各种排序的时间复杂度
基数排序时间复杂度公式详解
基数排序时间复杂度公式详解基数排序是一种非比较排序算法,它将数据按照位数逐个进行排序。
基数排序的时间复杂度取决于两个因素:数据量n和数据的位数d。
在本文中,我们将详细解释基数排序的时间复杂度公式,并分析其复杂度的变化情况。
我们来回顾一下基数排序的工作原理。
基数排序的核心思想是将待排序的数据按照位数分组,然后依次对每个位数进行排序。
具体的排序过程可以使用稳定的排序算法,如计数排序或桶排序。
通过多次排序,最终可以得到有序的结果。
在基数排序中,时间复杂度的计算需要考虑两个因素:数据量n和数据的位数d。
假设待排序的数据是n个数字,每个数字的位数是d。
那么基数排序的时间复杂度可以表示为O(d*(n+b)),其中b是数据的进制数。
我们来看位数d对时间复杂度的影响。
由于基数排序是按照位数逐个进行排序的,所以需要进行d次排序。
每次排序的时间复杂度是O(n+b),其中n是待排序数据的数量,b是数据的进制数。
因此,位数d对时间复杂度的影响是线性的。
接下来,我们来看数据量n对时间复杂度的影响。
在每次排序中,需要对n个数字进行分组和排序。
分组的时间复杂度是O(n),而排序的时间复杂度是O(b)。
因此,每次排序的时间复杂度是O(n+b)。
由于需要进行d次排序,所以总的时间复杂度是O(d*(n+b))。
我们来看数据的进制数b对时间复杂度的影响。
数据的进制数决定了每个位数的可能取值范围。
如果数据的进制数很大,那么每次排序中分组的时间复杂度就会增加。
因此,进制数b对时间复杂度的影响是线性的。
基数排序的时间复杂度公式为O(d*(n+b)),其中d是数据的位数,n是数据的数量,b是数据的进制数。
在实际应用中,通常会根据具体情况来选择数据的进制数和排序算法,以达到更好的排序效果。
需要注意的是,基数排序的时间复杂度公式并不考虑其他因素,如数据的分布情况和排序算法的优化。
在实际应用中,这些因素也会对排序的效率产生影响。
因此,在选择排序算法时,需要综合考虑数据的特点和排序的要求,来确定最适合的算法和参数。
各种排序的时间复杂度
排序算法所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。
一般而言,好的表现是O。
(n log n),且坏的行为是Ω(n2)。
对於一个排序理想的表现是O(n)。
仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。
交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。
选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。
然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。
不稳定排序算法可以被特别地时作为稳定。
作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。
然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的冒泡排序(bubble sort)— O(n2)鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)插入排序(insertion sort)— O(n2)桶排序(bucket sort)— O(n); 需要 O(k) 额外记忆体计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外记忆体归并排序(merge sort)— O(n log n); 需要 O(n) 额外记忆体原地归并排序— O(n2)二叉树排序(Binary tree sort)— O(n log n); 需要 O(n) 额外记忆体鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体基数排序(radix sort)—O(n·k); 需要 O(n) 额外记忆体Gnome sort — O(n2)Library sort — O(n log n) with high probability, 需要(1+ε)n 额外记忆体不稳定选择排序(selection sort)— O(n2)希尔排序(shell sort)— O(n log n) 如果使用最佳的现在版本Comb sort — O(n log n)堆排序(heapsort)— O(n log n)Smoothsort — O(n log n)快速排序(quicksort)—O(n log n) 期望时间, O(n2) 最坏情况; 对於大的、乱数串列一般相信是最快的已知排序Introsort — O(n log n)Patience sorting —O(n log n + k) 最外情况时间, 需要额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)不实用的排序算法Bogo排序—O(n × n!) 期望时间, 无穷的最坏情况。
快排最坏时间复杂度
快速排序的平均时间复杂度和最坏时间复杂度分别是O(nlgn)、O(n^2)。
当排序已经成为基本有序状态时,快速排序退化为O(n^2),一般情况下,排序为指数复杂度。
快速排序最差情况递归调用栈高度O(n),平均情况递归调用栈高度O(logn),而不管哪种情况栈的每一层处理时间都是O(n),所以,平均情况(最佳情况也是平均情况)的时间复杂度O(nlogn),最差情况的时间复杂度为O(n^2)。
扩展资料
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序,它采用了一种分治的策略,通常称其为分治法。
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。
此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。
(3)然后,左边和右边的数据可以独立排序。
对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。
右侧的数组数据也可以做类似处理。
(4)重复上述过程,可以看出,这是一个递归定义。
通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。
当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
排序—时间复杂度为O(n2)的三种排序算法
排序—时间复杂度为O(n2)的三种排序算法1 如何评价、分析⼀个排序算法?很多语⾔、数据库都已经封装了关于排序算法的实现代码。
所以我们学习排序算法⽬的更多的不是为了去实现这些代码,⽽是灵活的应⽤这些算法和解决更为复杂的问题,所以更重要的是学会如何评价、分析⼀个排序算法并在合适的场景下正确使⽤。
分析⼀个排序算法,主要从以下3个⽅⾯⼊⼿:1.1 排序算法的执⾏效率1)最好情况、最坏情况和平均情况时间复杂度待排序数据的有序度对排序算法的执⾏效率有很⼤影响,所以分析时要区分这三种时间复杂度。
除了时间复杂度分析,还要知道最好、最坏情况复杂度对应的要排序的原始数据是什么样的。
2)时间复杂度的系数、常数和低阶时间复杂度反映的是算法执⾏时间随数据规模变⼤的⼀个增长趋势,平时分析时往往忽略系数、常数和低阶。
但如果我们排序的数据规模很⼩,在对同⼀阶时间复杂度的排序算法⽐较时,就要把它们考虑进来。
3)⽐较次数和交换(移动)次数内排序算法中,主要进⾏⽐较和交换(移动)两项操作,所以⾼效的内排序算法应该具有尽可能少的⽐较次数和交换次数。
1.2 排序算法的内存消耗也就是分析算法的空间复杂度。
这⾥还有⼀个概念—原地排序,指的是空间复杂度为O(1)的排序算法。
1.3 稳定性如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变,那么这种排序算法叫做稳定的排序算法;如果前后顺序发⽣变化,那么对应的排序算法就是不稳定的排序算法。
在实际的排序应⽤中,往往不是对单⼀关键值进⾏排序,⽽是要求排序结果对所有的关键值都有序。
所以,稳定的排序算法往往适⽤场景更⼴。
2 三种时间复杂度为O(n2)的排序算法2.1 冒泡排序2.1.1 原理两两⽐较相邻元素是否有序,如果逆序则交换两个元素,直到没有逆序的数据元素为⽌。
每次冒泡都会⾄少让⼀个元素移动到它应该在的位置。
2.1.2 实现void BubbleSort(int *pData, int n) //冒泡排序{int temp = 0;bool orderlyFlag = false; //序列是否有序标志for (int i = 0; i < n && !orderlyFlag; ++i) //执⾏n次冒泡{orderlyFlag = true;for (int j = 0; j < n - 1 - i; ++j) //注意循环终⽌条件{if (pData[j] > pData[j + 1]) //逆序{orderlyFlag = false;temp = pData[j];pData[j] = pData[j + 1];pData[j + 1] = temp;}}}}测试结果2.1.3 算法分析1)时间复杂度最好情况时间复杂度:当待排序列已有序时,只需⼀次冒泡即可。
常用排序算法的时间复杂度和空间复杂度
常⽤排序算法的时间复杂度和空间复杂度以上快速排序和归并排序的空间复杂度不正确没有的参考图1,以图2为准(对,就是懒得重新画图了)排序法最差时间分析平均时间复杂度稳定度空间复杂度冒泡排序O(n2)O(n2)稳定O(1)快速排序O(n2)O(n*log2n)不稳定O(log2n)~O(n)选择排序O(n2)O(n2)稳定O(1)⼆叉树排O(n2)O(n*log2n)不稳定O(n)序插⼊排序O(n2)O(n2)稳定O(1)堆排序O(n*log2n)O(n*log2n)不稳定O(1)希尔排序O O不稳定O(1)1.插⼊排序由N-1趟排序组成,对于p=1到p=N-1趟,插⼊排序保证从位置0到位置p上的元素为已排序状态。
时间复杂度:O(N^2)代码void InsertionSort(ElementType A[],int N){int j,p;ElementType Tmp;for(p=1;p<N;p++){Tmp=A[j];//把A[j]保存下来,因为它要被插⼊到前⾯的某个位置去for(j=p;j>0&&A[j-1]>Tmp;j--)//⼤于A[j]的元素逐个后移{A[j]=A[j-1];}A[j]=Tmp;}}2.希尔排序希尔排序使⽤⼀个序列h1,h2,h3,ht,叫做增量排序。
在使⽤增量hk的⼀趟排序之后,对于每个i我们有A[i]<A[i+hk],所有相隔hk的元素被排序。
时间复杂度:O(N^(1+a)),其中0<a<1。
//代码不太好理解,使⽤了3层循环void ShellSort(ElementType A[],int N){int j,p,Increment;ElementType Tmp;for(Increment=N/2;Increment>0;Increment/=2){for(p=Increment;p<N;p++){Tmp=A[p];for(j=p;j>=Increment;j-=Increment){if(A[j]<A[j-Increment])A[j]=A[j-Increment];elsebreak;}A[j]=Tmp;}}}3. 堆排序思想:建⽴⼩顶堆,然后执⾏N次deleteMin操作。
各种排序算法的时间复杂度和空间复杂度(阿里)
各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。
⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。
这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。
基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。
以此类推,直到找到⽬标为⽌。
假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。
⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。
⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。
二分归并排序的时间复杂度以及递推式
一、简介二分归并排序是一种常见的排序算法,它通过将问题分解为子问题,并将子问题的解合并来解决原始问题。
该算法的时间复杂度非常重要,因为它直接影响算法的效率和性能。
在本文中,我们将深入探讨二分归并排序的时间复杂度,并通过递推式来进一步分析算法的性能。
二、二分归并排序的时间复杂度1. 分析在二分归并排序中,时间复杂度可以通过以下三个步骤来分析:- 分解:将原始数组分解为较小的子数组。
- 解决:通过递归调用来对子数组进行排序。
- 合并:将排好序的子数组合并为一个整体有序的数组。
2. 时间复杂度在最坏情况下,二分归并排序的时间复杂度为O(nlogn)。
这是因为在每一层递归中,都需要将数组分解为两个规模近似相等的子数组,并且在每一层递归的最后都需要将这两个子数组合并起来。
可以通过递推式来进一步证明算法的时间复杂度。
3. 递推式分析我们可以通过递推式来分析二分归并排序的时间复杂度。
假设对规模为n的数组进行排序所需的时间为T(n),则可以得到以下递推式:T(n) = 2T(n/2) +其中,T(n/2)表示对规模为n/2的子数组进行排序所需的时间表示将两个子数组合并所需的时间。
根据递推式的定义,我们可以得到二分归并排序的时间复杂度为O(nlogn)。
三、结论与个人观点通过以上分析,我们可以得出二分归并排序的时间复杂度为O(nlogn)。
这意味着该算法在最坏情况下也能保持较好的性能,适用于大规模数据的排序。
我个人认为,二分归并排序作为一种经典的排序算法,其时间复杂度的分析对于理解算法的工作原理和性能至关重要。
通过深入研究递推式,可以更加直观地理解算法的性能表现,为进一步优化算法提供了重要的参考依据。
四、总结在本文中,我们探讨了二分归并排序的时间复杂度,通过分析和递推式的方式深入理解了该算法的性能表现。
通过对时间复杂度的分析,我们对算法的性能有了更深入的认识,并且能够更好地理解算法在实际应用中的表现。
相信通过本文的阅读,读者能够对二分归并排序有更全面、深刻和灵活的理解。
【十大经典排序算法(动图演示)】 必学十大经典排序算法
【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。
时间复杂度:对排序数据的总的操作次数。
反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述比较相邻的元素。
如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。
1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。
时间复杂度排序大小口诀
时间复杂度排序大小口诀嘿,朋友们,今天咱们聊聊时间复杂度这个话题。
哎呀,这个听上去可能有点高深,但别担心,我来给你捋一捋,保证你听得懂,笑得出来!想象一下,时间复杂度就像咱们生活中的时间管理。
有时候你想做一件事,结果发现一拖再拖,真是急得像热锅上的蚂蚁。
先说说最简单的,那就是常数时间复杂度,记得用O(1)来表示哦。
这就像你去买咖啡,喝一口就能决定味道如何,不管你等了多久,结果都一样。
这种情况下,无论你前面等了多长时间,最后的结果都没变,简单又直接。
是不是觉得很爽快?接下来是对数时间复杂度,O(log n)。
你可以把它想象成是你在翻书,一开始你可能会从头到尾翻一遍,但其实你只需要翻一翻就能找到想要的内容。
就像你在找一本书,找得特别麻烦,结果发现书架上有个小标签,哎呀,直接跳到目标,真是太方便了。
这种方法让你省时省力,简直是居家必备的小技巧。
然后是线性时间复杂度,O(n)。
这就好比你在超市购物,要拿一袋袋的东西,一样样放进购物车,哎,没办法,这就是你不得不面对的事情。
假如你有十件东西,你就得走十趟,这种情况下,你的时间成本是直线增加的,跟着你买的东西多少成正比,实在没办法,只能一步一步走。
咱们聊聊线性对数时间复杂度,O(n log n)。
你可以把它想象成是在举办一个派对,得提前发邀请。
你先要决定谁来,再去一一联系,搞定之后再准备吃的。
虽然每个人的邀请都需要时间,但人数越多,分配的工作量就越复杂,所以最后还是得付出一些时间来准备。
这种复杂度在排序算法中常常出现,比如说归并排序和快速排序,让人不得不佩服程序员的智慧。
然后就是平方时间复杂度,O(n²)。
想象一下你在一个班级里,每个人都要跟其他同学打招呼,结果你就得去和每一个人握手。
假设班里有十个人,你就得握手九次,然后第二个人又得握手八次……这下就得算上所有的握手次数,结果是一堆人都快握不动了。
这样的复杂度简直让人心累,不过在一些简单的算法里,这也算是正常操作了。
排序的时间复杂度
排序的时间复杂度
1、插入排序
插入排序时间复杂度:
最好:
所有元素已经排好序,只需遍历一遍,无需交换位置;
最坏:
所有元素逆序排列,遍历一次需要比较的元素个数每次+1,所以时间复杂度是O(n^2);
平均时间复杂度就是O(n^2)喽。
2、快速排序
有关快速排序时间复杂度:
最好的时间复杂度和平均时间复杂度就是O(nlogn);
正常情况下是递归log2n次,每次遍历的最坏时间复杂度是n,所以平均时间复杂度是O(nlogn);
最好的时间复杂度就是每次都划分的很均匀;时间复杂度就是O(nlogn);
最坏的时间复杂度是O(n^2),这种情况就是原先的数据就是排序好,这样每次只能位移一个数据,
每次划分的子序列只比上一次划分少一个记录,注意两一个为空。
3、归并排序
归并排序时间复杂度:
归并排序无论在什么情况下,将数组拆分都需要log(n)次;
在归并时,也需要遍历比较两个数组的大小,平均时间复杂度O(n);所以归并排序最好最坏时间复杂度都是nlogn;
空间复杂度是O(n);
4、堆排序
堆排序每次都要将一个元素上升到堆顶,然后放回最后,需要n轮,固定不变
每一轮堆调整的时间复杂度是log(n),n依次递减
所以堆排序的时间复杂度是O(nlogn)。
数组排序的几种方法
数组排序的几种方法数组排序是计算机科学中的一个基本问题,算法学习中的重要部分之一。
在计算机编程中,数组排序是将数组从较小的元素递增或递减排序的过程。
在多种编程语言中都有多种排序算法,本文将介绍常见的几种排序算法。
1.冒泡排序冒泡排序是最简单的排序算法之一,也是最常用的一种。
冒泡排序的基本思想是将相邻的元素两两比较,将较大的元素向后移动,将较小的元素向前移动,这样一轮下来,最大的元素就会被排在最后,接下来继续对剩余元素进行排序,直到所有元素都排好序。
冒泡排序的时间复杂度为O(n^2),当数据量较大时,效率较低。
但由于其实现简单,代码易懂,因此在学习算法的过程中仍然是一个重要的排序算法。
2.选择排序选择排序是一种简单直观的排序算法,它的基本思想是:首先在未排序的数组中找到最小元素并放在数组的起始位置,然后再在剩下的元素中找到最小元素放在已排序的元素的末尾。
选择排序的时间复杂度为O(n^2),和冒泡排序相同,但是选择排序会减少交换操作次数。
在元素数量较小的情况下,选择排序是一种不错的选择。
3.插入排序插入排序是一种基于比较的排序算法,它对数据进行多次遍历,每次将一个元素插入到已排序的序列中的适当位置。
简单来说,就是假设第一个元素是已经排好序的,然后将后续的元素一个一个的与前面已排序的元素比较,找到其合适的位置并插入。
这样一直到最后一个元素为止。
插入排序的时间复杂度为O(n^2),但是,在数据量比较小的情况下,插入排序的效率接近于O(n)。
4.希尔排序希尔排序是插入排序的一种变体,也称为缩小增量排序,是插入排序的一种改进版本。
在插入排序的基础上,它引入了一个新的概念:增量。
在排序的过程中,先将数组按照一定的增量分成若干个子序列,对于每个子序列进行插入排序,随后逐渐减小增量,继续进行排序。
直到增量为1,完成排序。
希尔排序的时间复杂度最差为O(n^2),最好的情况下可以达到O(nlogn)。
5.快速排序快速排序是一种分治算法,它的基本思想是先从数列中取出一个数作为基准数,然后将剩余的数与基准数进行比较,将小于基准数的放左边,大于基准数的放右边,再分别递归地对左右两个部分进行排序,直到整个序列有序。
十大排序算法时间复杂度
十大排序算法时间复杂度
希尔排序的时间复杂度:o(n^(1.3—2)),希尔排序(shell's sort)是插入排序的一种又称“缩小增量排序”(diminishing increment sort),是直接插入排序算法的一种更高效的改进版本。
希尔排序是非稳定排序算法。
希尔排序按其设计者希尔(donald shell)的名字命名,该算法由希尔年公布。
一些老版本教科书和参考手册把该算法命名为shell-metzner,即包含marlene metzner norton的名字,但是根据metzner本人的说法,“我没有为这种算法做任何事,我的名字不应该出现在算法的名字中。
”
由于多次插入排序,我们晓得一次插入排序就是平衡的,不能发生改变相同元素的相对顺序,但在相同的插入排序过程中,相同的元素可能将在各自的插入排序中移动,最后其稳定性就可以被打乱,所以shell排序就是不稳定的。
关于各种排序方法的比较
各种排序方法的总结一.直接插入排序1.时间复杂度移动次数和比较次数受初始排列的影响。
最好情况o(n) 最坏情况o(n2) 平均情况o(n2)2.空间复杂度:o(1)3.算法特点稳定排序;算法简便,且容易实现适用于顺序和链式两种存储结构,链式存储时不需要移动记录,只修改指针;适合于初始记录基本有序的情况;当记录无序,且n较大时,不宜采用。
二.折半插入排序1.时间复杂度移动次数受初始排列的影响。
最好情况o(nlog2n) 最坏情况o(n2) 平均情况o(n2)2.空间复杂度o(1)3.算法特点稳定排序;算法简便,且容易实现只适用于顺序存储结构,不能用于链式存储结构;适合记录无序、n较大的情况;三.希尔排序1.时间复杂度2.空间复杂度o(1)3.算法特点不稳定排序,记录跳跃式的移动;只适用于顺序存储结构,不能用于链式存储结构;增量序列可以有多种取法,最后一个增量值必须是1;适合记录无序、n较大的情况;四.冒泡排序1.时间复杂度移动次数和比较次数受初始排列的影响。
最好情况o(n) 最坏情况o(n2) 平均情况o(n2)2.空间复杂度o(1)3.算法特点稳定排序;适用于顺序存储结构和链式存储结构;适合记录无序、n较大时不宜采用;五.快速排序1.时间复杂度移动次数和比较次数受初始排列的影响。
最好情况o(nlog2n) 最坏情况o(n2) 平均情况o(nlog2n)2.空间复杂度:o(log2n) 递归算法3.算法特点不稳定排序;算法简便,且容易实现适用于顺序存储结构;适合记录无序,且n较大情况。
六.直接选择排序1.时间复杂度比较次数不受初始排列的影响,移动次数受影响。
最好情况o(n2) 最坏情况o(n2) 平均情况o(n2)2.空间复杂度o(1)3.算法特点不稳定排序;适用于顺序存储结构和链式存储结构;移动记录的次数较多,适合记录占用空间较多时,采用此方法;七.堆排序1.时间复杂度移动次数和比较次数受初始排列的影响。
排序算法的总结报告范文(3篇)
第1篇一、引言排序是计算机科学中常见的基本操作之一,它涉及到将一组数据按照一定的顺序排列。
在数据处理、算法设计、数据分析等众多领域,排序算法都扮演着重要的角色。
本文将对常见的排序算法进行总结和分析,以期为相关领域的研究和开发提供参考。
二、排序算法概述排序算法可以分为两大类:比较类排序和非比较类排序。
比较类排序算法通过比较元素之间的值来实现排序,如冒泡排序、选择排序、插入排序等。
非比较类排序算法则不涉及元素之间的比较,如计数排序、基数排序、桶排序等。
三、比较类排序算法1. 冒泡排序冒泡排序是一种简单的排序算法,它通过相邻元素之间的比较和交换来实现排序。
冒泡排序的基本思想是:从数组的第一个元素开始,比较相邻的两个元素,如果它们的顺序错误就把它们交换过来;然后,对下一对相邻元素做同样的工作,以此类推,直到没有需要交换的元素为止。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
虽然冒泡排序的时间复杂度较高,但它易于实现,且对数据量较小的数组排序效果较好。
2. 选择排序选择排序是一种简单直观的排序算法。
它的工作原理是:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
与冒泡排序类似,选择排序也适用于数据量较小的数组排序。
3. 插入排序插入排序是一种简单直观的排序算法。
它的工作原理是:将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增加1的有序表。
插入排序的基本操作是:在未排序序列中找到相应位置并插入。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
对于部分有序的数组,插入排序的效率较高。
4. 快速排序快速排序是一种高效的排序算法,它的基本思想是:通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
数组各种排序算法和复杂度分析
数组各种排序算法和复杂度分析Java排序算法1)分类:插⼊排序(直接插⼊排序、希尔排序)交换排序(冒泡排序、快速排序)选择排序(直接选择排序、堆排序)归并排序分配排序(箱排序、基数排序)所需辅助空间最多:归并排序所需辅助空间最少:堆排序平均速度最快:快速排序不稳定:快速排序,希尔排序,堆排序。
2)选择排序算法的时候要考虑数据的规模、数据的类型、数据已有的顺序。
⼀般来说,当数据规模较⼩时,应选择直接插⼊排序或冒泡排序。
任何排序算法在数据量⼩时基本体现不出来差距。
考虑数据的类型,⽐如如果全部是正整数,那么考虑使⽤桶排序为最优。
考虑数据已有顺序,快排是⼀种不稳定的排序(当然可以改进),对于⼤部分排好的数据,快排会浪费⼤量不必要的步骤。
数据量极⼩,⽽起已经基本排好序,冒泡是最佳选择。
我们说快排好,是指⼤量随机数据下,快排效果最理想。
⽽不是所有情况。
3)总结:——按平均的时间性能来分:时间复杂度为O(nlogn)的⽅法有:快速排序、堆排序和归并排序,其中以快速排序为最好;时间复杂度为O(n2)的有:直接插⼊排序、起泡排序和简单选择排序,其中以直接插⼊为最好,特别是对那些对关键字近似有序的记录序列尤为如此;时间复杂度为O(n)的排序⽅法只有,基数排序。
当待排记录序列按关键字顺序有序时,直接插⼊排序和起泡排序能达到O(n)的时间复杂度;⽽对于快速排序⽽⾔,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。
简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布⽽改变。
——按平均的空间性能来分(指的是排序过程中所需的辅助空间⼤⼩):所有的简单排序⽅法(包括:直接插⼊、起泡和简单选择)和堆排序的空间复杂度为O(1);快速排序为O(logn ),为栈所需的辅助空间;归并排序所需辅助空间最多,其空间复杂度为O(n );链式基数排序需附设队列⾸尾指针,则空间复杂度为O(rd )。
——排序⽅法的稳定性能:稳定的排序⽅法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和经过排序之后,没有改变。
各种排序算法的稳定性和时间复杂度小结
各种排序算法的稳定性和时间复杂度小结选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:log2(n)*n堆排序:log2(n)*n希尔排序:算法的复杂度为n的1.2次幂关于快速排序分析这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(log2(n)*n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。
首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
时间复杂度为o(nlogn)的排序算法
时间复杂度为o(nlogn)的排序算法
,但要求有逻辑性。
时间复杂度为O(nlogn)的排序算法是指在排序过程中,每次比较的时
间复杂度为O(n),而每次排序的时间复杂度为O(logn),因此总的时
间复杂度为O(nlogn)。
这类排序算法包括快速排序、归并排序、堆排
序等。
快速排序是一种分治算法,它将一个数组分成两个子数组,其中一个
子数组的所有元素都小于另一个子数组的所有元素,然后对这两个子
数组分别进行快速排序,直到所有子数组都有序为止。
归并排序是一种分治算法,它将一个数组分成两个子数组,然后对这
两个子数组分别进行排序,最后将两个子数组合并成一个有序的数组。
堆排序是一种利用堆这种数据结构所设计的一种排序算法,它的基本
思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值
就是堆顶的根节点。
将其与末尾元素进行交换,此时末尾就为最大值。
然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次
小值。
如此反复执行,便能得到一个有序序列了。
总的来说,时间复杂度为O(nlogn)的排序算法是一类高效的排序算法,它们的排序效率比较高,在实际应用中得到了广泛的应用。
常见排序算法及它们的时间的时间复杂度,空间复杂度
常见排序算法及它们的时间的时间复杂度,空间复杂度⼀、概念扩展------有序度----1、有序元素对:a[i] <= a[j], 如果i < j; 逆序元素对:a[i] > a[j], 如果 i < j。
2、⼀组数据中有/逆序元素对的个数即为有/逆序度3、2,3,1,6这组数据的有序度为4(因为其有有序元素对为4个,分别是(2,3)、(2,6)、(3,6)和(1,6))逆序度为2(因为其有逆序元素对为2个,分别是(2,3)和(2,1))4、1,2,3,6这样完全有序的数组叫作满有序度;满有序度的计算公式为 n*(n-1)/2;5、逆序度 = 满有序度 - 有序度-----原地排序算法---空间复杂度是 O(1) 的排序算法,如:冒泡排序,插⼊排序----稳定排序算法---如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变⼆、冒泡排序1、冒泡排序只会操作相邻的两个数据。
每次冒泡操作都会对相邻的两个元素进⾏⽐较,看是否满⾜⼤⼩关系要求。
如果不满⾜就让它俩互换。
⼀次冒泡会让⾄少⼀个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序⼯作2、冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是⼀个原地排序算法3、当有相邻的两个元素⼤⼩相等的时候,我们不做交换,此时冒泡排序是稳定的排序算法。
4、冒泡排序每交换⼀次,有序度就加 1,直到满有序度;5、冒泡排序最坏情况下,初始状态的有序度是 0,所以要进⾏ n*(n-1)/2 次交换,最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进⾏交换。
我们可以取个中间值 n*(n-1)/4,换句话说,平均情况下,需要 n*(n-1)/4 次交换操作,所以平均时间复杂度就是 O(n^2)三、插⼊排序1、插⼊排序是将数据分为两个区间,已排序区间和未排序区间。
常见排序算法及对应的时间复杂度和空间复杂度
常见排序算法及对应的时间复杂度和空间复杂度转载请注明出处:(浏览效果更好)排序算法经过了很长时间的演变,产⽣了很多种不同的⽅法。
对于初学者来说,对它们进⾏整理便于理解记忆显得很重要。
每种算法都有它特定的使⽤场合,很难通⽤。
因此,我们很有必要对所有常见的排序算法进⾏归纳。
排序⼤的分类可以分为两种:内排序和外排序。
在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使⽤外存,则称为外排序。
下⾯讲的排序都是属于内排序。
内排序有可以分为以下⼏类: (1)、插⼊排序:直接插⼊排序、⼆分法插⼊排序、希尔排序。
(2)、选择排序:直接选择排序、堆排序。
(3)、交换排序:冒泡排序、快速排序。
(4)、归并排序 (5)、基数排序表格版排序⽅法时间复杂度(平均)时间复杂度(最坏)时间复杂度(最好)空间复杂度稳定性复杂性直接插⼊排序O(n2)O(n2)O(n2)O(n2)O(n)O(n)O(1)O(1)稳定简单希尔排序O(nlog2n)O(nlog2n)O(n2)O(n2)O(n)O(n)O(1)O(1)不稳定较复杂直接选择排序O(n2)O(n2)O(n2)O(n2)O(n2)O(n2)O(1)O(1)不稳定简单堆排序O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(1)O(1)不稳定较复杂冒泡排序O(n2)O(n2)O(n2)O(n2)O(n)O(n)O(1)O(1)稳定简单快速排序O(nlog2n)O(nlog2n)O(n2)O(n2)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)不稳定较复杂归并排序O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(nlog2n)O(n)O(n)稳定较复杂基数排序O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(d(n+r))O(n+r)O(n+r)稳定较复杂图⽚版①插⼊排序•思想:每步将⼀个待排序的记录,按其顺序码⼤⼩插⼊到前⾯已经排序的字序列的合适位置,直到全部插⼊排序完为⽌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
Stupid sort — O(n3); 递回版本需要 O(n2) 额外记忆体
Bead sort — O(n) or O(√n), 但需要特别的硬体
Pancake sorting — O(n), 但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
记忆体使用量(以及其他电脑资源的使用)
稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。
平均时间复杂度
插入排序 O(n2)
冒泡排序 O(n2)
选择排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
归并排序 O(n log n)
基数排序 O(n)
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)
不实用的排序算法
Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n²)的。
快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
排序算法
所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对於一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
堆排序
堆排序与前面的算法都不同,它是这样的:
首先新建一个空列表,作用与插入排序中的"有序列表"相同。
找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的
冒泡排序(bubble sort) — O(n2)
鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
插入排序(insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体
不稳定
选择排序 (selection sort)— O(n2)
希尔排序(shell sort)— O(n log n) 如果使用最佳的现在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对於大的、乱数串列一般相信是最快的已知排序
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体
归并排序(merge sort)— O(n log n); 需要 O(n) 额外记忆体
原地归并排序 — O(n2)
二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序
插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
希尔排序 O(n1.25)
鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体
基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的: