tensorflow常用函数介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

tf函数

TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU。一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测。如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.

并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进。大部分核相关的操作都是设备相关的实现,比如GPU。下面是一些重要的操作/核:

TensorFlow的算术操作如下:

张量操作Tensor Transformations

矩阵相关运算

复数操作

归约计算(Reduction)

分割(Segmentation)

序列比较与索引提取(Sequence Comparison and Indexing)

神经网络(Neural Network)

— tf.nn.rnn简要介绍—

cell: 一个RNNCell实例

inputs: 一个shape为[batch_size, input_size]的tensor

initial_state: 为RNN的state设定初值,可选

sequence_length:制定输入的每一个序列的长度,size为[batch_size],值范围为[0, T)的int型数据

其中T为输入数据序列的长度

@

@针对输入batch中序列长度不同,所设置的动态计算机制

@对于在时间t,和batch的b行,有

(output, state)(b, t) = ? (zeros(cell.output_size), states(b, sequence_length(b) - 1)) : cell(input(b, t), state(b, t - 1))

相关文档
最新文档