全球半导体晶体生长计算著名商业软件之FEMAG简介

全球半导体晶体生长计算著名商业软件之FEMAG简介
全球半导体晶体生长计算著名商业软件之FEMAG简介

全球半导体晶体生长计算著名的商业软件FEMAG简介20世纪80年代中期,鲁汶大学Fran?ois Dupret教授带领其团队,开始晶体生长的研究,经过10多年的行业研发及应用,Fran?ois Dupret教授于2003年成立了FEMAGSoft公司(总部设在比利时Louvain-la-Neuve市),正式推出晶体生长数值仿真软件FEMAG。如今,FEMAG软件已成为全球行业用户高度认可的数值仿真工具,在晶体生长数值模拟领域处于国际领先地位。

FEMAG Soft擅长所有类型晶体材料生长方面的工艺模拟专业技术,比如:?直拉法(Czochralski)

?区熔法(Floating Zone)

?适用于铸锭定向凝固过程工艺(DS),Bridgman法

?物理气相传输法(PVT)

产品模块

1.FEMAG/CZ-Czochralski (CZ) Process

适用于Czochralski直拉法生长工艺和Kyropoulos生长工艺

2.FEMAG/DS-Directional Solidification (DS) Process

适用于铸锭定向凝固过程工艺

3.FEMAG/FZ-Float Zone Process (FZ)

适用于区熔法生长工艺

主要功能

1.全局热传递分析

“全局性”即包涵所有拉晶要素在内,并考虑传热模式的耦合。全局热传递模拟分析,主要考虑:炉内的辐射和传导、熔体对流和炉内气体流量分析。

2.热应力分析

按照经验,一般情况下,晶体位错的产生与晶体生长过程中热应力的变化有着密切的关系。该软件可以进行三维的非轴对称和非各向同性温度场热应力分析计算,可以提出对晶体总的剪切力预估。

“位错”的产生是由于在晶体生长过程中,热剪应力超越临界水平,被称为CRSS(临界分剪应力),而导致的塑性变形。

3.点缺陷预报

该软件可以预知在晶体生长过程中的点缺陷(自裂缝和空缺),该仿真可以很好的预测在晶体生长过程中点缺陷的分布。

4.动态仿真

动态仿真提供了对复杂几何形状对于时间演变的预测。该预测把发生在晶体生长和冷却过程中所有瞬时的影响因素都考虑在内。为了准确地预报晶体点缺陷和氧分,布动态仿真尤其是不可或缺的。

5.固液界面跟踪

在拉晶的过程中准确预测固液界面同样是一个关键问题。对于不同的柑祸旋转速度和不同的提拉高度,其固液界面是不同的。

6.加热器功率预测

利用软件动态仿真反算加热功率对于生长合格晶体也是非常必要的。

7.绘制温度梯度

通过仿真,固液交界面的温度梯度可以很方便的计算出来。这一结果对于理论缺陷的预报是非常有用的。

技术特色

1.全局建模(Global modeling)——将熔炉分为宏观单元(macro elements),

包含液体与固体成分、散热机箱、cement接合单元

2.时间相关建模(Time dependent modeling)——使用与时间相关的仿真模

型,比如准稳态、准动态、Cz生长逆向或直接动态模型

3.FEM离散化——使用2D、Spectral 3D、Cartesian 3D等模型

4.几何建模——可以准确处理变形体、界面以及所有的边界层

5.求解技术——高效线性求解+Newton & Raphson迭代

模拟软件的优点

?晶体生长模拟软件能够提供晶体生长炉内部环境及晶体生长过程,从而为生产商提供必要的信息,以便分析晶体生长过程特征及其工艺优缺点是否符合市场需求。通过模拟软件提供的功能,生产商可以提高工艺改进、优化时的目标与优先次序。

?模拟软件所提供的虚拟实验使晶体生长商在物理实现之前设计、校验他们的生产工艺。虚拟实验不但操作方便、经济实惠、而且基本上不存在任何技术限制。

应用范围

FEMAG Soft公司的模拟软件应用于开发、优化以下类型的晶体生长工艺:?IC级单晶硅和光伏级晶体硅

?Ⅲ-Ⅴ族化合物半导体晶体材料,如GaAs/GaP等

?锗单晶

?蓝宝石、氧化物和卤化物

?碳化硅

应用领域

10多年来,FEMAG Soft公司所开发的软件产品获得了国际上诸多专业生产企业的青睐,在以下类型的企业中得到广泛应用:

?集成电路用单晶硅生产企业

?光伏技术用单晶硅生产企业

?LED光电技术用氧化物晶体生产企业

?蓝宝石晶体生产企业

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

晶体生长的机理

第五章 一、什么是成核相变、基本条件 成核相变:在亚稳相中形成小体积新相的相变过程。 条件:1、热力学条件:ΔG=G S-G L<0;ΔT>0。2、结构条件:能量起伏、结构起伏、浓度起伏、扩散→短程规则排列(大小不等,存在时间短,时聚时散,与固相有相似结构,之间有共享原子)→晶坯→晶胞。 相变驱动力:f=-Δg/ΩS;Δg每个原子由流体相转变成晶体相所引起的自由能降低;ΩS单个原子的体积。 气相生长体系:(T0 P0)→(T0 P1),Δg=-kT0σ,σ=α-1= P1/ P0;溶液生长体系:(C0 T0 P0)→(C1 T0 P0),Δg=-kT0σ,σ=α-1= C1/ C0;熔体生长体系:Δg=-l mΔT/T m,l m单个原子的相变潜热。 二、均匀成核、非均匀成核 不含结晶物质时的成核为一次成核,包括均匀成核(自发产生,不是靠外来的质点或基底诱发)和非均匀成核。 三、均匀成核的临界晶核半径与临界晶核型成功 临界晶核:成核过程中,能稳定存在并继续长大的最小尺寸晶核。 ΔG=ΔG V+ΔG S,球形核ΔG=-4πr3Δg/ΩS+4πr2γSL→r C=2γSLΩS/Δg,r0,且随着r的增加,ΔG不断增大,r>r C时,ΔG<0,且随着r的增加,ΔG减小,r=r C时,往两边都有ΔG<0,称r C为临界半径。 临界晶核型成功:ΔG C(r C)=A CγSL/3由能量起伏提供。 熔体生长体系:r C=2γSLΩS T m/l m ΔT;ΔG C(r C)=16πγ3SLΩ2S T2m/3l2m(ΔT)2 四、非均匀成核(体系中各处成核几率不相等的成核过程) 表面张力与接触角的关系:σLB = σSB + σLS cosθ ΔG*(r)= (-4πr3Δg/ΩS+4πr2σSL)·f(θ);r*C=2γSLΩS/Δg;ΔG*C(r*C)=ΔG C(r C) ·f(θ)

晶体结构分析的历史发展

晶体结构分析的历史发展 (一)X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。 (二)X射线晶体结构分析促进了化学发展 W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。 从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,

晶体的生长机理及条件对晶型的影响

1.晶体生长机理 理根据经典的晶体生长理论,液相反应体系中晶体生长包括以下步骤:①营养料在水溶液介质里溶解,以离子、分子团的形式进入溶液(溶 解阶段):②由于体系中存在十分有效的热对流以及溶解区和生长区 之间的浓度差,这些离子、分子或离子团被输运到生长区(输运阶段); ③离子、分子或离子团在生长界面上的吸附、分解与脱附;④吸附物质在界面上的运动;⑤结晶(③、④、⑤统称为结晶阶段)。液相条件下生长的晶体晶面发育完整,晶体的结晶形貌与生长条件密切相关,同种晶体在不同的生长条件下可能有不同的结晶形貌。简单套用经典晶体生长理论不能很好解释许多实验现象,因此在大量实验的基础 上产生了“生长基元”理论模型。。“生长基元"理论模型认为在上述输运阶段②,溶解进入溶液的离子、分子或离子团之间发生反应,形成具有一定几何构型的聚合体一生长基元,生长基元的大小和结构与溶液中的反应条件有关。在一个水溶液反应体系里,同时存在多种形式的生长基元,它们之间建立起动态平衡。某种生长基元越稳定(可从能量和几何构型两方面加以考察),其在体系里出现的几率就越大。在界面上叠合的生长基元必须满足晶面结晶取向的要求,而生长基元在界面上叠合的难易程度决定了该面族的生长速率。从结晶学观点看:生长基元中的正离子与满足一定配位要求的负离子相联结,因此又进一步被称为“负离子配位多面体生长基元"。生长基元模型将晶体的结晶形貌、晶体的结构和生长条件有机地统一起来,很好地解释了许多实验现象。

2晶体生长的影响条件 对于水热合成,晶粒的形成经历了“溶解一结晶"两个阶段。水热法制备常采用固体粉末或新配制的凝胶作为前驱物,所谓“溶解”是指在水热反应初期,前驱物微粒之间的团聚和联结遭到破坏,以使微粒自身在水热介质中溶解,以离子或离子团的形式进入溶液,进而成核、结晶而形成晶粒。在水热条件下,晶体自由生长,晶体各个面族的生长习性可以得到充分显露,由于水热条件下晶体生长是在非受迫的情况下进行,所以生长温度压力、溶液、溶液流向和温度梯度对晶体各个面族的生长速率影响很明显,表现在晶体的结晶形态变化。总的来说,在水热合成中影响材料形貌、大小、结构的因素主要有温度、原材料的种类、浓度、比例、pH值、反应时间、有机物添加剂等 (1)反应温度 反应温度提供合成材料的原动力,因此反应制备过程需要高于一定的温度,不同的材料,不同的体系差别很大。一般温度越高,产物的直径越大,而结晶性会更好,并且容易形成其稳定相。 (2)原料 原料的种类对产物的形貌、大小有很大的影响。在液相反应体系中,不同的原料直接决定了溶液中生成先驱体的浓度,先驱体发生化学反应生成产物达到一定的过饱和度时,结晶析出生长晶体。因此原料的不同得到先驱体的反应特性也不同,如水解速率、浓度等,从而影响产物的形态。 (3)其它条件

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分 析和计算 Revised as of 23 November 2020

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子.

2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6 (2)、体心立方晶胞(钾型):典型代表Na 、K 、Fe ,空间利用率60%,配位数为8。 (3)、六方最密堆积(镁型):典型代表Mg 、Zn 、Ti ,空间利用率74%,配位数为12。 (4)、面心立方晶胞(铜型):典型代表Cu 、Ag 、Au ,空间利用率74%,配位数为12。 (二)、晶胞中微粒的计算方法——均摊法 1、概念:均摊法是指每个图形平均拥有的粒子数目,如某个粒子为n 个晶胞所共有,则 该粒子有n 1属于一个晶胞。 2、解题思路:首先应分析晶胞的结构(该晶胞属于那种类型),然后利用“均摊法”解题。

晶体学基础知识点及思维导图教学内容

晶体学基础知识点及 思维导图

HOMEWORKS 知识点 晶体结构Crystal structure 点阵结构Lattice 晶胞Unit cells 晶系Crystal systems 布拉菲格子The Bravais lattices 点群 point group 空间群space group

关系Relationships/思维导图Mind mapping

具体中文解释 粒子抽象成点,形成了点阵结构,而这些点连接起来就形成了晶格,可以说点阵和晶格具有同一性,但区别于点阵具有唯一性,晶格不具有。同样我们需要区别“lattice”的意义 它在这应该准确的代表点阵结构而不是单单的点阵,点阵结构是具体的客观存在的而点阵是人为抽象出来的,相比于点阵对应的点阵点,点阵结构对应的就是结构基元。 晶胞堆砌成了点阵结构,晶胞又具有晶胞参数和晶胞内容两方面,也就是说可以这么表示晶胞=点阵格子+结构基元。根据晶胞的晶胞参数我们可以把晶体的结构从宏观上分为七个方面,也就是七大晶系.七大晶系结合晶胞类型产生了14种Bravais晶格 点群表示的是晶体中所包含所有点对称操作的(旋转、反应、反演)的集合。(晶体的宏观性质不变)。点群描述了分子结构和晶体的宏观对称性(后来老师讲点群只是对于结构基元里的原子的对称排布,我个人后来查阅思考了一下,这是局限的,点群所描述的对称性正是可以描述宏观的晶格以及肉眼可见 的晶体的对称性,所以它才被 引为宏观对称性。) 微观对称元素:点阵、滑移面、旋转轴(无数阶次) 而晶体的宏观对称元素和微观对称元素在内的全部对称元素的一种组合就构成晶体的一种微观对称类型也就是空间群,它反应的是内部微观结构的对称性(结构基元内部原子)或者是微观的晶胞堆积方式的不同。 晶体的宏观对称性就是晶体微观对称性的宏观表现。 晶系与对称的关系:七种晶系从宏观的对称操作来看,有旋转、反射、反演,这些构成的是32种点群。而晶系必须符合平移操作(晶体对称定律的要求),结合平移我们限定了它有14种Bravais 格子。再结合微观对称元素,就会得到230种空间群。

晶体生长机理与晶体形貌的控制

晶体生长机理与晶体形貌的控制 张凯1003011020 摘要:本文综述了晶体生长与晶体形貌的基本理论和研究进展,介绍了层生长理论,分析了研究晶体宏观形貌与内部结构关系的3种主要理论,即布拉维法则、周期键链理论和负离子配位多面体生长基元理论。 关键词:晶体生长机理晶体结构晶体形貌晶体 1.引言 固态物质分为晶体和非晶体。从宏观上看,晶体都有自己独特的、呈对称性的形状。晶体在不同的方向上有不同的物理性质,如机械强度、导热性、热膨胀、导电性等,称为各向异性。晶体形态的变化,受内部结构和外部生长环境的控制。晶体形态是其成份和内部结构的外在反映,一定成份和内部结构的晶体具有一定的形态特征,因而晶体外形在一定程度上反映了其内部结构特征。今天,晶体学与晶体生长学都发展到了非常高的理论水平,虽然也不断地有一些晶体形貌方面的研究成果,但都停留在观察、测量、描述、推测生长机理的水平上。然而,在高新技术与前沿理论突飞猛进的今天,晶体形貌学必然也会受到冲击与挑战,积极地迎接挑战,与前沿科学理论技术接轨,晶体形貌学就会有新的突破,并且与历史上 一样也会对其它科学的发展做出贡献。 2.层生长理论 科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。 它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位置是具有三面凹入角的位置。质点在此位置上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多,释放出能量最大的位置。质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹人角,是最有利的生长位置;其次是S阶梯面,具有二面凹入角的位置;最不利的生长位置是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体的层生长理论,用它可以解释如下的一些生长现象。 1)晶体常生长成为面平、棱直的多面体形态。 2)在晶体生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状

晶体结构的分析与计算训练题

晶体结构的分析与计算训练题 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为1 3 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3 杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm -3 ,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×1 8= 1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3 ×d g·cm -3 ×N A ,则a =? ????2516.02×1023×d 1 3 cm =? ?? ??2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)? ?? ? ?2516.02×1023×d 1 3×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为______

晶体学基础知识点及思维导图

HOMEWORKS 知识点 晶体结构Crystal structure 点阵结构Lattice 晶胞Unit cells 晶系Crystal systems 布拉菲格子The Bravais lattices 点群point group 空间群space group

关系Relationships/思维导图Mind mapping

具体中文解释 粒子抽象成点,形成了点阵结构,而这些点连接起来就形成了晶格,可以说点阵和晶格具有同一性,但区别于点阵具有唯一性,晶格不具有。同样我们需要区别“lattice”的意义它在这应该准确的代表点阵结构而不是单单的点阵,点阵结构是具体的客观存在的而点阵是人为抽象出来的,相比于点阵对应的点阵点,点阵结构对应的就是结构基元。 晶胞堆砌成了点阵结构,晶胞又具有晶胞参数和晶胞内容两方面,也就是说可以这么表示晶胞=点阵格子+结构基元。根据晶胞的晶胞参数我们可以把晶体的结构从宏观上分为七个方面,也就是七大晶系.七大晶系结合晶胞类型产生了14种Bravais晶格 点群表示的是晶体中所包含所有点对称操作的(旋转、反应、反演)的集合。(晶体的宏观性质不变)。点群描述了分子结构和晶体的宏观对称性(后来老师讲点群只是对于结构基元里的原子的对称排布,我个人后来查阅思考了一下,这是局限的,点群所描述的对称性正是可以描述宏观的晶格以及肉眼可见的晶体的对称性,所以它才被引为宏观对称性。) 微观对称元素:点阵、滑移面、旋转轴(无数阶次) 而晶体的宏观对称元素和微观对称元素在内的全部对称元素的一种组合就构成晶体的一种微观对称类型也就是空间群,它反应的是内部微观结构的对称性(结构基元内部原子)或者是微观的晶胞堆积方式的不同。 晶体的宏观对称性就是晶体微观对称性的宏观表现。 晶系与对称的关系:七种晶系从宏观的对称操作来看,有旋转、反射、反演,这些构成的是32种点群。而晶系必须符合平移操作(晶体对称定律的要求),结合平移我们限定了它有14种Bravais 格子。再结合微观对称元素,就会得到230种空间群。

浅谈有关晶体结构的分析和计算讲解学习

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体 结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C键的形成,碳原子与C-C键之比为1:2。 (2)二氧化硅晶体中微粒分布

①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子. 2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个 CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和 4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有 8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6

XRD,以及晶体结构的相关基础知识

XRD,以及晶体结构的相关基础知识(ZZ) Theory 2009-10-25 17:55:42 阅读355 评论0 字号:大中小 做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团? X射线照射到物质上将产生散射。晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。 绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。晶体微观结构的特征是具有周期性的长程的有序结构。晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。用少量固体粉末或小块样品便可得到其X射线衍射图。 XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大 小等)最有力的方法。 XRD 特别适用于晶态物质的物相分析。晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析; XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。 目前XRD主要适用于无机物,对于有机物应用较少。 关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。 如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分? 三者并无严格明晰的分界。 在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。晶体的X射线衍射理论中有一个Scherrer公式,可以根据谱线变宽的量估算晶粒在 该衍射方向上的厚度。 非晶质衍射图的特征是:在整个扫描角度范围内(从2θ 1°~2°开始到几十度)只观察到被散射的X 射线强度的平缓的变化,其间可能有一到几个最大值;开始处因为接近直射光束强度较大,随着角度的增加强度迅速下降,到高角度强度慢慢地趋向仪器的本底值。从Scherrer公式的观点看,这个现象可以视为由于晶粒极限地细小下去而导致晶体的衍射峰极大地宽化、相互重叠而模糊化的结果。晶粒细碎化的极限就是只剩下原子或离子这些粒子间的"近程有序"了,这就是我们所设想的"非晶质"微观结构的场景。非晶质衍射图上的一个最大值相对应的是该非晶质中一种常发生的粒子间距离。

高中化学 晶体结构的分析与计算

晶体结构的分析与计算 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为13 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm - 3,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的 面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×18 =1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3×d g·cm - 3×N A ,则a =????2516.02×1023×d 13cm =??? ?2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)??? ?2516.02×1023×d 13×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材 料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为 ______ nm ,与K 紧邻的O 个数为_____。

晶体结构分析与计算

晶体结构分析与计算 湖南省浏阳市第一中学潘丹张水强410300 在2005年高考考纲中,在思维能力中增加了“对原子、分子、化学键等 微观结构有一定的三维想象能力”的要求。三维想象能力可能通过“晶体结构”试题来体现,而“晶体结构”这一知识点前几年是高考的热点之一(如 92年的金刚石、96年的SiO2 、97年的C60、98年的GBO、99年的NiO等等)。间隔了几年,笔者认为有必要引起广大考生足够的重视。本文从最常见的几 种晶体结构题型入手,分析晶体结构有关的问题,帮助同学们更好地掌握晶 体结构的内容,培养空间想象能力和形象思维能力。 一、常见的几种晶体结构分析 (一)、氯化钠晶体 1、NaCl晶体是一种简单立方结构——Na+和Cl-交替占据立 方体的顶点而向空间延伸。 2、在每个Na+周围最近且等距离(设边长为a)的Cl-有6 个,在每个Cl-周围最近且等距离的Na+有6个。 3、在每个Na+周围最近且等距离(平面对角线为2a)的Na+有12 个,在每个Cl-周围且最近等距离(平面对角线为2a)的Cl-有12 个。 (二)、氯化铯晶体 1、CsCl晶体是一种立方体心结构—— 每8个Cs+、8个Cl-各自构成立方体。 在每个立方体的中心有一个异种离子 (Cl-或Cs+)。 2、在每个Cs+周围最近且等距离的Cl- (设为3a/2)有8个。在每个Cl-周 围最近且等距离的Cs+有8个。 3、在每个Cs+周围最近且等距离(必为a)的Cs+有6个,在每个Cl-周围最近且等距离的Cl-有6个。 (三)、金刚石晶体 1、金刚石晶体是一种空间网状结构——每个C原子与另4个C原子以共价键结 合,前者位于正四面体中心,后者位于正四面体顶点。 2、晶体中所有C—C键键长相等(1.55×10-10m),键角 相等(均为109028'),晶体中最小碳环由6个C组成 且六者不在同一平面内。 3、晶体中每个C原子参与了4条C—C键的形成,而 在每条键中的贡献只有一半,故C原子个数与C—C键

晶体生长方法(新)

晶体生长方法 1) 提拉法(Czochralski,Cz ) 晶体提拉法的创始人是J. Czochralski ,他的 论文发表于1918年。提拉法是熔体生长中最常 用的一种方法,许多重要的实用晶体就是用这 种方法制备的。近年来,这种方法又得到了几 项重大改进,如采用液封的方式(液封提拉法, LEC ),如图1,能够顺利地生长某些易挥发的化 合物(GaP 等);采用导模的方式(导模提拉法) 生长特定形状的晶体(如管状宝石和带状硅单 晶等)。 所谓提拉法,是指在合理的温场下,将装 在籽晶杆上的籽晶下端,下到熔体的原料中, 籽晶杆在旋转马达及提升机构的作用下,一边 旋转一边缓慢地向上提拉,经过缩颈、扩肩、 转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。 提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 图1 提拉法晶体生长装置结构示意图

2)热交换法(Heat Exchange Method, HEM) 热交换法是由D. Viechnicki和 F. Schmid于1974年发明的一种长晶方法。 其原理是:定向凝固结晶法,晶体生长 驱动力来自固液界面上的温度梯度。特 点:(1) 热交换法晶体生长中,采用钼 坩埚,石墨加热体,氩气为保护气体, 熔体中的温度梯度和晶体中的温度梯 度分别由发热体和热交换器(靠He作 为热交换介质)来控制,因此可独立地 控制固体和熔体中的温度梯度;(2) 固 液界面浸没于熔体表面,整个晶体生长 过程中,坩埚、晶体、热交换器都处于 静止状态,处于稳定温度场中,而且熔 体中的温度梯度与重力场方向相反,熔 体既不产生自然对流也没有强迫对流; (3) HEM法最大优点是在晶体生长结束 后,通过调节氦气流量与炉子加热功率, 实现原位退火,避免了因冷却速度而产 生的热应力;(4) HEM可用于生长具有 图2HEM晶体生长装置结构示意图 特定形状要求的晶体。 由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。

高中化学专题3微型专题四晶体类型的判断及晶体结构的分析与计算教案苏教版选修3

微型专题(四)晶体类型的判断及晶体结构的分析与计算 [核心素养发展目标]1.能辨识常见物质的晶体类型,能从微观角度分析各种晶体的构成微粒及微粒间的作用力,并解释各类晶体性质的差异。 2.熟知各类晶体的结构特点及堆积模型, 能利用均摊法对晶胞进行结构分析和计算。 |微型专题 克难解疑精准高效一、晶体类型的判断 例1 (2018 ?上海杨浦区检测)四种物质的一些性质如下表: 晶体类型:单质硫是______________________ 晶体;单质硼是_______________ 晶体;氯化铝是 ___________________ 晶体;苛性钾是_____________ 晶体。 答案分子原子分子离子 解析单质硫为非金属单质,其熔、沸点都较低,则晶体为分子晶体;单质硼为非金属单质,其熔、沸点都很高,则晶体为原子晶体;氯化铝为化合物,其熔、沸点都较低,并能在较低温度下升华,则晶体为分子晶体;苛性钾为化合物,其熔点较高,沸点很高,晶体不导电,熔融态导电,则晶体为离子晶体。 -方迭规律■----------------------------------------------------------------------------- "三看” 确定晶体类型 (1)看构成微粒或作用力类型四类晶体的构成微粒和微粒间作用力列表如下:

(2)看物质类别 ①单质类:a.金属单质和合金属于金属晶体; b.大多数非金属单质(金刚石、石墨、晶体硅、 晶体硼等除外)属于分子晶体。 ②化合物类:a.离子化合物一定为离子晶体; b.共价化合物绝大多数为分子晶体,但SiO2、SiC等为原子晶体。 (3)看物理性质 变式1 (2018 ?成都高二月考)AB型化合物形成的晶体结构多种多样。下图所示的几种结构 所表示的物质最有可能是分子晶体的是() A. ①③ B.②⑤ C.⑤⑥ D.③④⑤⑥ 答案B 解析从各图中可以看出②⑤都不能再以化学键与其他原子结合, 所以最有可能是分子晶体。 二、晶体熔、沸点的比较

第3讲 晶体学基础知识

第3讲 教学要求:1. 复习明确晶体和非晶体的概念 2. 明确格子构造的概念以及与实际晶体构造之间的关系 3. 大致了解晶体的分类知识 4. 详细讲解并要求学生掌握记熟空间格子构造,熟练掌握14种布拉维格子 的构造特点及晶格参数的特点 5.熟练掌握晶面指数的标定步骤 教学重点:晶体的概念、布拉维格子构造、晶面指数的标定 教学难点:晶体学基础比较抽象,备课中需多准备形象立体感强的图形,讲解速度控制较慢,尽量引导学生课堂中记忆布拉维格子构造,通过例子联系晶面指数标 定过程 教学拓展:介绍《物相分析》、《材料研究方法》、《材料结构表征及应用》书中相应的部分以便学生课后参看 讨论:课堂上提问学生所掌握的晶体学基础知识的内容,比较选修有关结晶学课程的学生和未选修结晶学课程学生掌握晶体学知识的范围差异,抽10分钟左右的 时间讨论,以便掌握讲课难度和速度。 作业:1. 晶体和非晶体的概念? 2. 熟练写出布7种拉维格子的名称和相应的晶格参数? 晶体学基础知识 一.晶体的定义与特征 晶体的概念:人类对晶体的认识,是从石英开始的。古代人们把外形上具有规则的几何 多面体形态的石英(水晶)称为晶体。后来,人们把凡是天然的具有几何多面体的固体,例 如:石盐、方解石、磁石等都成为晶体。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

本世纪初(1912),X射线衍射分析方法的应用研究了晶体内部结构后,发现:一切晶体不论其外形如何,它的内部质点(原子、离子、、分子)都是有规则排列的,即:晶体内部相同质点在三维空间均呈周期性重复,构成了格子构造。因此,对晶体做出如下定义:晶体是内部质点在三维空间成周期性重复排列的固体。或者:晶体是具有格子构造的固体。 ?晶体是原子或者分子规则排列的固体; ?晶体是微观结构具有周期性和一定对称性的固体; ?晶体是可以抽象出点阵结构的固体; ?在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。” 非晶质体:晶体内部质点在三维空间不做规律排列,不具格子构造,称为非晶质体或非晶质。例如:玻璃、塑料、沥青等。从内部结构来看,非晶质体中质点的分布无任何规律可循,其内部结构只具有统计均一性,非晶质体的性质在不同方向上是同一的。在外形上非晶质体不能自发地长成规则的几何多面体形态,而是一种无规则形态的无定形体。 晶体与非晶体 非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。它没有一定规则的外形,如玻璃、松香、石蜡等。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点。所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。 晶体和非非晶质体在一定条件下是可以转换的。列如:使用年久的玻璃,常会出现一些所谓的“霉点”,是因为玻璃向结晶态转变的雏晶,此过程成为:晶化或脱玻化,相反的转化,晶体因内部质点的规律排列受到破坏而向非晶体转变,称为非晶化或玻璃化。例如,某些含放射性元素的矿物晶体,由于放射性元素在蜕变过程中放出核能,破坏了晶体内部的结构,而产生了非晶质化的现象。

晶胞结构的分析与计算

晶胞结构的分析与计算 ——晶体结构与性质章复习(第2课时) 【学习目标】 1.能根据分摊法确定晶体的组成;提高抽象思维能力,提升宏观辨识与微观探析的发展水平。(重难点) 2.通过典型晶胞再认识,学会利用晶胞的基本特点分析晶体中微粒配位数。 3.建立解晶胞的一般观念、思维模型,能类比迁移相关知识解决新情境新问题;提升解决复杂问题的能力。(重难点) ,则晶胞中最邻近两个金属原子间的距离为? 最近发现一种由钛原子和碳原子构成的气态团簇分子,如 顶角和面心的原子是钛原子,棱的中心和体心的原子是碳原子, 它的化学式是? 分摊法能解决哪些问题?使用分摊法时应注意什么问题? 石英晶体的晶胞如图,确定其化学式的方法有哪些? 晶胞中,配位情况对比 CsCl晶胞数目NaCl晶胞数目CaF2晶胞数目 +Ca2+配位数

1.有下列某晶体的空间结构示意图。图中●和化学式中M分别代表阳离子,图中○和化学式中N分别 代表阴离子,则化学式为MN2的晶体结构为() A B C D 2.下列说法正确的是()(N A表示阿伏加德罗常数) A.1mol冰中含有氢键的个数为2 N A B.12g石墨中含有C-C键的个数为3N A C.二氧化硅晶体中存在四面体网状结构,O处于中心,Si处于4个顶点 D.密置层在三维空间堆积可得体心立方堆积和面心立方最密堆积 3.氮化碳结构如下图所示,其硬度超过金刚石,下列有关氮化碳的说法不正确的是() A.氮化碳属于原子晶体 B.氮化碳中碳显-4价,氮显+3价 C.氮化碳的化学式为C3N4 D.每个碳原子与四个氮原子相连,每个氮原子与三个碳原子相连 4.ZnS在荧光体、光导体材料、涂料、颜料等行业中应用广泛。立方ZnS晶体结构如下图所示,其晶胞边 长为540.0 pm.密度为(列式并计算),a位置S2-离子与b位置Zn2+离子之间的 距离为pm(列示表示) 5.晶胞有两个基本要素: ①原子坐标参数,表示晶胞内部各原子的相对位置,下图为Ge单晶的晶胞,其中原子坐标参数A为(0, 0,0);B为(1/2,0,1/2);C为(1/2,1/2,0)。则D原子的坐标参数为_________。 ②晶胞参数,描述晶胞的大小和形状,已知Ge单晶的晶胞参数a=565.76 pm,其密度为____g·cm-3(列出计算式即可) 6.Na的密度小于Mg,从空间利用率角度如何解释?(提示:Na、Mg的空间利用率分别为68%、74%)

相关文档
最新文档