(总结)各种排序方法复杂度总结
十大经典排序算法总结
⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
排序方法实践心得体会
一、引言在计算机科学领域,排序算法是基础且重要的内容之一。
通过对一组数据进行排序,可以使得后续的查找、统计等操作更加高效。
在实际应用中,不同的排序算法有着各自的特点和适用场景。
本文将从实践角度出发,分享我在学习排序方法过程中的心得体会。
二、排序算法概述1. 冒泡排序冒泡排序是一种简单的排序算法,其基本思想是相邻元素两两比较,若逆序则交换,直到整个序列有序。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
2. 选择排序选择排序的基本思想是每次从待排序的序列中选出最小(或最大)的元素,放到序列的起始位置,然后继续对剩余未排序的序列进行同样的操作。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
3. 插入排序插入排序的基本思想是将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增加1的有序表。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
4. 快速排序快速排序是一种高效的排序算法,其基本思想是选取一个基准值,将序列划分为两个子序列,一个包含小于基准值的元素,另一个包含大于基准值的元素,然后递归地对这两个子序列进行快速排序。
快速排序的平均时间复杂度为O(nlogn),最坏情况时间复杂度为O(n^2),空间复杂度为O(logn)。
5. 归并排序归并排序是一种分治算法,其基本思想是将序列划分为两个子序列,分别对这两个子序列进行排序,然后将排序好的子序列合并成一个有序序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
6. 堆排序堆排序是一种基于堆的排序算法,其基本思想是将序列构造成一个大顶堆(或小顶堆),然后依次取出堆顶元素,并调整剩余元素,使新堆的堆顶元素仍为最大(或最小)。
堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
三、实践心得体会1. 理论与实践相结合在学习排序算法时,首先要掌握各种排序算法的基本思想和原理,然后通过编程实践来加深理解。
各种排序方法总结
常用排序算法有哪些? 冒择路希快归堆(口诀):冒泡排序,选择排序,插入排序,希尔排序,快速排序,归并排序,堆排序; 冒泡排序冒泡排序(Bubble Sort ),是一种计算机科学领域的较简单的排序算法。
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。
JAVA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 publicclassBubbleSort{publicvoidsort(int[]a){inttemp=0;for(inti=a.length-1;i>0;--i){for(intj=0;j<i;++j){if(a[j+1]<a[j]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}}}}JavaScript1 2 3 4 functionbubbleSort(arr){vari=arr.length,j;vartempExchangVal;while(i>0)5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 {for(j=0;j<i-1;j++){if(arr[j]>arr[j+1]){tempExchangVal=arr[j];arr[j]=arr[j+1];arr[j+1]=tempExchangVal;}}i--;}returnarr;}vararr=[3,2,4,9,1,5,7,6,8];vararrSorted=bubbleSort(arr);console.log(arrSorted);alert(arrSorted);控制台将输出:[1, 2, 3, 4, 5, 6, 7, 8, 9]快速排序算法快速排序(Quicksort )是对冒泡排序的一种改进。
各种排序方法总结
选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:l og2(n)*n堆排序:l og2(n)*n希尔排序:算法的复杂度为n的1.2次幂这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(lo g2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的midd le都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
排序题方法总结
排序题方法总结
排序方法可以总结为以下几种:
1. 冒泡排序:重复比较相邻的两个元素,若顺序错误则交换位置,直至整个数组有序。
时间复杂度为O(n^2)。
2. 选择排序:每次从数组中选择最小(或最大)的元素,放到已排序的末尾,直至整个数组有序。
时间复杂度为O(n^2)。
3. 插入排序:将数组分为已排序和未排序两部分,每次从未排序部分中取出一个元素,并插入到已排序部分的适当位置,直至整个数组有序。
时间复杂度为O(n^2)。
4. 归并排序:将数组不断地分割成更小的子数组,然后再将子数组合并,直至整个数组有序。
时间复杂度为O(nlogn)。
5. 快速排序:选择一个基准元素,将数组分为小于和大于基准元素的两部分,再对两部分分别进行快速排序,直至整个数组有序。
时间复杂度为O(nlogn)。
6. 堆排序:将数组构建成大顶堆(或小顶堆),然后不断地将堆顶元素与最后一个元素交换,并重新调整堆,直至整个数组有序。
时间复杂度为O(nlogn)。
7. 计数排序:统计数组中每个元素出现的次数,然后根据计数从小到大将元素重新排列。
时间复杂度为O(n+k),其中k是值的范围。
8. 基数排序:按照位数从低到高的顺序,将数组分配到桶中,然后重组桶中的元素,直至整个数组有序。
时间复杂度为
O(d*(n+k)),其中d是最大位数,k是每个桶的大小。
以上是常见的排序算法,每种算法都有不同的适用场景和特点,需要根据实际问题选择合适的算法。
排序方法实践实验心得体会
排序方法实践实验心得体会排序算法是计算机科学中最基础也是最常用的算法之一,它的作用是将一组数据按照一定的顺序进行排列。
在我进行排序方法实践实验的过程中,我选择了几种常见的排序算法进行了比较和分析,并对每种算法的时间复杂度、空间复杂度以及稳定性进行了评估。
通过这次实验,我深刻理解了每种排序算法的原理和应用场景,并总结出了一些具体的心得和体会。
首先,我选择了冒泡排序算法。
它的原理是通过比较相邻的两个元素,将较大的元素逐渐交换到数组的末尾,从而实现整个数组的排序。
冒泡排序的时间复杂度是O(n^2),空间复杂度是O(1),算法的稳定性很好。
通过实验,我发现冒泡排序的性能在数据量很小时可以接受,但当数据量变大时,其效率明显不如其他排序算法。
其次,我实践了插入排序算法。
插入排序的原理是将数组分为两个区域,已排序区和未排序区,然后逐个将未排序区的元素插入到已排序区的合适位置。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1),算法是稳定的。
在实验中,我发现插入排序在处理接近有序的数组时表现良好,但在处理逆序数组时效率较低。
接下来,我尝试了选择排序算法。
选择排序的原理是每次从未排序区中选择最小的元素,并与未排序区的第一个元素交换位置,从而逐渐将最小元素移到已排序区的末尾。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1),算法是不稳定的。
通过实验,我发现选择排序的效率较低,因为它每次只能确定一个元素的位置。
最后,我实践了快速排序算法。
快速排序的原理是选择一个基准元素,然后将数组分为两个子数组,左边的元素都小于基准,右边的元素都大于基准,再递归地对子数组进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度取决于递归深度,算法是不稳定的。
通过实验,我发现快速排序的效率非常高,尤其在处理大规模数据时表现出色。
通过这次排序方法实践实验,我深入了解了各种排序算法的原理和性能特点。
在实验中,我发现不同的排序算法适用于不同的数据情况,选择合适的排序算法可以提高排序的效率。
数据排序知识点总结
数据排序知识点总结一、排序算法的分类根据排序算法的实现方式和思想,可以将排序算法分为以下几类:1. 冒泡排序:冒泡排序是一种简单的排序算法,它的基本思想是通过比较相邻的元素并交换它们的位置,从而使较大(小)的元素逐渐“浮”到数组的一端。
2. 选择排序:选择排序是一种简单的排序算法,它的基本思想是在未排序的序列中选择最小(大)的元素并与序列的第一个元素交换位置,然后从剩余的未排序序列中继续进行此操作,直到整个序列排序完成。
3. 插入排序:插入排序是一种简单的排序算法,它的基本思想是将未排序的元素逐个插入到已排序的序列中,直到整个序列排序完成。
4. 快速排序:快速排序是一种高效的排序算法,它的基本思想是通过一个基准值将序列分成左右两个子序列,然后对左右子序列分别进行递归排序,直到整个序列排序完成。
5. 归并排序:归并排序是一种高效的排序算法,它的基本思想是将待排序的序列分成若干个子序列,然后分别对子序列进行排序,最后将排好序的子序列合并成一个完整的有序序列。
6. 堆排序:堆排序是一种高效的排序算法,它的基本思想是利用堆这种数据结构进行排序,通过不断调整堆的结构,将待排序的序列转换成一个大顶堆(或小顶堆),然后逐个将堆顶元素取出并重新调整堆的结构,直到整个序列排序完成。
7. 基数排序:基数排序是一种非比较排序算法,它的基本思想是将待排序的元素按照每个位上的数字进行分组,然后依次对每个分组进行排序,直到整个序列排序完成。
二、排序算法的时间复杂度和空间复杂度排序算法的时间复杂度是衡量排序算法性能的重要指标之一。
时间复杂度表示了排序算法的执行时间与输入规模之间的关系,通常用大O记号表示。
常见的排序算法的时间复杂度如下所示:1. 冒泡排序的时间复杂度为O(n^2)。
2. 选择排序的时间复杂度为O(n^2)。
3. 插入排序的时间复杂度为O(n^2)。
4. 快速排序的时间复杂度取决于基准值的选择,平均情况下为O(nlogn)。
各种排序方法的综合比较
各种排序方法的综合比较在计算机科学中,排序是一种常见的算法操作,它将一组数据按照特定的顺序重新排列。
不同的排序方法具有不同的适用场景和性能特点。
本文将综合比较几种常见的排序方法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单但效率较低的排序方法。
它通过多次遍历数组,每次比较相邻的两个元素,将较大的元素逐渐“冒泡”到数组的末尾。
冒泡排序的时间复杂度为O(n^2),其中n为待排序元素的数量。
二、选择排序选择排序是一种简单且性能较优的排序方法。
它通过多次遍历数组,在每次遍历中选择最小的元素,并将其与当前位置交换。
选择排序的时间复杂度同样为O(n^2)。
三、插入排序插入排序是一种简单且适用于小规模数据的排序方法。
它通过将待排序元素逐个插入已排序的部分,最终得到完全有序的数组。
插入排序的时间复杂度为O(n^2),但在实际应用中,它通常比冒泡排序和选择排序更快。
四、快速排序快速排序是一种高效的排序方法,它通过分治法将数组划分为两个子数组,其中一个子数组的所有元素都小于另一个子数组。
然后递归地对两个子数组进行排序,最终将整个数组排序完成。
快速排序的平均时间复杂度为O(nlogn),但最坏情况下可能达到O(n^2)。
五、归并排序归并排序是一种稳定且高效的排序方法。
它通过将数组分成两个子数组,递归地对两个子数组进行排序,然后合并两个有序的子数组,得到最终排序结果。
归并排序的时间复杂度始终为O(nlogn),但它需要额外的空间来存储临时数组。
综合比较上述几种排序方法,可以得出以下结论:1. 冒泡排序、选择排序和插入排序都属于简单排序方法,适用于小规模数据的排序。
它们的时间复杂度都为O(n^2),但插入排序在实际应用中通常更快。
2. 快速排序和归并排序都属于高效排序方法,适用于大规模数据的排序。
它们的时间复杂度都为O(nlogn),但快速排序的最坏情况下性能较差,而归并排序需要额外的空间。
各种排序方式和复杂度分析
#include <stdio.h>#define N 10/*************直接插入排序法******************/ void insertSort(int *a) { //时间复杂度:O(n^2) int i, j, t;for(i=1; i<N; i++) {if(a[i] < a[i-1]) {t = a[i];for(j=i-1; j>=0; j--) {if(a[j] > t) a[j+1] = a[j];else break;}a[j+1] = t;}}}/****************希尔排序*********************/ void shellInsert(int *a, int dk) {int i, j, t;for(i=dk; i< N; i++) {if(a[i] < a[i - dk]) {t = a[i];for(j=i-dk; j>=0; j-=dk) {if(a[j] > t) a[j+dk] = a[j];else break;}a[j+dk] = t;}}}void shellSort(int *a) { //时间复杂度:O(n^1.3) int i;int dlka[3] = {5, 3, 1};for(i=0; i<3; i++) shellInsert(a, dlka[i]);}/****************冒泡排序*********************/void bubbleSort(int *a) { //时间复杂度:O(n^2)int i, j, t;for(i=0; i<N;i++) {for(j=0; j<N-i-1; j++) {if(a[j] > a[j+1]) {t = a[j]; a[j] = a[j+1]; a[j+1] = t;}}}}/****************快速排序*********************/int partition(int *a, int low, int high) {int pivotkey = a[low];while(low < high) {while(low < high && a[high] >= pivotkey) high--;a[low] = a[high];while(low < high && a[low] <= pivotkey) low++;a[high] = a[low];}a[low] = pivotkey;return low;}void qSort(int *a, int low, int high) {int pivotloc;if(low < high) {pivotloc = partition(a, low, high);qSort(a, low, pivotloc - 1); qSort(a, pivotloc + 1, high);}}void quickSort(int *a) {qSort(a, 0, N-1);}/****************选择排序*********************/void selectSort(int *a) { //时间复杂度:O(n^2)int i, j, t, k;for(i=0; i<N; i++) {k = i;for(j=i; j<N; j++) if(a[j] < a[k]) k = j;if(i != k) {t = a[i]; a[i] = a[k]; a[k] = t;}}}/****************堆排序***********************/void heapAdjust(int *a, int s, int n) {int j, rc = a[s];for(j=2*s+1; j<n; j*=2) {if(j < n - 1 && a[j] < a[j+1]) j++;if(rc > a[j]) break;a[s] = a[j]; s = j;}a[s] = rc;}void heapSort(int *a) {int t, i;for(i=N/2-1; i>=0; i--) heapAdjust(a, i, N);//创建大顶堆for(i=N-1; i>0; i--) {t = a[0]; a[0] = a[i]; a[i] = t;heapAdjust(a, 0, i-1);}}/****************归并排序*********************/void merge(int *a, int *b, int i, int m, int n) {int t, k, j;for(j=m+1, k=i; i<=m && j<=n; k++) {if(a[i] < a[j]) b[k] = a[i++];else b[k] = a[j++];}if(i <= m) for(t=i; t<=m; t++)b[k++] = a[t];if(j <= n) for(t=j; t<=n; t++) b[k++] = a[t];}void mSort(int *a, int *b, int s, int t) {int m; static int b1[N]; //只初始化一次if(s == t) b[s] = a[s];else {m = (s + t) / 2; //将a[s..t]平分为a[s..m]和a[m+1..t]mSort(a, b1, s, m); //递归地将a[s..m]归并为有序的b1[s..m]mSort(a, b1, m+1, t); //递归地将a[m+1..t]归并为有序的b1[m+1..t]merge(b1, b, s, m, t); //将b1[s..m]和b1[m+1..t]归并到b[s..m] }}void mergeSort(int *a) {mSort(a, a, 0, N-1);}/*****************main函数*******************/ int main() {int i;int a[N] = {12, 23, 32, 12, 29, 62, 19, 90, 27, 56};printf("原数列为:");for(i=0; i<N; i++) printf("%d ", a[i]);shellSort(a);printf("\n现数列为:");for(i=0; i<N; i++) printf("%d ", a[i]);printf("\n");return 0;}。
排序实验报告实验心得
一、实验背景随着计算机科学的发展,排序算法在数据处理、数据库管理、网络通信等领域发挥着重要作用。
为了更好地理解排序算法的原理和实现,我们进行了排序实验,通过实际操作来加深对排序算法的认识。
本次实验主要涉及了冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等常用排序算法。
二、实验目的1. 理解各种排序算法的基本原理;2. 掌握排序算法的代码实现;3. 分析各种排序算法的时间复杂度和空间复杂度;4. 比较各种排序算法的优缺点,为实际应用提供参考。
三、实验过程1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历待排序的数列,比较每对相邻元素的值,如果它们的顺序错误就把它们交换过来。
遍历数列的工作是重复地进行,直到没有再需要交换,也就是说该数列已经排序完成。
2. 选择排序选择排序是一种简单直观的排序算法。
它的工作原理是:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
3. 插入排序插入排序是一种简单直观的排序算法。
它的工作原理是:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序)。
4. 快速排序快速排序是一种效率较高的排序算法。
它采用分而治之的策略,将原始数组分成两个子数组,一个子数组中的所有元素均小于另一个子数组中的所有元素。
然后递归地对这两个子数组进行快速排序。
5. 归并排序归并排序是一种效率较高的排序算法。
它采用分而治之的策略,将原始数组分成两个子数组,分别对这两个子数组进行排序,然后将两个有序子数组合并成一个有序数组。
6. 堆排序堆排序是一种利用堆这种数据结构的排序算法。
它将待排序的序列构造成一个大顶堆,然后将堆顶元素与最后一个元素交换,再将剩余的n-1个元素重新构造成一个大顶堆,重复此过程,直到所有元素均排序完毕。
总结4种常用排序(快排、选择排序、冒泡排序、插入排序)
总结4种常⽤排序(快排、选择排序、冒泡排序、插⼊排序)⼀、选择排序1. 概念理解:最⼩的数值与第⼀个元素交换;在⼀个长度为3的数组中,在第⼀趟遍历3个数据,找出其中最⼩的数值与第⼀个元素交换最⼩的元素与第⼀个数交换(注意:这⾥的第⼀个数是指遍历的第⼀个数,实质上是数组的第⼆个数)第⼆趟遍历2个数据,找出其中最⼩的元素与第⼀个数交换⽽第三趟则是和⾃⼰⽐较,位置还是原来的位置2. 复杂度:平均时间复杂度:O(n^2)3. 例⼦://选择排序function selectionSortFn(arr){console.log('原数组:['+ arr + ']')for (var i = 0; i < arr.length; i++) {for (var j = i+1; j < arr.length; j++) {if (arr[i] > arr[j]) {var temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}console.log(arr);}return arr;}var initArr = [10, 4, 8, 3];selectionSortFn(initArr);我们看⼀下打印的结果:![选择排序]原数组:[10,4,8,3][3, 10, 8, 4][3, 4, 10, 8][3, 4, 8, 10][3, 4, 8, 10]结合概念就很好理解了。
⼆、冒泡排序1. 概念理解:依次⽐较相邻的两个数,将⼩数放在前⾯,⼤数放在后⾯。
第⼀趟:⾸先⽐较第⼀个和第⼆个数,将⼩数放前,⼤数放后,然后⽐较第⼆个数和第三个数将⼩数放前,⼤数放后,如此继续,直⾄⽐较最后两个数,将⼩数放前,⼤数放后,⾄此第⼀趟结束。
在第⼆趟:仍从第⼀对数开始⽐较(因为可能由于第2个数和第3个数的交换,使得第1个数不再⼩于第2个数),将⼩数放前中,⼤数放后,⼀直⽐较到倒数第⼆个数(倒数第⼀的位置上已经是最⼤的),第⼆趟结束。
八大排序总结
1.冒泡排序(稳定排序)思想:从第一个开始,每两个数进行比较,将较大(较小)的数交换到前面直到最后一个数。
两层循环嵌套,内层用于遍历一次数组,每次两两比较,外层控制遍历的次数。
时间复杂度:O(n^2).空间复杂度:O(1)。
2.直接插入排序(稳定排序)思想:每次把一个待排的数记录下来,按其值的大小插入前面适当的位置,知道全部插完为止。
时间复杂度:O(n^2)。
空间复杂度:O(1)。
3.选择排序(不稳定排序)思想:两层for循环嵌套,内层用于每次从(j=i+1)的位置开始,将最大(最下)的数找出来,和i位置的值交换,i++,外层控制找最大值的次数。
时间复杂度:O(n^2)。
空间复杂度:O(1)。
4.希尔排序(不稳定排序)思想:他是一种分组插入排序的方法,对于分的组数应该互为素数。
每次将下标间距相等的数分为一组,对每组进行插入排序,直到组数变成一为止,最后对整个数组进行一次排序。
时间复杂度:O(n^1.3)。
空间复杂度:O(1)。
5.堆排序(不稳定排序)思想:堆排序利用堆积树进行选择排序。
堆是二叉树,当由小到大排序时,建立大根堆,首先对树进行调整(从最后一棵枝桠开始),调整后的最大值便存储在0节点,将0节点的值与最后一个节点的值交换,便找出了整个数组的最大值,用for循环对整个树在进行调整,依次得到较大的值,知道数组有序。
时间复杂度:O(nlog2n)。
空间复杂度:O(1)。
6.快速排序(不稳定排序)思想:快排是对冒泡排序的一种改进。
每次将第一个数作为基准,一趟排序后,数组要分成两部分,比基准小的都放在左边,大的放在右边,因此需要定义low,high分别指向每块的第一个数和最后一个数。
通过对基准左边和右边数的个数的判断,分别对左右两边进行找基准排序,对此,既可以使用递归进行后面的排序,也可用while循环进行。
优化一:每次用rand()函数随机产生high指向的值。
rand()%(end-start)+start.产生从0到(end-start)+start.的随机数优化二:三数取中法。
排序算法总结
排序算法总结【篇一:排序算法总结】1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。
反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。
假如变成a1,a4,a2,a3,a5就不是稳定的了。
2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。
3、算法的时间复杂度和空间复杂度所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
功能:选择排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
选择排序是不稳定的。
【篇二:排序算法总结】在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。
一般而言,好的性能是O(nlogn),且坏的性能是O(n2)。
对于一个排序理想的性能是O(n)。
仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(nlogn)。
内存使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。
交换排序包含冒泡排序和快速排序。
关于各种排序方法的比较
各种排序方法的总结一.直接插入排序1.时间复杂度移动次数和比较次数受初始排列的影响。
最好情况o(n) 最坏情况o(n2) 平均情况o(n2)2.空间复杂度:o(1)3.算法特点稳定排序;算法简便,且容易实现适用于顺序和链式两种存储结构,链式存储时不需要移动记录,只修改指针;适合于初始记录基本有序的情况;当记录无序,且n较大时,不宜采用。
二.折半插入排序1.时间复杂度移动次数受初始排列的影响。
最好情况o(nlog2n) 最坏情况o(n2) 平均情况o(n2)2.空间复杂度o(1)3.算法特点稳定排序;算法简便,且容易实现只适用于顺序存储结构,不能用于链式存储结构;适合记录无序、n较大的情况;三.希尔排序1.时间复杂度2.空间复杂度o(1)3.算法特点不稳定排序,记录跳跃式的移动;只适用于顺序存储结构,不能用于链式存储结构;增量序列可以有多种取法,最后一个增量值必须是1;适合记录无序、n较大的情况;四.冒泡排序1.时间复杂度移动次数和比较次数受初始排列的影响。
最好情况o(n) 最坏情况o(n2) 平均情况o(n2)2.空间复杂度o(1)3.算法特点稳定排序;适用于顺序存储结构和链式存储结构;适合记录无序、n较大时不宜采用;五.快速排序1.时间复杂度移动次数和比较次数受初始排列的影响。
最好情况o(nlog2n) 最坏情况o(n2) 平均情况o(nlog2n)2.空间复杂度:o(log2n) 递归算法3.算法特点不稳定排序;算法简便,且容易实现适用于顺序存储结构;适合记录无序,且n较大情况。
六.直接选择排序1.时间复杂度比较次数不受初始排列的影响,移动次数受影响。
最好情况o(n2) 最坏情况o(n2) 平均情况o(n2)2.空间复杂度o(1)3.算法特点不稳定排序;适用于顺序存储结构和链式存储结构;移动记录的次数较多,适合记录占用空间较多时,采用此方法;七.堆排序1.时间复杂度移动次数和比较次数受初始排列的影响。
数学数字排序
数学数字排序在数学中,数字排序是一种常见的操作。
通过对一组数字进行排序,我们可以更好地理解数字的大小关系,并进行进一步的分析和计算。
本文将介绍几种常见的数学数字排序方法,帮助读者更好地掌握数字排序的技巧。
一、升序排序升序排序是指将一组数字按照从小到大的顺序进行排列。
下面是一种常见的升序排序方法:1. 选择排序:从待排序的数字中找到最小的数字,将其放置在第一个位置;然后从剩下的数字中找到最小的数字,放置在第二个位置;以此类推,直到所有的数字都被排序。
选择排序的时间复杂度为O(n^2)。
2. 冒泡排序:比较相邻的两个数字,将较大的数字往后移动,每轮比较都会将当前未排序部分的最大数字放置在最后。
冒泡排序的时间复杂度为O(n^2)。
3. 插入排序:将数字插入到已排序的数字序列中的适当位置,使得插入后的序列依然保持有序。
插入排序的时间复杂度也是O(n^2)。
二、降序排序降序排序是指将一组数字按照从大到小的顺序进行排列。
下面是几种常见的降序排序方法:1. 逆序输出:将数字序列按照升序排序后,逆序输出即可得到降序排序的结果。
2. 快速排序:选择一个基准数字,将待排序的数字分为两部分,其中一部分小于基准数字,另一部分大于基准数字,然后对这两部分进行递归排序。
快速排序的时间复杂度为O(nlogn)。
三、其他排序方法除了升序排序和降序排序之外,还有一些特殊的排序方法。
下面将介绍其中的两种:1. 奇偶排序:将一组数字分为奇数和偶数两个部分,然后分别对奇数和偶数部分进行升序排序,最后将奇数部分放置在偶数部分之前即可。
奇偶排序的时间复杂度为O(nlogn)。
2. 桶排序:将一组数字根据规定的范围划分为若干个桶,然后将数字依次放入对应的桶中,最后按照每个桶中数字的顺序取出即可。
桶排序的时间复杂度为O(n)。
总结:通过本文的介绍,我们了解了数学中常见的数字排序方法,包括升序排序、降序排序以及一些特殊的排序方法。
通过掌握这些排序方法,我们可以更好地处理数字序列,更高效地进行数学运算和分析。
数组各种排序算法和复杂度分析
数组各种排序算法和复杂度分析Java排序算法1)分类:插⼊排序(直接插⼊排序、希尔排序)交换排序(冒泡排序、快速排序)选择排序(直接选择排序、堆排序)归并排序分配排序(箱排序、基数排序)所需辅助空间最多:归并排序所需辅助空间最少:堆排序平均速度最快:快速排序不稳定:快速排序,希尔排序,堆排序。
2)选择排序算法的时候要考虑数据的规模、数据的类型、数据已有的顺序。
⼀般来说,当数据规模较⼩时,应选择直接插⼊排序或冒泡排序。
任何排序算法在数据量⼩时基本体现不出来差距。
考虑数据的类型,⽐如如果全部是正整数,那么考虑使⽤桶排序为最优。
考虑数据已有顺序,快排是⼀种不稳定的排序(当然可以改进),对于⼤部分排好的数据,快排会浪费⼤量不必要的步骤。
数据量极⼩,⽽起已经基本排好序,冒泡是最佳选择。
我们说快排好,是指⼤量随机数据下,快排效果最理想。
⽽不是所有情况。
3)总结:——按平均的时间性能来分:时间复杂度为O(nlogn)的⽅法有:快速排序、堆排序和归并排序,其中以快速排序为最好;时间复杂度为O(n2)的有:直接插⼊排序、起泡排序和简单选择排序,其中以直接插⼊为最好,特别是对那些对关键字近似有序的记录序列尤为如此;时间复杂度为O(n)的排序⽅法只有,基数排序。
当待排记录序列按关键字顺序有序时,直接插⼊排序和起泡排序能达到O(n)的时间复杂度;⽽对于快速排序⽽⾔,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。
简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布⽽改变。
——按平均的空间性能来分(指的是排序过程中所需的辅助空间⼤⼩):所有的简单排序⽅法(包括:直接插⼊、起泡和简单选择)和堆排序的空间复杂度为O(1);快速排序为O(logn ),为栈所需的辅助空间;归并排序所需辅助空间最多,其空间复杂度为O(n );链式基数排序需附设队列⾸尾指针,则空间复杂度为O(rd )。
——排序⽅法的稳定性能:稳定的排序⽅法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和经过排序之后,没有改变。
各种排序算法的稳定性和时间复杂度小结
各种排序算法的稳定性和时间复杂度小结选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:log2(n)*n堆排序:log2(n)*n希尔排序:算法的复杂度为n的1.2次幂关于快速排序分析这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(log2(n)*n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。
首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
排序方法
三种查找算法:顺序查找,二分法查找(折半查找),分块查找,散列表(以后谈)一、顺序查找的基本思想:从表的一端开始,顺序扫描表,依次将扫描到的结点关键字和给定值(假定为a)相比较,若当前结点关键字与a相等,则查找成功;若扫描结束后,仍未找到关键字等于a的结点,则查找失败。
说白了就是,从头到尾,一个一个地比,找着相同的就成功,找不到就失败。
很明显的缺点就是查找效率低。
适用于线性表的顺序存储结构和链式存储结构。
计算平均查找长度。
例如上表,查找1,需要1次,查找2需要2次,依次往下推,可知查找16需要16次,可以看出,我们只要将这些查找次数求和(我们初中学的,上底加下底乘以高除以2),然后除以结点数,即为平均查找长度。
设n=节点数平均查找长度=(n+1)/2二、二分法查找(折半查找)的基本思想:前提:(1)确定该区间的中点位置:mid=(low+high)/2min代表区间中间的结点的位置,low代表区间最左结点位置,high代表区间最右结点位置(2)将待查a值与结点mid的关键字(下面用R[mid].key)比较,若相等,则查找成功,否则确定新的查找区间:如果R[mid].key>a,则由表的有序性可知,R[mid].key右侧的值都大于a,所以等于a的关键字如果存在,必然在R[mid].key左边的表中。
这时high=mid-1如果R[mid].key<a,则等于a的关键字如果存在,必然在R[mid].key右边的表中。
这时low=mid如果R[mid].key=a,则查找成功。
(3)下一次查找针对新的查找区间,重复步骤(1)和(2)(4)在查找过程中,low逐步增加,high逐步减少,如果high<low,则查找失败。
平均查找长度=Log2(n+1)-1注:虽然二分法查找的效率高,但是要将表按关键字排序。
而排序本身是一种很费时的运算,所以二分法比较适用于顺序存储结构。
为保持表的有序性,在顺序结构中插入和删除都必须移动大量的结点。
排序算法总结(PDF)
十大排序算法选择排序选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。
这样,经过i遍处理之后,前i个记录的位置已经是正确的了。
选择排序是不稳定的。
算法复杂度是O(n ^2 )。
class SelectionSorter{private int min;public void Sort(int[] arr){for (int i = 0; i < arr.Length - 1; ++i){min = i;for (int j = i + 1; j < arr.Length; ++j){if (arr[j] < arr[min])min = j;}int t = arr[min];arr[min] = arr[i];arr[i] = t;}}}冒泡排序冒泡排序方法是最简单的排序方法。
这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。
所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。
显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。
在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。
一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
冒泡排序是稳定的。
算法时间复杂度是O(n ^2){public void Sort(int[] arr){int i, j, temp;bool done = false;j = 1;while ((j < arr.Length) && (!done))//判断长度{done = true;for (i = 0; i < arr.Length - j; i++){if (arr[i] > arr[i + 1]){done = false;temp = arr[i];arr[i] = arr[i + 1];//交换数据arr[i + 1] = temp;}}j++;}}}快速排序快速排序是对冒泡排序的一种本质改进。
各种排序方法的综合比较
各种排序方法的综合比较一、引言排序是计算机科学中非常重要的基本操作之一,它将一组无序的数据按照特定的规则进行排列,使其按照一定的顺序呈现。
在实际应用中,排序算法的选择直接影响到程序的效率和性能。
本文将综合比较几种常见的排序方法,包括插入排序、选择排序、冒泡排序、快速排序和归并排序。
二、插入排序插入排序是一种简单直观的排序方法,它的基本思想是将待排序的数据依次插入到已排序的序列中。
具体实现时,从第二个元素开始,逐个将元素与前面的已排序序列进行比较,并插入到合适的位置。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
三、选择排序选择排序是一种简单直观的排序方法,它的基本思想是每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾。
具体实现时,通过不断选择最小元素并交换位置,最终得到一个有序序列。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
四、冒泡排序冒泡排序是一种简单直观的排序方法,它的基本思想是依次比较相邻的两个元素,如果它们的顺序错误则交换位置,直到整个序列有序为止。
具体实现时,通过多次遍历和比较,每次将最大(或最小)的元素交换到序列的末尾。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
五、快速排序快速排序是一种高效的排序方法,它的基本思想是通过一趟排序将待排序序列分割成独立的两部分,其中一部分的元素都比另一部分小。
具体实现时,选择一个基准元素,通过不断交换比基准元素小的元素和比基准元素大的元素,将序列划分为两个子序列,然后对子序列进行递归排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
六、归并排序归并排序是一种稳定的排序方法,它的基本思想是将待排序序列递归地划分为两个子序列,然后对子序列进行排序,并将两个有序的子序列合并为一个有序序列。
具体实现时,通过不断划分和合并,最终得到一个有序序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要思路是:
每次将一个待排序的数组元素,插入到前面已排序的序列中这个元素应该在的位置,直到全部数据插入完成。类似扑克牌洗牌过程。
代码实现
void_sort(intarr[],intlen)
for(inti=1;i<len;i++)
intj=i―1;
intk=arr[i];
while(j>―1&&k<arr[j])
intindex=i;
for(intj=i+1;j<len;j++)
if(arr[j]<arr[index])
index=j;
if(index!=i)Hale Waihona Puke inttemp=arr[i];
arr[i]=arr[index];
arr[index]=temp;
四、快速排序
主要思路是:
“挖坑填数+分治法”,首先令i=L;j=R;将a[i]挖出形成打一个坑,称a[i]为基准数。然后j――从后向前找到一个比基准数小的数,挖出来填到a[i]的坑中,这样a[j]就形成了一个新的坑,再i++从前向后找到一个比基准数大的数填到a[j]坑中。重复进行这种挖坑填数,直到i=j。这时a[i]形成了一个新的坑,将基数填到a[i]坑中,这样i之前的数都比基准数小,i之后的数都比基准数大。因此将数组分成两部分再分别重复上述步骤就完成了排序。
代码实现
voidquick_sort(intarr[],intleft,intright)
if(left<right)
inti=left,j=right,target=arr[left];
while(i<j)
while(i<j&&arr[j]>target)
j――;
if(i<j)
arr[i++]=arr[j];
if(arr[j]<arr[j―1])
inttemp=arr[j];
arr[j]=arr[j―1];
arr[j―1]=temp;
冒泡排序改进1:
在某次遍历中,如果没有数据交换,说明整个数组已经有序,因此通过设置标志位来记录此次遍历有无数据交换就可以判断是否要继续循环。
冒泡排序改进2:
记录某次遍历时最后发生数据交换的位置,这个位置之后的数据显然已经有序。因此设置标志位记录每次遍历中最后发生数据交换的位置可以确定下次循环的范围。
if(start_index<end_index)
intmid_index=(start_index+end_index)/2;
merge_sort(arr,temp_arr,start_index,mid_index);
merge_sort(arr,temp_arr,mid_index+1,end_index);
各种排序方法复杂度总结
一、冒泡排序
主要思路是:
通过交换相邻的两个数变成小数在前大数在后,这样每次遍历后,最大的数就“沉”到最后面了。重复N次即可以使数组有序。
代码实现
voidbubble_sort(intarr[],intlen)
for(inti=0;i<len―1;i++)
for(intj=len―1;j>=i;j――)
arr[j+1]=arr[j];
j――;
arr[j+1]=k;
三、直接选择排序
主要思路是:
数组分成有序区和无序区,初始时整个数组都是无序区,每次遍历都从无序区选择一个最小的元素直接放在有序区最后,直到排序完成。
代码实现
voidselect_sort(intarr[],intlen)
for(inti=0;i<len;i++)
六、归并排序
主要思路是:
当一个数组左边有序,右边也有序,那合并这两个有序数组就完成了排序。如何让左右两边有序了?用递归!这样递归下去,合并上来就是归并排序。
代码实现
voidmerge(intarr[],inttemp_arr[],intstart_index,intmid_index,intend_index)
temp_arr[k++]=arr[i++];
while(j<end_index+1)
temp_arr[k++]=arr[j++];
for(i=0,j=start_index;j<end_index+1;i++,j++)
arr[j]=temp_arr[i];
voidmerge_sort(intarr[],inttemp_arr[],intstart_index,intend_index)
因此,堆的插入和删除非常类似直接插入排序,只不是在二叉树上进行插入过程。所以可以将堆排序形容为“树上插”。
while(i<j&&arr[i]<target)
i++;
if(i<j)
arr[j]=arr[i];
arr[i]=target;
quick_sort(arr,left,i―1);
quick_sort(arr,i+1,right);
五、希尔排序
主要思路是:
先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。由于希尔排序是对相隔若干距离的数据进行直接插入排序,因此可以形象的称希尔排序为“跳着插”。
merge(arr,temp_arr,start_index,mid_index,end_index);
七、堆排序
堆排序的难点就在于堆的的插入和删除。
堆的插入就是――每次插入都是将新数据放在数组最后,而从这个新数据的父结点到根结点必定是一个有序的数列,因此只要将这个新数据插入到这个有序数列中即可。
堆的删除就是――堆的删除就是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点开始将一个数据在有序数列中进行“下沉”。
inti=start_index,j=mid_index+1;
intk=0;
while(i<mid_index+1&&j<end_index+1)
if(arr[i]>arr[j])
temp_arr[k++]=arr[j++];
else
temp_arr[k++]=arr[i++];
while(i<mid_index+1)