GPS定位的坐标系统与时间系统

合集下载

定位坐标系和时间标准讲义

定位坐标系和时间标准讲义

定位坐标系和时间标准讲义定位坐标系和时间标准是在地理和天文领域中广泛使用的工具,用于确定地球表面上的位置和测量时间。

本讲义将介绍三种常用的定位坐标系和一些常见的时间标准。

一、地理坐标系地理坐标系是用经度和纬度来描述地球表面上任意位置的一种坐标系统。

经度是指一个位置相对于东西方经线的角度,以0度为本初子午线。

纬度是指一个位置相对于南北方纬线的角度,以赤道为基准。

地理坐标系可以通过全球定位系统(GPS)等技术来测量和确定位置。

例如,北京的经度为116.4度东经,纬度为39.9度北纬。

二、UTM坐标系UTM(Universal Transverse Mercator)坐标系是一种基于横轴墨卡托投影的坐标系统,将地球划分为60个标准带和20个副带。

每个标准带宽度6度,以中央经线为基准。

UTM坐标系采用东北方向的坐标表示位置,适用于大规模的地图制作和测量工程。

例如,北京的UTM坐标为50KU 414547 4400879,其中50KU表示所在的标准带,414547和4400879分别表示东北方向的坐标。

三、国家格网坐标系国家格网坐标系是在UTM坐标系基础上,根据各国的需要制定的一种坐标系统。

每个国家或地区都有自己的国家格网,包括分带、投影方式和坐标体系等。

国家格网坐标系广泛用于地理信息系统(GIS)和空间数据管理。

在中国,国家格网坐标系为2000年国家大地坐标系,采用了高斯-克吕格投影,最常用的带号为3度带。

例如,北京的国家格网坐标为带号33N,X坐标为3407765,Y坐标为439512。

四、时间标准时间标准用于统一和测量时间,使世界各地的时间保持一致。

其中,国际原子时(TAI)是以原子频率标准为基础,提供高精度的时间计量。

协调世界时(UTC)是基于国际原子时,并根据地球自转的变化进行调整的时间标准,通常以格林威治时间(GMT)为参考。

全球定位系统(GPS)时间是由GPS卫星提供的一种时间标准,用于卫星导航定位。

坐标与时间系统

坐标与时间系统

坐标与时间系统坐标与时间系统是维持现代社会运转的重要基础。

它们帮助我们在地球上找到特定的位置和确切的时间,为我们的日常生活提供了许多便利。

在这篇文章中,我们将讨论坐标与时间系统的重要性以及如何使用它们。

坐标系统是一种用来确定地球上特定位置的方法。

全球定位系统(GPS)是最常用的坐标系统之一,通过卫星和接收器,它可以确定我们所处的位置。

我们可以用经度和纬度来表示任何一个地点的坐标。

经度是一个地点相对于本初子午线的度量,范围从0°至180°。

纬度是一个地点相对于地球赤道的度量,范围从0°至90°。

通过这两个坐标,我们可以在地球上的任何地方找到一个特定的位置。

时间系统是一种用来测量时间的方法。

世界协调时间(UTC)是国际上通用的时间标准,它使用原子钟的精确度来确定时间。

我们使用小时、分钟和秒来表示时间。

此外,时区也是时间系统的重要组成部分。

地球上被划分为24个时区,每个时区覆盖约15°经度。

每个时区都对应着一个标准时间,并根据地理位置决定当地时间。

通过使用时区,我们可以在世界范围内同步并协调时间。

坐标和时间系统在现代社会中有着广泛的应用。

它们不仅仅用在导航领域,如汽车导航、航空导航等,还被广泛用于科学研究、地图制作、天文观测和数据收集等领域。

它们还在航运、铁路和物流等行业中起到关键作用,确保货物能够准时送达。

此外,坐标和时间系统也对我们日常生活产生了深远的影响。

我们可以使用手机或手表上的时间来安排日程,预约会议或计划旅行。

当我们在城市中迷路时,我们可以使用地图应用或GPS系统来找到正确的路线。

不仅如此,通过坐标和时间系统,我们能够准确地知道不同地区的时间,这对于国际商务和跨国合作非常重要。

综上所述,坐标和时间系统是现代社会不可或缺的一部分。

它们帮助我们准确地定位和测量地球上的位置和时间,为我们的日常生活提供了巨大的便利。

无论是科学研究、导航领域还是日常生活中,我们都离不开这些系统的帮助。

GPS测量原理及应用各章知识点总结

GPS测量原理及应用各章知识点总结

GPS测量原理及应用各章知识点总结桂林理工大学测绘08-1 JL(纯手打)第一章绪论1、GPS系统是以卫星为基础的无线电导航定位系统,具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时的功能。

能为各个用户提供三维坐标和时间。

2、GPS卫星位置采用WGS-84大地坐标系3、GPS经历了方案论证、系统论证、生产试验三个阶段。

整个系统包括卫星星座、地面监控部分、用户接收机部分。

4、GPS基本参数为:卫星颗数为21+3,卫星轨道面个数为6,卫星高度为20200km,轨道倾角为55度,卫星运行周期为11小时58分,在地球表面任何时刻,在高度较为15度以上,平均可同时观测到6颗有效卫星,最多可以达到9颗。

5、应用双定位系统的优越性:能同时接收到GPS和GLONASS卫星信号的接收机,简称为双系统卫星接收机。

(1)增加接收卫星数。

这样有利于在山区和城市有障碍物遮挡的地区作业(2)提高效率。

观测卫星数增加,所以求解整周模糊度的时间缩短,从而减少野外作业时间,提高了生产效率。

(3)提高定位的可靠性和精度。

因观测的卫星数增加,用于定位计算的卫星数增加,卫星几何分布也更好,所以提高了定位的可靠性和精度。

6、在GPS信号导航的定位时,为了解算测站的三维坐标,必须观测4颗(以上)卫星,称为定位星座。

7、PRN----------卫星所采用的伪随机噪声码8、在导航定位测量中,一般采用PRN编号。

9、用于捕获信号和粗略定位的为随机码叫做C/A码(又叫S码),用于精密定位的精密测距码叫P码10、GPS系统中各组成部分的作用:卫星星座1、向广大用户发送导航定位信息。

2、接收注入站发送到卫星的导航电文和其他相关信息,并通过GPS信号电路,适时的发送给广大用户。

3、接收地面主控站通过注入站发送到卫星的调度命令,适时的改正运行偏差和启用备用时钟等。

地面监控系统地面监控系统包括1个主控站,3个注入站和5个监测站。

1、监测和控制卫星上的设备是否正常工作,以及卫星是否一直沿着预定轨道运行。

四种卫星定位导航系统的坐标系统与时间系统以及他们的转换关系

四种卫星定位导航系统的坐标系统与时间系统以及他们的转换关系

GLONASS
坐标系统名:PE-90 时间系统名:GLONASS时
-4-
定义
GLONASS坐标系统:采用的是基于Parameters of the Earth 1990框架的PE-90大地坐标系,其 几何定义为:原点位于地球质心,Z轴指向IERS 推荐的协议地球极(CTP)方向,即1900-1905年 的平均北极,X指向地球赤道与BH定义的零点子 午线交点,Y轴满足右手坐标系。 GLONASS时间系统:采用原子时AT1秒长作为 时间基准,是基于前苏联莫斯科的协调世界时 UTC(SU),采用的UTC时并含有跳秒改正。
GPS
坐标系统名:WGS-84 时间系统名:GPS时
-1-
定义
GPST规定它的起点在1980年1月6日UTC的0点, 它的秒长始终与主控站的原子钟同步,启动之后不 采用跳秒调整。根据对GPS时间系统起点的规定, 知道GPST与国际原子时有固定19秒的常数差,而 且在1980年之后与UTC另外还有随时间不断变化 的常数差。如1985年12月,常数差为4秒。 GPST=UTC十4秒 总结 原点:1980年1月6日UTC零时 秒长:原子时秒长 不跳秒
Galileo
坐标系统名:ITRS 时间系统名:伽利略系统时间
-6-
定义
伽利略地球参考框架(Galileo Terrestrial Reference Frame,GTRF)是实现伽利略所有产品和服务的基础, 它由伽利略大地测量服务原型(GGSP)负责定义、建立、 维持与精化。GTRF符合ITRS定义,并与ITRF对准,它 的维持主要基于GTRF周解。除GTRF外,GGSP还提供 地球自转参数、卫星轨道、卫星和测站钟差改正等产品。 GTRF的发展早在2011年10月首批Galileo卫星升空前, GTRF就完成了它的初始实现(2007年)。它采用了42 个位于伽利略跟踪站(GSS)附近的IGS站、33个其他 IGS站和13个伽利略实验站(GESS)从2006年11月至 2007年6月的GPS观测数据。后续的GTRF将由使用 GPS/Galileo数据逐步过渡到只使用Galileo数据。从2013 年4颗Galileo卫星组网并开始提供导航服务以来,GTRF 每年都会发布新的版本并进行2~3次更新。

datum/GPS定位的坐标系统与时间系统 - 第二章GPS定位的坐标系统与

datum/GPS定位的坐标系统与时间系统 - 第二章GPS定位的坐标系统与

绘 ,则信号传播时间的测定误差应小于3 10-11s


• 由于地球的自转现象,在天球坐标系中地球上
点的位置是不断变化的,若要求赤道上一点
大 的位置误差不超过1cm,则时间测定误差要小

于2 10-5s。 显然,利用GPS进行精密导航和定位,尽可
测 能获得高精度的时间信息是至关重要的。

时间包含了“时刻”和“时间间隔”两个概 念。时刻是指发生某一现象的瞬间。在天文
第二节 GPS定位的坐标系统与时间系统
坐标系统和时间系统是描述卫星运动、处 理观测数据和表达观测站位置的数学与物 理基础。
GSI Japan - 21st of June 1999
大 §2.1坐标系统的类型 在GPS定位中,通常采用两类坐标系统:
一类是在空间固定的坐标系,该坐标系与地球自转
地 无关,对描述卫星的运行位置和状态极其方便。 测 另一类是与地球体相固联的坐标系统,该系统对表 量 达地面观测站的位置和处理GPS观测数据尤为方

地球坐标系有两种表达方式,即空间直角坐标

系和大地坐标系。




地心空间直角坐标系的定义;原点与地球质心重
合,z轴指向地球北极,x轴指向格林尼治平子午
大 面与赤道的交点E,y轴垂直于xoz平面构成右手 地 坐标系。
地心大地坐标系的定义:地球椭球的中心与地球
测 质心重合,椭球短轴与地球自转轴重合,大地纬 量 度B为过地面点的椭球法线与椭球赤道面的夹角
符合下列要求的任何一个可观察的周期运动现象,都可 用作确定时间的基准:
• 运动是连续的、周期性的。
• 运动的周期应具有充分的稳定性。
• 运动的周期必须具有复现性,即在任何地方和时间,都 可通过观察和实验,复现这种周期性运动。

第五章 GPS定位的坐标系统及时间系统

第五章 GPS定位的坐标系统及时间系统

第五章 GPS定位的坐标系统及时间系统
四 坐标系统之间的转换
不同空间直角坐标系统之间的转换
z5 4 / 8 0 ωz z8 4 y 54/80
) Δ z20 y2 + +Δ 0 2 Δ x0
O
ω y
sqr
(
ω x M x5 4 / 8 0 x 84 y 84
图 5-9 空 间 直 角 坐 标 系 的 转 换
第五章 GPS定位的坐标系统及时间系统
不同空间直角坐标系统转换公式
X 2 X 1 ∆X 0 Y = (1 + m) R (ε ) R (ε ) R (ε ) Y + ∆Y 1 x 2 y 3 z 1 0 2 Z 2 Z1 ∆Z 0 X 1 ∆X 0 = (1 + m) R0 Y1 + ∆Y0 Z1 ∆Z 0
GPS时间系统 时间系统GPST (6) GPS时间系统GPST
GPST属于原子时系统,它的 秒长即为原子时秒长,GPST的 原点与国际原子时IAT相差19s。 有关系式: IAT-GPST=19(s) (2-18) GPS时间系统与各种时间系统 的关系见图2-6所示:
第五章 GPS定位的坐标系统及时间系统
协议地球坐标系: 协议地球坐标系:取平地极为坐标原点,z轴指向CIO,x轴指向协定赤 道面与格林尼治子午线的交点,y轴在协定赤道面里,与 xoz构成右手系 统而成的坐标系统称为协议地球坐标系。 协议地球坐标系与瞬时地球坐标系的转换公式: :
x x y = R (− x′′ ) R ( y′′ ) y y p x p z em z et

GPS测量原理及应用:02 时间系统与坐标系统

GPS测量原理及应用:02 时间系统与坐标系统
22
协调世界时(Universal Time Coordinated)
建立UTC的原因:
满足高精度时间间隔测量的要求 时刻与UT基本一致
定义
秒长与AT相同 通过跳(闰)秒,与UT的差值保持在0.9秒内(通常在6
月30日24h或12月31日24h进行跳秒) 正闰秒(增加1秒)与负闰秒(减少1秒)
2
1. 有关时间系统的一些基本概念
3
时间是什么?
是事物存在或延续的过程 与长度、质量一同称为宏观物质世界的三个基本量 是四维空间中的一维 具有绝对和相对两方面的特性
时刻(历元) 时间间隔
4
时间系统-规定时间测量的标准
时间系统的要素:参考基准(起点)、尺度 时间系统:由定义和相应的规定从理论上进行阐述 时间系统框架:通过守时、授时以及时间频率测量
17
世界时(Universal Time)
定义:格林尼治零子午线(本初子午线)处的民用 时称为世界时。
UT0、UT1、UT2
问题的引出:极移和地球自转的不均匀(长期趋势变缓, 且存在短周期变化和季节性变化)
UT0:未改正的世界时 UT1:引入极移改正的世界时 UT2:引入极移改正和地球自转速度的季节改正的世界
太阳时属于地方时
14
真太阳时与平太阳时
真太阳时
参考点:太阳中心 尺度定义:太阳中心连续两次经过当地上子午圈的时间
间隔为一个真太阳日。 数值定义:太阳中心相对于本地子午圈的时角,中午为
0h,子夜为12h 特点
优点:容易测定 缺点:尺度不稳定(由于地球绕日公转时的速度不同,以及黄
赤交角的存在,导致不同时间的真太阳时时长不同)
春分点两次经过地方上子午圈(上中天)的时间间隔为 一恒星日。并由此派生出“时”、“分”、“秒”等单 位。

2-1GPS定位的坐标系统(GPS)

2-1GPS定位的坐标系统(GPS)
2 2 2
}
Z − N (1 − e 2 ) sin B
在采用上式进行转换时, 需要采用迭代的方法, 在采用上式进行转换时 , 需要采用迭代的方法 , 先 求出,最后在确定H 将B求出,最后在确定H。
3、地心空间直角坐标系与站心(左手)地平直角坐标系 、地心空间直角坐标系与站心(左手) (1)地心空间直角坐标系与站心赤道直角坐标系关系 地心空间直角坐标系与站心赤道直角坐标系关系 O—XYZ:球心空间直角坐标系(地心) P1— X Y Z:站心赤道直角坐标系(站赤)
a = 6378245m f = 1 / 298.3
第二章 GPS 定位的坐标系统 §2-1 GPS坐标系统
该坐标系的高程异常是以前苏联1955年 该坐标系的高程异常是以前苏联1955年 大地水准面重新平差的结果为起算值, 大地水准面重新平差的结果为起算值, 该椭球并未依据当时我国的天文观测资 料进行重新定位, 料进行重新定位,而是由前苏联西伯利 亚地区的一等锁, 亚地区的一等锁,经我国的东北地区传 算过来的,1954年北京坐标系存在着很 算过来的,1954年北京坐标系存在着很 多缺点 。
第二章 GPS 定位的坐标系统 §2-1 GPS坐标系统
四、1980年西安坐标系 1980年西安坐标系
1980年西安大地坐标系统的地球椭球参数的 1980 年西安大地坐标系统的地球椭球参数的 四个几何和物理参数采用了IAG 1975年的推 四个几何和物理参数采用了IAG 1975年的推 a = 6378140m 荐值, 荐值,
(2)站心赤道直角坐标系与站心地平直角坐标系关系 ) P1— X Y Z:站心赤道直角坐标系(站赤) 站心赤道直角坐标系( 站心赤道直角坐标系 站赤) P1— xyz : 站心地平直角坐标系(地平) 站心地平直角坐标系(地平)

GPS测量与数据处理_第二章 GPS定位的时间系统及其换算

GPS测量与数据处理_第二章 GPS定位的时间系统及其换算

以地球自转为基础的世界时系统,已难以满足要求。为此,
征为基础的原子时间系统。 具有很高的稳定性和复现性,所以由此而建立的原子时,
便成为当代最理想的时间系统。
因为物质内部的原子跃迁所辐射和吸收的电磁波频率,
第二章
时间系统及其换算
原子时秒长的定义为:位于海平面上的铯原子基 态两个超精细能级,在零磁场中跃迁辐射振荡9 192 631 770周所持续的时间,为一原子时秒。该 原子时秒作为国际制秒(SI)的时间单位。 这一定义严格地确定了原子时的尺度,而原 子时的原点由下式确定: TA=UT2-0.0039 s
第二章 时间系统及其换算
3、确定时间的基准
测量时间,同样必须建立一个测量的基准,即时间的 单位(尺度)和原点(起始历元)。其中时间的尺度是关键, 而原点可以根据实际应用加以选定。一般来说,任何一个 可观察的周期运动现象,只要符合以下要求,都可以用作 确定时间的基准。
◆运动应是连续的,周期性的; ◆运动的周期应具有充分的稳定性; ◆运动的周期必须具有复现性,即要求在任何地方和时 间,都可以通过观测和实验复现这种周期性运动。
GPS测量与数据处理
课程主要内容
1 2 3 4 5 6 7 绪论 GPS定位的时间系统及其换算 GPS卫星坐标的计算 载波相位观测值周跳探测与修复 基线向量解算 GPS网建立与数据处理分析 CORS系统简介
第二章
时间系统及其换算
主要内容
2.1 2.2 时间系统回顾 GPS定位中的时间表示方法
2.3
第二章 时间系统及其换算
2.1 时间系统回顾
一、有关时间的基本概念 1、时间的两个概念 ◆时间有“时刻”和“时间间隔”两个概念。
◆时刻,即发生某一现象的瞬间。在天文学和卫星测 量学中,与所获数据对应的时刻也称为历元。 ◆时间间隔,系指发生某一现象所经历的过程,是这 一过程始末的时刻之差。 ◆时间间隔测量也称为相对时间测量,而时刻测量相 应地称为绝对时间测量。

《GPS原理与应用》复习资料整理

《GPS原理与应用》复习资料整理

第一章绪论1.GPS:是接收人造卫星电波,准确求顶接收机自身位置的系统。

目前世界上有那些全球性的卫星导航系统?(俄罗斯GLONASS、欧洲Galileo、中国北斗、美国GPS)欧空局的全球卫星定位系统的名称是什么?2. GPS系统组成:(1)空间星座部分:24颗卫星提供星历和时间信息,发射伪距和载波信号,提供其他辅助信息。

(2)用户部分:接收并观测卫星信号,记录和处理数据,提供导航定位信息。

(3)地面控制部分:中心控制系统,实现时间同步,跟踪卫星进行定轨。

【5个监测站、1个主控站、3个注入站】3. GPS按接收机用途分为三类:导航型、测量型、授时型;接收机由天线单元、机主机单元和电源组成。

4、精密工程测量采用那种类型的GPS接收机?5、GPS接收机中采用的是铷钟、铯钟还是石英钟?6.与传统测量方法相比,GPS系统特点:1)全球性---全球范围连续覆盖;(4~12颗);2)全能性-—三维位置、时间、速度;3)全天侯4)实时性----定位速度快;;5)连续性;6)高精度;7)抗干扰性能好,保密性好;8)控制性强;9)观测站之间无需通视;10)提供三维坐标;11)操作简便。

7、gps有哪些新的应用领域8、GPS在测量上的用途有那些?9.常见GPS卫星信号接收机(例举几个著名的中外GPS生产厂商):Ashtech系列GPS接收机、Trimble(天宝)系列GPS接收机、Leica(莱卡) 系列GPS接收机、中纬系列GPS接收机、南方系列GPS接收机、中海达系列GPS接收机第二章 GPS定位的坐标系统与时间系统1.天球:是指以地球质心M为中心,半径r为任意长的一个假想的球体。

黄道:即当地球绕太阳公转时,地球上观测者所见到太阳在天球上运动的轨迹称为黄道黄赤交角:黄道平面与赤道平面的夹角ε称为黄赤交角,约为23.5°春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ称为春分点。

坐标系统与时间系统

坐标系统与时间系统
可推得GALILEO系统与GPS系统间的转换系数为:
Page
11

时间系统
Page
12
1.时间系统——GPS
GPS时间系统采用原子时AT1秒长作时间基准,秒长定义 为铯原子CS133基态的两个超精细能级间跃迁幅射振荡192631170 周所持续的时间,时间起算的原点定义在1980年1月6日世界协调时 UTC0时,启动后不跳秒,保证时间的连续。以后随着时间积累, GPS时与UTC时的整秒差以及秒以下的差异通过时间服务部门定期 公布。 目前,GPS卫星广播星历采用WGS-84(G873)世界大地 坐标系,其起始时元为1996年9月29日,而它的坐标基准时元是 1997.0。【6】
Page
3
1.坐标系统——GPS
WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的 星历参数就是基于此坐标系统的。WGS-84坐标系统的全称是World Geodetic System(世界大地坐标系-84),它是一个地心地固坐标系统。 WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS 所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。 WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义 的协议地球极方向,X轴指向BIH984.0的起始子午面和赤道的交点,Y 轴与X轴和Z轴构成右手系。采用椭球参数为: a=6 378 137m f=1/298.257 223 563 【2】
Page
7
5.坐标系统转换
在GPS与GLONASS之间的坐标系转换,即为WGS—84 与PE—90间的转换。俄罗斯MCC(Russian Mision Control Center)的Mitrikas等 人经过长期实验与精确计算,所提出的且已经应用于GPS/GLONASS组合型接 收机中的转换参数, 被认为是目前最精确的坐标转换参数,其表达式为:

时间系统与坐标参照系

时间系统与坐标参照系

时间系统与坐标参照系时间系统和坐标参照系是当今科学和日常生活中不可或缺的两个概念。

时间系统是为了测量和描述事件发生的先后顺序以及事件之间的时间间隔而创建的一种系统。

坐标参照系则是为了描述和测量物体在空间中的位置和移动而建立的一种系统。

时间系统的起源可以追溯到古代。

人们最初是通过观察天空中的自然现象,如太阳的位置、月亮的相位等来判断时间的流逝。

随着时间的推移,人们开始根据不同地区的地理条件以及社会需求而发展出各种不同的时间系统。

例如,格林尼治标准时间(GMT)是根据英国伦敦的本初子午线而设立的时间系统,世界各地的时间都是相对于GMT来表示的。

随着科技的进步,时间系统也变得越来越精确。

现代的时间系统一般采用原子钟来测量时间,其中铯原子钟的误差仅约为每亿年一秒。

此外,国际原子时(TAI)和世界协调时(UTC)也是国际通用的时间系统,用于各种科学研究、航空航天以及国际交流等领域。

坐标参照系则用于描述物体在空间中的位置和运动。

人们通常使用直角坐标系,也称笛卡尔坐标系,来表示物体在三维空间中的坐标。

在直角坐标系中,我们可以使用三个互相垂直的坐标轴(通常是x、y和z轴)来描述一个物体的位置。

这样,我们可以利用这些坐标轴上的数值来计算物体之间的距离和方向。

除了直角坐标系,人们还经常使用极坐标、球坐标等其他坐标系来描述物体在不同情况下的位置。

例如,极坐标系适用于描述圆形和环形运动;球坐标系适用于描述物体在三维球体上的位置。

时间系统和坐标参照系在许多领域都起着关键作用。

例如,物理学中的力学、天文学中的星体运动、地理学中的地球表面描述等都离不开时间系统和坐标参照系的应用。

此外,全球定位系统(GPS)也是基于时间系统和坐标参照系的工作原理来实现对地球上任意位置的准确定位。

总而言之,时间系统和坐标参照系是现代科技和文明中不可或缺的概念。

它们为人类提供了准确测量和描述时间和空间的工具,极大地推动了科学研究和社会发展。

时间系统和坐标参照系是当今科学和日常生活中不可或缺的两个概念。

GPS卫星定位坐标计算及程序设计

GPS卫星定位坐标计算及程序设计

Ai X i li 0
(3-5)
对式(3-5)求解,便得到接收机地心坐标的唯一

X i Ai1li
4.程序设计
• 1、GPS时间转换程序 • 2、利用广播星历计算卫星坐标程序 • 3、地面点近似坐标计算程序
5.实例计算和精度分析
• 以2009年5月7日南京工业大学江浦校区控 制网20号控制点观测数据为例,来说明如 何利用该程序计算卫星坐标和地面点的近 似坐标。该数据利用华测GPS接收机观测, 观测时间为2小时。
• 3.新儒略日(Modified Julian Day-MJD):从儒略 日中减去2400000.5天来得到,给出的是从1858年11 月17日子夜开始的天数。特点是数值比儒略日小。
• 4.年积日(Day Of Year-DOY):从当前1月1日开始 的天数。
• 5.GPS时(GPS Time):以1980年1月6日子夜为起点, 用周数和周内秒数来表示,为GPS系统内部计时法。
2.3GPS卫星的信号
• 导航电文 导航电文是包含有关卫星的星历、卫星工作状态 时间系统、卫星钟运行状态、轨道摄动改正、大 气折射改正和C/A码捕获P码等导航信息的数据码 (或D码),是利用GPS进行定位的数据基础。 导航电文的内容包括遥测码(TLW)、转换码 (HOW)、第一数据块、第二数据块和第三数据块 5部分。
RINEX数据格式
目前,RINEX格式已成为各厂商、学校、研究单 位在编制软件时采用的标准输入格式。RINEX格式 是纯ASCII码文本文件,共包含4个文件:
(1)观测数据文件:ssssdddf.yyo (2)导航文件:ssssdddf.yyn (3)气象数据文件:ssssdddf.yym (4)GLONASS数据文件:ssssdddf.yyg 其中:ssss——4个字母的测站名;

人教版什么是GPS

人教版什么是GPS

四、GPS卫星的坐标计算
基本思路: 卫星坐标是在天球坐标系中的坐标,地面上任
意一点的位置是在地球坐标系中的坐标。因此,需 要将卫星坐标从天球坐标系转换为地球坐标系。
第三节 GPS的定位原理
一、 GPS定位的方法与观测量
1、定位方法分类 1)动态定位与静态定位: 动态定位——认为接收机相对于地面是运动的。 静态定位——认为接收机相对于地面静止不动。 2)绝对定位与相对定位: 绝对定位——求测站点相对于地心的坐标; 相对定位——求测站点相对于某已知点的坐标增量; 3)差分定位:在基准点上观测求得大气折射等改正,并及时发送
轨、飞机和车辆导航、地球自转与公转、研究地壳升降和板块运动 等问题,不仅要求给出空间位置,而且应给出相应的时间。现代大 地测量基准应是包括时间在内的四维基准。
GPS测量中,时间的意义 确定GPS卫星的在轨位置; 确定测站位置; 确定地球坐标系与天球坐标系的关系。
时间包括时刻(绝对时间)与时间间隔(相对时间)两个概念。 测量时间同样需要建立测量基准,包括尺度与原点。可作为时 间基准的运动现象必须是周期性的,且其周期应有复现性和足够的 稳定性。
二、观测量的误差及其影响
GPS定位误差的分类
一般按来源分类: 与卫星有关的误差; 与信号传播有关的误差; 与接收设备有关的误差; 其它误差。
(一) 与卫星有关的误差
1、卫星星历误差; 1)来源:地面监测站观测数据误差及星历数据计算方法不合理带来 的误差。 2)大小:卫星位置偏差达数米至数十米。 3)性质:当地面两点间的距离较近(<20km)时,对两点定位的影 响具有相关性。 4)减弱措施: (1)相对定位;(残余误差随边长的增大而增大) (2)差分定位; (3)采用后处理星历; (4)建立自己的地面监测站,进行GPS卫星的定轨观测,求精密 星历。

第二章GPS定位的坐标系统和时间系统 第一节参心坐标系

第二章GPS定位的坐标系统和时间系统 第一节参心坐标系

GPS测量定位技术
1.椭球的参数 这四个量通常称为基本大地参数,在四个基本参数
中,长半径 a 通常由几何大地测量提供,地球自转角速 度 由天文观测确定,它们的精度都比较好。地球的质
量M虽难测定,但是(是地球引力常数)利用卫星大地 测量学可精确测定至千万分之一。通过观测人造地球卫
星,确定与 a 等价的二阶带谐系数 J,2 其精确度提高了
U
GM
1
n1
J 2n
a
2n
P2n
c
os
2 2
2
sin 2
(2-1)
式中为 地心矢径, 为 余纬度, P2n cos为 勒让德多项
式; 、a 、J 2 和GM为正常椭球的四个参数,式中其它的偶阶 带谐系数 、 …等J 4可根J 6 据这四个参数按一定的公式算得。 1967年国际大地测量与地球物理联合会(IUGG)第十四 届大会上,开始采用这四个参数全面描述地球的几何特 性和物理特性。
在经典大地测量中,为了处理观测成果和传算地面控制网的坐 标,通常须选取一参考椭球面作为基本参考面,选一参考点作为 大地测量的起算点(大地原点),利用大地原点的天文观测量来 确定参考椭球在地球内部的位置和方向。参心坐标系中的“参心” 二字意指参考椭球的中心,所以参心坐标系和参考椭球密切相关。 由于参考椭球中心无法与地球质心重合,故又称其为非地心坐标 系。参心坐标系按其应用又分为参心大地坐标系和参心空间直角 坐标系两种。
显然,起始子午线或经度零点,只靠一个天文台是难以保持的。所以国际 时间局的1968BIH系统是由分布在世界各地的许多天文台所观测的经度,反求 出各自的经度原点,取它们的权中数,作为平均天文台所定义的经度原点。国 际时间局再根据1954~1956年的观测资料求出格林尼治天文台所定义的经度 零点E与平均天文台所定义的经度原点的经度差值,来修定各天文台的经度值, 从而保持了用E点作为经度零点。

GPS测量的坐标系统与时间系统

GPS测量的坐标系统与时间系统

GPS测量的坐标系统与时间系统全球定位系统(GPS)是一种由美国政府运营的卫星导航系统,可提供全球定位、导航和时间服务。

它是许多现代技术和应用的基础,例如车辆导航、飞行导航、航海、地图绘制等。

GPS测量提供了一种在地球上确定位置的精确方法,但是它的坐标系统和时间系统需要特定的标准和约定来确保精度。

本文将介绍GPS测量中使用的坐标系统和时间系统,并讨论它们与其他GPS应用和技术的关系。

坐标系统GPS测量使用经纬度和高度来确定位置,这是因为它可以提供全球范围内的定位。

经度是一个位置相对于本初子午线的度数,可以从0度到360度,东经为正,西经为负。

纬度是一个位置相对于赤道的度数,可以从-90度到90度,北纬为正,南纬为负。

高度是一个位置相对于海平面的高度。

GPS测量使用的坐标系统是WGS 84(World Geodetic System 1984),这是一种由美国国防部和国家海洋和大气管理局发展的全球定位系统坐标系统。

WGS 84使用地球模型作为椭球体,将地球视为一个近似椭球体。

这个椭球体的参数被称为参考椭球体,在WGS 84中,参考椭球体的参数为a=6378137.0 m,f=1/298.257223563。

WGS 84是GPS定位用的最通用的地理坐标系,在大多数现代地图上都采用了WGS 84坐标。

此外,许多其他地理信息系统(GIS)和工程应用也使用WGS 84坐标系来表示地球上的位置。

时间系统在GPS测量中,时间系统也是至关重要的。

GPS测量使用一个基于原子钟的时间系统来测量信号的传播时间,并计算出接收器的位置。

原子钟比基于机械振荡器的钟表更为精确,可以维持极高的准确性。

GPS测量使用的时间系统是GPS时间,它是由GPS卫星提供的21个原子钟的平均值。

GPS时间以UTC(协调世界时)为基础,但它使用了其他一些修正来保持与UTC同步。

UTC是一个国际标准时间系统,它基于原子钟的时间,但考虑了地球自转的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在天球上,这种顺时针规律运动的北天极称为 瞬时平北天极(简称平北天极),相应的天球 赤道和春分点称为瞬时天球平赤道和瞬时平春 分点。
在太阳和其它行星引力的影响下,月球的运行 轨道以及月地之间的距离在不断变化,北天极 绕北黄极顺时针旋转的轨迹十分复杂。如果观 测时的北天极称为瞬时北天极(或真北天极) ,相应的天球赤道和春分点称为瞬时天球赤道 和瞬时春分点(或真天球赤道和真春分点)。 则在日月引力等因素的影响下,瞬时北天极将 绕瞬时平北天极产生旋转,轨迹大致为椭圆。 这种现象称为章动。
天轴与天极:地球自转轴的延伸直线为天轴,天轴与天 球的交点Pn(北天极)Ps(南天极)称为天极。 天球赤道面与天球赤道:通过地球质心与天轴垂直的平 面为天球赤道面,该面与天球相交的大圆为天球赤道。
天球子午面与天球子午圈:包含天轴并经过地球上任一 点的平面为天球子午面,该面与天球相交的大圆为天球 子午圈。
时圈:通过天轴的平面与天球相交的半个大圆。
黄道:地球公转的轨道面与天球相交的大圆,即当地 球绕太阳公转时,地球上的观测者所见到的太阳在 天球上的运动轨迹。黄道面与赤道面的夹角称为黄 赤交角,约23.50。
黄极;通过天球中心,垂直于黄道面的直线与天球的 交点。靠近北天极的交点n称北黄极,靠近南天极 的交点s称南黄极。
地心大地坐标系的定义:地球椭球的中心与地球
质心重合,椭球短轴与地球自转轴重合,大地纬 度B为过地面点的椭球法线与椭球赤道面的夹角 ,大地经度L为过地面点的椭球子午面与格林尼 治平大地子午面之间的夹角,大地高H为地面点 沿椭球法线至椭球面的距离。任一地面点在地球 坐标系中可表示为(X,Y,Z)和(B,L,H) ,两者可进行互换。
4. 协议天球坐标系的定义和转换
由于岁差和章动的影响,瞬时天球坐标系的
坐标轴指向不断变化,在这种非惯性坐标系 统中,不能直接根据牛顿力学定律研究卫星 的运动规律。为建立一个与惯性坐标系相接 近的坐标系,通常选择某一时刻t0作为标准历 元,并将此刻地球的瞬时自转轴(指向北极 )和地心至瞬时春分点的方向,经过该瞬时 岁差和章动改正后,作为z轴和x轴,由此构 成的空固坐标系称为所取标准历元的平天球 坐标系,或协议天球坐标系,也称协议惯性 坐标系(Conventional Inertial System—CIS )
为了描述地面观测点的位置,有必要建立与地 球体相固联的坐标系—地球坐标系(有时 称地固坐标系)。
地球坐标系有两种表达方式,即空间直角坐标 系和大地坐标系。
地心空间直角坐标系的定义;原点与地球质心重 合,z轴指向地球北极,x轴指向格林尼治平子午 面与赤道的交点E,y轴垂直于xoz平面构成右手 坐标系。
第二节 GPS定位的坐标系统与时间系统
坐标系统和时间系统是描述卫星运动、处 理观测数据和表达观测站位置的数学与物 理基础。
§2.1坐标系统的类型
在GPS定位中,通常采用两类坐标系统:
一类是在空间固定的坐标系,该坐标系与地球自转 无关,对描述卫星的运行位置和状态极其方便。
另一类是与地球体相固联的坐标系统,该系统对表 达地面观测站的位置和处理GPS观测数据尤为方 便。
x cos cos
y
rcos
sin
z sin
r x2 y2 z2
arctg arctg
y x
z x2 y2
3. 岁差与章动
上述天球坐标系的建立是假定地球的自转轴 在空间的方向上是固定的,春分点在天球上 的位置保持不变。实际上地球接近于一个赤 道隆起的椭球体,在日月和其它天体引力对 地球隆起部分的作用下,地球在绕太阳运行 时,自转轴方向不再保持不变,从而使春分 点在黄道上产生缓慢西移,此现象在天文学 上称为岁差。在岁差的影响下,地球自转轴 在空间绕北黄极顺时针旋转,因而使北天极 以同样方式绕北黄极顺时针旋转
1
W (1 e2 sin2 B) 2
e2
a2 b2 a2
arctg(X2
Z Y2)1/2
坐标系统是由坐标原点位置、坐标轴指向和尺度所 定义的。在GPS定位中,坐标系原点一般取地球 质心,而坐标轴的指向具有一定的选择性,为了 使用上的方便,国际上都通过协议来确定某些全 球性坐标系统的坐标轴指向,这种共同确认的坐 标系称为协议坐标系。
§ 2.2协议天球坐标系
1.天球的基本概念
天球:指以地球质心为中心,半径r为任意长度的一个 假想球体。为建立球面坐标系统,必须确定球面上的一 些参考点、线、面和圈。
春分点:当太阳在黄道上从天球南半球向北半球运行 时,黄道与天球赤道的交点。
在天文学和卫星大地测量学中,春分点和天球赤道面 是建立参考系的重要基准点和基准面。
天球的概念
2.天球坐标系
在天球坐标系中,任一天体的位置可用天球空间直角 坐标系和天球球面坐标系来描述。
天球空间直角坐标系的定义:原点位于地球的质心, z轴指向天球的北极Pn,x轴指向春分点,y轴与x 、z轴构成右手坐标系。
天球球面坐标系的定义:原点位于地球的质心,赤经 为含天轴和春分点的天球子午面与经过天体s的天 球子午面之间的交角,赤纬为原点至天体的连线 与天球赤道面的夹角,向径r为原点至天体的距离 。
天球空间直角坐标系与天球球面坐标系
天球空间直角坐标系与天球球面坐标系在表达同一 天体的位置时是等价的,二者可相互转换。
为了将协议天球坐标系的卫星坐标,转换为 观测历元t的瞬时天球坐标系,通常分两步 进行。
首先将协议天球坐标系中的坐标,换算到观 测瞬间的平天球坐标系统,再将瞬时平天球 坐标系的坐标,转换到瞬时天球坐标系统
§ 2.3 协议地球坐标系
1.地球坐标系
由于天球坐标系与地球自转无关,导致地球上 一固定点在天球坐标系中的坐标随地球自 转而变化,应用不方便。
换算关系如下,其中N为椭球卯酉圈的曲率半径,e 为椭球的第一偏心率,a、b为椭球的长短半径。
X (NH)cosBcosL
Y (NH)cosBsinL
Z N(1e2)H sinB
B
arctg
tg
1Leabharlann ae2 Zsin B W
L arctg y X
H R cos N
cos B
N a /W
相关文档
最新文档