场的性质
对任意矢量场A,要看:
B
➢A对任一闭合曲面的通量 A d S
t
➢A沿任一闭合曲线的环流 A d L
L
E感
dl
dm
dt
d dt
S
B
dS
S
dB dt
dS
L E感 dl
B dS S t
感生电场是 涡旋电场、非保守场
c
dl
V
d
a
(3)利用 v B d l 计算电动势 d
0 则电动势的方向与积分路线方向相同
0 则电动势的方向与积分路线方向相反
讨论 求动生电动势-两种方法
d
a. i 适dt 用于一 切产生电动势的回路
b. i v 适B 用 d于l 切割磁力线的导体
ba
di v B dl
0
>0 方向从 a 到 b
解法二:
d
dt
如图作闭合环路,该回路中的
磁通量不变,故总电动势
总 0 ab bc ca
又 ca 0
故 ab bc
B z
cb
a
(2) 动生电动势的解释
非静电力-
b
洛仑兹力的分力
f ev B
l
c 宏观上起电源中非静电力的作用,
沿导线的积分表现为动生电动势;
感生电场为 绕着中心轴的圆环
(4) 感生电动势的计算 方法一:
L E感 dl
S
B dS t
方法二:法拉第电磁感应定律 dm
dt
(1)求闭合线圈的感生电动势 (2)求一段导线的感生电动势。
例1 B
空间均匀的磁场限制在半径为R, 的方向平行柱轴 的圆柱内,
且有
dB dt
c
求:E感生
分布
f ev B
a
f
F df
Vv
v V
宏观上表现为导体受到的安培力;
总的洛仑兹力与电荷的合速度垂直,不做功
二、感生电动势 感生电场
(1)感生电动势 感生电场
感生电动势:磁感应强度变化产生的感应电动势
洛仑兹力
B
电荷受的力 库仑力
t
推广的电场力:凡作用于静止电荷上的力 推广的电场:凡能提供电场力的空间
第十二章 电磁感应
§12.1 法拉第电磁感应定律
§12.2 动生电动势-感生电动势
§12.3 自感和互感 §12.4 磁场能量 §12.5 麦克斯韦电磁场理论
§12.1 法拉第电磁感应定律
一、电磁感应现象
楞次定律
闭合回路中感应电流的方向, G 总是使它所激发的磁场来阻 止引起感应电流的磁通量的 变化。
感生电场是
E感 dS 0
无源场
静电场、感生电场、静磁场的比较
静电场
场
q0i
E静 dS i
0
感生电场
E感 dS 0
有源场
无源场
L E静 dl 0
无旋场 保守场
L E感 dl
B dS S t
涡旋场 非保守场
稳恒磁
B dS 0
无源场
B dl L
0
I oi
i
涡旋场
非保守场
解:
L E感 dl
B dS S t
E感生
ห้องสมุดไป่ตู้
dl
E感生
2
r
dB dt
r2
L
r dB r R, E感生 2 dt
r
O
L E感 dl
B dS S t
E感生 dl E感生 2 r
L
而 B dS dB R2
S t
dt
故
E感生
2
r
dB dt
R2
故 r R,
R2 dB E感生 2r dt
dt dt
dt
d dt
i
i
d
dt
N V
磁链 S
若通过每匝的磁通量相同,则
d dt
Nm
d
dt
3、感应电流
dm
B
dt
I 1 dm
R R dt
方向与相同
N
感应电量
V
S
qi
t2 Idt 1
t1
R
t2 t1
dm
m1
m2
R
例1:一长直导线通入电流I,距其a处有一矩形线圈, 长度为L1,宽度为L2,在t=0时,线圈以速度V水平
设 ab L 求:导线ab中的电动势
z
B
b
a
a
利用 d v B d l
解:规定a到b为正方向,取线元dl
v
B
vB
rB
lB sin
B
z
d (v B)dl vBdl sin
b
r
B sin2 ldl L
d B sin2 ldl
a
l
dl v
B
B L2 sin 2
i
di b
a
V
c
d
方法一:取由d到a方向的线元dl
a
v B d l ld 0 vBdl Blv
方法二:法拉第定律
闭合线圈的磁通量
Blxt
d
dx
i
dt
Bl dt
Blv
方向:由d a
ba
l
V
c
O
d
x
ba
lε
c
d
例1 在空间均匀的磁场中 B Bz 导线ab绕Z轴以 匀速旋转,与Z轴夹角为
B
N
V S
感应电动势:回路中由于磁通量的变化而引起的驱动 感应电流的电动势
二、法拉第电磁感应定律 1、法拉第电磁感应定律
dm
dt
B
dm
dt
B
G
G
N
dm 0
V dt
S
0
N
V S
dm 0
dt
0
2、磁链
若线圈回路有N匝,通过每匝的磁
B
通量为 1,2 N
则总感应电动势为
d1 d2 dN
电子的洛仑兹力为
f ev B
非静电力- 洛仑兹力的分力
ev B E非 e v B
则da上动生电动势为
b l
c
a V
df
a
a
E非 d l v B d l
d
d
a
d v B d l
ba
求动生电动势的一般步骤:
((12))规任以定取及积d(分lv线路 元B线),的 d考方l察向的该,正处即负vdl方方B向向
bvt a vt
0I 2 x
L1dx
I
0IL1 ln b vt 2 a vt
则
dm
dt
0 IL1 2
b
v vt
a
v vt
a
V
O dx x
b
x
§12.2 动生电动势-感生电动势
dm
dt
m B S
动生电动势:S变化
感生电动势:B变化
B
ba
V
c
d
N
V S
一.动生电动势 (1) 动生电动势
向右做匀速直线运动,如图。求t时刻线圈中的感应 电动势。
I
a
V
b
分析: dm
dt
m B S
载流导线 B 0I
解:
2 a
I
如图取平行于电流的一长条面积元,
其上
B 0I
2 x
a
V
通过面积元的磁通量为
dm
B
dS
0I 2 x
L1dx
O dx x
b
x
通过线圈的磁通量为
m dm B d S
(3) 感生电场的方向判断
L E感 dl
S
B dS t
B
n
线元面元方向:
选与B平行的方向为面积
正方向;与B呈右手螺旋 为线元正方向;
dl
E感
方向判断:楞次定律
若 B 0 电动势、感生电场方向为顺时针方向 t
若 B 0 电动势、感生电场方向为逆时针方向 t
I
B B 0
n
t
磁场为 绕着中心轴的圆环
电场
静电场:遵循库仑定律 感生电场:变化磁场产生的电场
(2)感生电场的性质
对任意矢量场A,要看:
B
➢A对任一闭合曲面的通量 A d S
t
➢A沿任一闭合曲线的环流 A d L
L
E感
dl
dm
dt
d dt
S
B
dS
S
dB dt
dS
L E感 dl
B dS S t
感生电场是 涡旋电场、非保守场
c
dl
V
d
a
(3)利用 v B d l 计算电动势 d
0 则电动势的方向与积分路线方向相同
0 则电动势的方向与积分路线方向相反
讨论 求动生电动势-两种方法
d
a. i 适dt 用于一 切产生电动势的回路
b. i v 适B 用 d于l 切割磁力线的导体
ba
di v B dl