小学二年级数学排列组合题完整版

合集下载

排列组合练习题与答案

排列组合练习题与答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加*一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源〞、“生态〞和“环保〞三个夏令营活动,共有90种不同的方案,则男、女同学的人数是〔〕A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站〔n>1〕,则客运车票增加了58种〔从甲站到乙站与乙站到甲站需要两种不同车票〕,则原有的车站有〔〕A.12个B.13个C.14个D.15个2221322选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,假设A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A= (2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,假设要求男女相间,则不同的排法数有〔〕A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进展设计,则不同的点亮方式是〔 〕A.28种B.84种C.180种D.360种答案:1.43451440A A = 〔2〕3434144A A = 〔3〕选B 444421152A A = 〔4〕3424A = 〔5〕4245480A A =〔6〕333424A C = 〔7〕3334144A A = 〔8〕选A 6828C = 四、定序问题:1. 有4名男生,3名女生。

二年级数学的排列组合练习题

二年级数学的排列组合练习题

二年级数学的排列组合练习题成长小学二年级数学练习题
题目一:找出下列每组数中的最小数。

1. 15, 22, 10, 8, 13
2. 7, 3, 9, 12, 5
题目二:选出下列数的奇数。

1. 24
2. 13
3. 8
4. 19
题目三:补充下列数列的下一个数。

1. 5, 7, 9, 11, ___
2. 12, 17, 22, 27, ___
3. 3, 6, 9, 12, ___
题目四:比较下列数的大小,用“>”,“<”或“=”表示。

1. 18 ____ 12
2. 25 ____ 25
3. 13 ____ 15
题目五:在下面的图形中,用正确的数字填空。

(图形:三个圆形,分别标有5,8和3)
题目六:根据下列描述,找出正确的数字。

(描述:这个数字是偶数,比7小,比9大)
题目七:在下列数字中找到众数(出现次数最多的数)。

1. 4, 7, 2, 2, 4, 5, 4
2. 9, 3, 8, 8, 6, 6, 6
题目八:计算下列数的和。

1. 9 + 2 + 6 =
2. 12 + 7 + 3 =
3. 5 + 5 + 5 =
题目九:找到下列数的下一个数。

1. 3, 6, 9, 12, ___
2. 10, 12, 14, 16, ___
3. 21, 24, 27, 30, ___
题目十:用阿拉伯数字填写下列拼写数字。

1. 三十四
2. 二十五
3. 十一
保留空白区域供学生作答。

(完整版)排列组合练习题___(含答案)

(完整版)排列组合练习题___(含答案)

排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有 不同的选法。

3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余 7名队员选2名安排在第二、四位置,那么不同 的出场安排共有 ________________________ 中。

4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天, 要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共 有 有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有 __________ 种不同的奖法。

有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成 一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有 中。

五种不同的收音机和四种不同的电视机陈列一排, 任两台电视机不靠在一起,有 种陈列方法。

10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是 11、6名男生6名女生排成一排,要求男女相间的排法有 12、4名男生和3名女生排成一排,要求男女相间的排法有种排法。

14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有2、8名同学争夺3项冠军,获得冠军的可能性有种。

5、 6、 有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。

7、9、 有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。

种。

种。

13、有4男4女排成一排,要求女的互不相邻有 种排法;要求男女相间有 种。

22、由1、2、3、4、5、6组成没有重复数字的六位数,其中个位数字小于十位数字, 十位数字小于百位数字,则这样的数共有23、A , B, C, D, E 五人站一排,B 必须站A 右边,则不同的排法有24、晚会原定的5个节目已排成节目单,开演前又加了 2个节目,若将这2个节目 插入原节目单中,则不同的插法有 ________________________ 种。

排列组合题目精选(附答案)

排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。

选项D正确。

2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。

选项B正确。

3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。

选项D 错误。

4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。

5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。

6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。

选项B正确。

7.首先从8个元素中选出2个排在前排,有8选2种选择方式。

然后从剩下的6个元素中选出1个排在后排,有6种选择方式。

最后将剩下的5个元素排在后排,有5!种排列方式。

因此不同的排法有8选2×6×5!=28×720=20,160种。

8.首先将甲、乙、丙三人排成一排,有3!种排列方式。

然后将其余4人插入到相邻的位置中,有4!种排列方式。

因此不同的排法有3!×4!=144种。

9.首先将10个名额排成一排,有10!种排列方式。

然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。

因此不同的分配方案有10!÷(6×8)=21,000种。

10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。

然后将甲和乙插入到相邻的位置中,有2种插入方式。

因此不同的派遣方案有8!×2=80,640种。

11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。

人教版二年级数学上册《排列组合》

人教版二年级数学上册《排列组合》
2、把自己写的两位数和同桌说一说; 并交流自己是怎样写出来的。
(定十位法)(定个位法)(位置交换法)
12
21
13
31
12 21
21

12 或
13 31
23
32
23 32
31
13
32
23
每两人握一次 手,三人一共 握几次手?
共握三次手
1、2、3能组成两 位数是: 12 13 21 23 31 32
数学广角好玩吗?有趣吗? 有什么收获呢?
每两人握一次手,三 人一共握手情况是:
共握三次手
为什么三个数字能组成6个两位数, 而三个人只能握三次手呢?
因为两个数字交换位置会组成两个不同 的两位数,而两人握手只能算是一次
数字排列有顺序, 交换数字变新数。 两人握手无顺序, 交换位置无变化。
从狼堡逃回到羊村有几条路可走? 你会选择哪条路线呢?
Α 树林 狼堡
Β
A——C A——D A——E
C
D E
B——C B——D B——E
羊村
两件上衣,一条裙子和一条裤子。你 能搭配出几套不同的穿法?
② ①
③ ④




1、用3、5、7其中的两个数字,能组成 6 个
两位数。
35 53 73 37 57 75
2、用0、2、3其中两个数字,能组成 4 个 两位数 20 30 23 32
人教新课标二年中较大的

1、2能组成几个十位和个位不同的两位数?
(请有序思考)
12 21
密码是由1,2和3 组成的两位数中从 小到大的第四个数
1、2、3能组成几个不同的两位数?
(每个两位数的个位数和十位数不能一样)

人教通用版小学二年级数学搭配组合题大全加总复习题(附答案)

人教通用版小学二年级数学搭配组合题大全加总复习题(附答案)

排列问题:要按一定的顺序进行,才不会选重或选漏。

排列与位置有关。

方法:1、定变法。

如:定十位变个位;定个位变十位。

2、交换法。

也称交换位置法。

※注意:0不能放在高位上!!(做题时要选择适合的方法..) 例1:三张数字卡片1, 2,3,可以摆出多少个不同的两位数?6个。

定十位变个位:12、13、21、23、31、32(十位定为1,个位可以是2、3能写12、13两个数,.......)定个位变十位:21、31、12、32、13、23(十位定为1,个位可以是2、3能写12、13两个数,.......)称交换位置法:12、21、13、31、23、32(选1和2两个数,可以写出两个数12、21,......) 例2:右图这四件衣服,有( )种配套穿法。

可用方法:定上身换下身、定下身换上身、连线法...小试身手1、三张数字卡片8, 6,9,可以摆出多少个不同的两位数?( )个,分别是:2、0、3、5三张数字卡片,可以组成( )个不同的两位数。

分别是: (注意0不能放在高位上)3、4个小朋友坐在同一排的4个位子上看电影,有( )种做法。

(理解困难的最好能画图理解,用①②③④四个数来代替4个小朋友。

)1、 小红有一件牛仔上衣、一件T 恤;两条裙子、一条裤子,一共有( )不同的搭配?(穿衣问题建议用连线法...)2、 早餐里都有3种饮料和3种点心,如果饮料和点心各选择一种,一共有( )种不同的搭配呢?(也可看成穿衣问题)1 2 3 ① ② ③3、乒乓球比赛时,一班的3位代表分别与四班的4位代表握手,他们一共握了()次手。

(也可看成穿衣问题)7、用0、1、2、3可以组成()个不同的三位数?把它们写出来。

8.书架上有5本故事书和6本漫画书,小方每次从书架上任取一本故事书和一本漫画书,一共有多少种不同的取法?(也可看成穿衣问题)9.小红从家出发,途中经过新华书店买了两本书,然后再去游乐园,从小红家到书店有2条路可走,从书店到游乐园有3条路可走,从小红家到游乐园一共有多少种不同的走法?(画图理解)组合问题:组合与位置无关。

(完整版)排列组合练习题与答案

(完整版)排列组合练习题与答案

(完整版)排列组合练习题与答案排列组合习题精选⼀、纯排列与组合问题:1.从9⼈中选派2⼈参加某⼀活动,有多少种不同选法?2.从9⼈中选派2⼈参加⽂艺活动,1⼈下乡演出,1⼈在本地演出,有多少种不同选派⽅法?3. 现从男、⼥8名学⽣⼲部中选出2名男同学和1名⼥同学分别参加全校“资源”、“⽣态”和“环保”三个夏令营活动,已知共有90种不同的⽅案,那么男、⼥同学的⼈数是()A.男同学2⼈,⼥同学6⼈B.男同学3⼈,⼥同学5⼈C. 男同学5⼈,⼥同学3⼈D. 男同学6⼈,⼥同学2⼈4.⼀条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到⼄站与⼄站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个答案:1、2936C = 2、2972A = 3、选 B. 设男⽣n ⼈,则有2138390n n C C A -=。

4、2258m nm A A +-= 选C.⼆、相邻问题:1. A 、B 、C 、D 、E 五个⼈并排站成⼀列,若A 、B 必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的⽂艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在⼀起,⽂艺书也连在⼀起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排⼀个有4个歌唱节⽬和3个舞蹈节⽬的演出节⽬单,任何两个舞蹈节⽬都不相邻,有多少种不同排法?2、1到7七个⾃然数组成⼀个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男⽣和4名⼥⽣站成⼀排,若要求男⼥相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成⼀排的8个空位上,坐3⼈,使每⼈两边都有空位,有多少种不同坐法?5.8张椅⼦放成⼀排,4⼈就坐,恰有连续三个空位的坐法有多少种?6. 排成⼀排的9个空位上,坐3⼈,使三处有连续⼆个空位,有多少种不同坐法?7. 排成⼀排的9个空位上,坐3⼈,使三处空位中有⼀处⼀个空位、有⼀处连续⼆个空位、有⼀处连续三个空位,有多少种不同坐法?8. 在⼀次⽂艺演出中,需给舞台上⽅安装⼀排彩灯共15只,以不同的点灯⽅式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进⾏设计,那么不同的点亮⽅式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424AC = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男⽣,3名⼥⽣。

小学数学排列组合公式练习题

小学数学排列组合公式练习题

小学数学排列组合公式练习题1. 问题描述:在一场比赛中,有10名参赛选手,要从中选出3名获奖者。

问共有多少种不同的结果?解析:这是一个从10个数中选取3个数的排列问题,根据排列组合公式,可以使用阶乘的方法求解。

解答:根据排列组合公式,可以使用阶乘的方法求解。

首先计算10的阶乘,即10!= 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3,628,800。

然后计算7的阶乘,即7!= 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5,040。

最后计算3的阶乘,即3!= 3 × 2 × 1 = 6。

根据排列组合公式,可得到结果为:10!/ (7! × 3!) = 120。

答案:共有120种不同的结果。

2. 问题描述:某班级共有20名学生,老师要从中选择4名学生参加学科竞赛,问共有多少种不同的结果?解析:这是一个从20个数中选取4个数的组合问题,同样可以使用排列组合公式进行求解。

解答:根据排列组合公式,可以使用阶乘的方法求解。

首先计算20的阶乘,即20!= 20 × 19 × 18 × ... × 3 × 2 × 1 =2,432,902,008,176,640,000。

然后计算16的阶乘,即16!= 16 × 15 × 14 × ... × 3 × 2 × 1 = 20,922,789,888,000。

最后计算4的阶乘,即4!= 4 ×3 × 2 × 1 = 24。

根据排列组合公式,可得到结果为:20!/ (16! × 4!) = 48,620。

(完整版)排列组合练习题(全集)

(完整版)排列组合练习题(全集)

排列组合复习题型总结一、特殊对象问题:优先进行处理1.有5人排成一列,其中甲不在第一的位置,有多少种排法?2.有5人排成一列,其中甲不能在第一,乙不能在最后,有多少种排法?二、名额分配问题:名额插挡板法3.有10个三好学生的名额分给3个班,要求每班至少有一个名额,怎么分?4.有7个三好学生的名额,分给3个班,怎么分?三、分组分配问题:分配等于先分组,再把组分配出去5.有6本不同的书,平均分给甲乙丙三人,有多少种分法?6.有6本不同的书,平均分为三组,有多少种分法?7.有6本不同的书,分甲1本,乙2本,丙3本,有多少种分法?8.有6本不同的书,分三组,一组1本,一组2本,一组3本,有多少分法?9.有6本不同的书,分给三个人,一人1本,一人2本,一人3本,有多少种分法?10.有9本不同分成三组,一组5本,另外两组各2本,有多少种分法?11.有9本不同的书,分给甲乙均2本,丙5本,有多少种分法?12.有9本不同的书,分给两人各2本,另一人5本,有多少种分法?四、相邻问题:捆绑法13.8人排成一列,甲乙丙三人必须相邻,有多少种排法?14.8人排成一列,甲乙两人必须相邻,且都不和丙相邻,有多少种排法?15.一排8个座位,3人坐,5个空座位相邻,有多少种坐法?16.一排8个座位,3人坐,其中恰有4个空座位相邻,有多少种坐法?五、不相邻问题:插空法17.某人射击训练,8枪命中3枪,恰好没有任何2枪连续命中,有多少情况?18.8人排成一列,甲乙丙三人不可相邻,有多少种排法?19.8盏灯关掉3盏,不许关掉相邻的,也不许关掉两端,多少种方法?20.某人射击训练,8枪命中3枪,恰好2枪连续命中,有多少种情况?六、成双成对问题:先按双取出,再从各双分别取出一只,自然不成双21.从6双不同鞋子中取出4只,要求都不许成双,有多少种方法?22.从6双不同鞋子中取出4只,要求恰好有一双,有多少种方法?七、可(不可)重复使用的对象:问题中有两组对象,解决问题时要以不可重复使用的对象作为分步的标准(住店、投信、映射、冠亚军等)23.5人住3家店,有多少种住法?24.若有4项冠军在3个人中产生,没有并列冠军,问有多少种不同的夺冠可能性。

(完整版)排列组合练习题与答案

(完整版)排列组合练习题与答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个2221322选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男生,3名女生。

(完整版)排列组合经典练习(带答案)

(完整版)排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

二年级数学排列组合练习题

二年级数学排列组合练习题
二年级数学排列组合练习题
1.小明有两件颜色不同的上衣和两条颜色不同的裤子,他可以有 种不同的穿法。
2.三个小朋友,进行乒乓球比赛,每两人进行一次,一共要进行 次比赛。
3.二年级 2 班上体育课,老师让 23 名同学打蓝球,19 名同学做操。 ①全班共有多少个同学? ②打蓝球的同学比做操的多几人?
4.看图列式计算。

பைடு நூலகம்

一共有多少人?
一共有几只 ?
5.你喜欢的乘法口诀是(
),你能根据这个口诀写出两个
不同算式吗?(
),(
)。
6.观察物体。
小小红红
请你连一连,下面分别是谁看到的?
小东
小东
小明
小红
(第 1 页)
1/2
小东
小明
写一写有( )种付钱方式,并写在下面:
小朋友们想一想,一共握( )次手呢。
合影的坐法有( )种。 请你用数字来代替,把
你的想法写在上面
(第 2 页) 2/2

排列组合典型例题(带详细答案)

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法例7 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

(完整版)小学二年级数学排列组合题

(完整版)小学二年级数学排列组合题

小学二年级数学排列组合题一、关于数字(1)3、6、8三个数字,任意两个数字相加,会有几个答案?任意两个数字组合,可以得到几个两位数?(2)3、0、8三个数字,任意两个数字相加,会有几个答案?任意两个数字组合,可以得到几个两位数?(3)2、5、7、9四个数字,任意两个数字相加,会有几个答案?任意两个数字组合,可以得到几个两位数?(4)2、5、0、9四个数字,任意两个数字相加,会有几个答案?任意两个数字组合,可以得到几个两位数?(5)1、3、0、7、9五个数字,任意两个数字相加,会有几个答案?任意两个数字组合,可以得到几个两位数?(1)以下3枚硬币,可以形成几种币值?(2)以下4枚硬币,可以形成几种币值?(3)以下4种纸币,可以形成几种币值?(1)学军小学二(1)、二(2)、二(3)班要举行足球赛,每两个班之间都要比一场,一共要踢几场球?(2)学军小学二(1)、二(2)、二(3)、二(4)班要举行足球赛,每两个班之间都要比一场,一共要踢几场球?(3)学军小学二(1)、二(2)、二(3)、二(4)、二(5)班要举行足球赛,每两个班之间都要比一场,一共要踢几场球?(4)学军小学二(1)、二(2)、二(3)、二(4)、二(5)、二(6)班要举行足球赛,每两个班之间都要比一场,一共要踢几场球?四、服装搭配(1)小明有两件外套、两条长裤,他有几种穿法?小明有三件外衣,两条长裤,两条围巾,他共有几种穿法(1)小明有25元钱,下面3本书,他最多可买几本?有几种买法?12元12元12元(2)小明有40元钱,下面这些书,小明至少要买一本,共有几种买法?各花了多少钱?12元12元10元35元5元(1)小黄和小红,要排成一列纵队,有几种排法?小黄小红(2)小虹、小绿、小蓝3个小朋友排成一列纵队,有几种排法?小虹小绿小蓝(3)小刚、小明、小花、小玉4个小朋友排成一列纵队,有几种排法?小刚小明小花小玉(4)刚刚、花花、明明、月月、田田、朋朋6个小朋友排成一列纵队,有几种排法?刚刚花花明明月月田田朋朋七、关于路的走法小红家到小黄家有3条路,小黄家到学校也有3条路,小红约小黄一起去学校上学,小红去学校共有多少种走法?八、关于开锁小明有5把锁,每把锁一把钥匙。

人教版二年级上数学排列组合

人教版二年级上数学排列组合

密码是由数字卡片 3,4和5组成的两位 数中从小到大排列 的第四个数
45
每两个人握一次手,三个人一共 握了几次手呢?
为什么三个数字能组成6个两位数, 而三个人却只握三次手呢?
因为两个数字交换位置会组成两个不同 的两位数,而两人握手只能算是一次。
付钱了才能吃!每块5角!
5角
从狼堡逃回到羊村有几条路可走? 你会选择哪条路线呢?
狼堡
Α 小桥 Β
A——C A——D A——E
C
羊村
D E B——C
B——D
B——E
两件上衣,两条裤子。你能搭配出几 套不同的穿法?
② ①
③ ④
城关小学 邓跃菊两位数?
用1、2、3这三个数字能组成几个 不同的的两位数?
• 1、2、3能组成几个两位数? 12 13 21 23 31 32
只有做到有 序才不会遗 漏,也不会 重复!
12 13 23
21 31 32
数字1、2、3能组成几个不同的两位数呢? 用自己喜欢的方式方式摆卡片。

二年级排列组合题

二年级排列组合题

二年级排列组合题在二年级数学学习中,排列组合是一个重要的概念。

通过排列组合,我们可以解决许多有关选择和安排的问题。

本文将介绍二年级排列组合题的基本概念和解题方法。

一、排列组合的基本概念排列和组合是数学中的两个重要概念,它们用来描述选择和安排的方式。

1. 排列排列指的是从一组元素中选取若干个元素进行安排,元素之间有顺序之分。

比如,有4个不同的字母A、B、C、D,我们可以从中选取2个字母进行排列,共有12种不同的排列方式:AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC。

排列的个数可以用公式nPm表示,其中n表示元素的个数,而m表示选取的元素个数。

2. 组合组合指的是从一组元素中选取若干个元素进行选择,元素之间没有顺序之分。

比如,有4个不同的字母A、B、C、D,我们可以从中选取2个字母进行组合,共有6种不同的组合方式:AB, AC, AD, BC, BD, CD。

组合的个数可以用公式nCm表示,其中n表示元素的个数,而m 表示选取的元素个数。

二、二年级排列组合题的解题方法在二年级的学习中,排列组合的题目通常简单且直观。

我们可以通过以下步骤来解决这些问题。

1. 确定题目类型首先,我们要明确题目是属于排列还是组合题型。

排列题是涉及到元素之间有顺序的选择和安排,而组合题是涉及到元素之间没有顺序的选择。

通过这一步,我们能够更好地选择合适的解题方法。

2. 计算排列或组合的个数根据题目中的条件和要求,我们可以使用公式nPm或nCm来计算排列或组合的个数。

根据公式,我们需要知道元素的个数和选取的元素个数,将其代入公式中即可得到结果。

3. 解答问题在计算出排列或组合的个数后,我们可以进一步分析题目中的问题。

根据题目要求,我们可以得出答案或者进一步思考问题。

三、示例题目为了更好地理解排列组合的概念和解题方法,我们来看几个示例题目。

示例题目1:从字母A、B、C、D中选取3个字母进行排列,有多少种不同的排列方式?解题步骤:1. 确定题目类型为排列题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学二年级数学排列组
合题
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
小学二年级数学排列组合题一、关于数字
(1)3、6、8三个数字,任意两个数字相加,会有几个答案任意两个数字组合,可以得到几个两位数
(2)3、0、8三个数字,任意两个数字相加,会有几个答案任意两个数字组合,可以得到几个两位数
(3)2、5、7、9四个数字,任意两个数字相加,会有几个答案任意两个数字组合,可以得到几个两位数
(4)2、5、0、9四个数字,任意两个数字相加,会有几个答案任意两个数字组合,可以得到几个两位数
(5)1、3、0、7、9五个数字,任意两个数字相加,会有几个答案任意两个数字组合,可以得到几个两位数
二、关于币值
(1)以下3枚硬币,可以形成几种币值?
(2)以下4枚硬币,可以形成几种币值?
(3)以下4种纸币,可以形成几种币值?
三、关于比赛
(1)学军小学二(1)、二(2)、二(3)班要举行足球赛,每两个班之间都要比一场,一共要踢几场球?
(2)学军小学二(1)、二(2)、二(3)、二(4)班要举行足球赛,每两个班之间都要比一场,一共要踢几场球?
(3)学军小学二(1)、二(2)、二(3)、二(4)、二(5)班要举行足球赛,每两个班之间都要比一场,一共要踢几场球?
(4)学军小学二(1)、二(2)、二(3)、二(4)、二(5)、二(6)班要举行足球赛,每两个班之间都要比一场,一共要踢几场球?
四、服装搭配
(1)小明有两件外套、两条长裤,他有几种穿法?
小明有三件外衣,两条长裤,两条围巾,他共有几种穿法
五、关于买书
(1)小明有25元钱,下面3本书,他最多可买几本有几种买法
12元 12元 12元
(2)小明有40元钱,下面这些书,小明至少要买一本,共有几种买法?各花了多少钱?
12元 12元 10元 35元 5元
六、关于排队
(1)小黄和小红,要排成一列纵队,有几种排法?
小黄小红
(2)小虹、小绿、小蓝3个小朋友排成一列纵队,有几种排法?
小虹小绿小蓝
(3)小刚、小明、小花、小玉4个小朋友排成一列纵队,有几种排法?
小刚小明小花小玉
(4)刚刚、花花、明明、月月、田田、朋朋6个小朋友排成一列纵队,有几种排法?
刚刚花花明明月月田田朋朋七、关于路的走法
小红家到小黄家有3条路,小黄家到学校也有3条路,小红约小黄一起去学校上学,小红去学校共有多少种走法?
八、关于开锁
小明有5把锁,每把锁一把钥匙。

他不小心将钥匙搞乱了,现在他最多用少次,可将锁全部打开?。

相关文档
最新文档