高中数学 1.3诱导公式(二)教案 新人教A版必修4

合集下载

高中数学 必修四 1.3诱导公式(二)教案 新人教A版必修4

高中数学  必修四  1.3诱导公式(二)教案 新人教A版必修4

1.3诱导公式(二)一、复习:诱导公式(一)tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k诱导公式(二) tan )180tan(cos )180cos( sin )180sin(αααααα=+︒-=+︒-=+︒诱导公式(三) tan )tan(cos )cos( sin )sin(αααααα-=-=--=-诱导公式(四)sin(π-α)=sin α cos(π -α)=-cos α tan (π-α)=-tan α诱导公式(五)sin )2cos( cos )2sin(ααπααπ=-=-诱导公式(六)sin )2cos( cos )2sin(ααπααπ-=+=+二、新课讲授:练习1.将下列三角函数转化为锐角三角函数:).317sin()4( ,519cos )3( ,3631sin )2( ,53tan )1(πππ-︒ 练习2:求下列函数值:).580tan )4( ,670sin )3( ),431sin()2( ,665cos)1(︒︒-ππ 例1.证明:(1)ααπcos )23sin(-=- (2)ααπsin )23cos(-=- 例2.化简:.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(αππααπαπαπαπαπαπ+-----++- 的值。

求:已知例)sin(2)4cos()3sin()2cos( ,3)tan( .3απααπαπαπ-+-+--=+ 解:.3tan ,3)tan(=∴=+ααπ.734332tan 4tan 32sin 4cos 3sin 2cos =-⨯+-=-+-=-+-=αααααα原式 例4. .)3cos(4)3tan(3)sin(2,0cos sin ,54)sin(的值求且已知πααππαααπα--+-<=+小结:①三角函数的简化过程图:②三角函数的简化过程口诀:负化正,正化小,化到锐角就行了.练习3:教材P28页7.化简:);2cos()2sin(25sin 2cos )1(αππααππα-⋅-⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛- .)sin()360tan()(cos )2(o 2ααα-+--例5. .273021cos ,sin 2παπαα<<=+-的两根,且的方程是关于已知ax x x .)900sin()180cos()6cos()2sin()6tan(的值求αααπαπαπ-︒︒--+-- 三.课堂小结①熟记诱导公式五、六;②公式一至四记忆口诀:函数名不变,正负看象限;③运用诱导公式可以将任意角三角函数转化为锐角三角函数.四.课后作业:①阅读教材;②《学案》P.16-P.17的双基训练.。

高中数学 人教A版必修4 第1章 1.3三角函数的诱导公式(二)

高中数学 人教A版必修4    第1章 1.3三角函数的诱导公式(二)

研一研·问题探究、课堂更高效 (2)诱导公式五的推导:
§1.3(二)
π 问题 1 若 α 为任意角,那么 -α 的终边与角 α 的终边有怎 2 样的对称关系? 本 课 π 时 答 角 α 的终边与 -α 的终边关于直线 y=x 对称. 栏 2 目 π 开 问题 2 设角 α 与单位圆交于点 P(x, y), 则 - 2 关
y.
所以,对任意角 α
sin α .
π 都有:sin2-α=
cos α
π ,cos2-α=
研一研·问题探究、课堂更高效
探究点二 诱导公式六
π ,cos2+α=
§1.3(二)
(1)诱导公式六: π sin2 +α= cos α
本 课 时 栏 目 开 关
填一填·知识要点、记下疑难点
§1.3(二)
2.诱导公式五~六的记忆 π π -α, +α 的三角函数值,等于 α 的异名三角函数值, 2 2 本
课 时 栏 目 开 关
前面加上一个把 α 看成锐角时原函数值的符号, 记忆口诀 为“函数名改变,符号看象限”.
研一研·问题探究、课堂更高效
§1.3(二)
α 与单位圆交于点 P′,写出点 P′的坐标.
答 P′(y,x).
研一研·问题探究、课堂更高效
§1.3(二)
问题 3 根据任意角三角函数的定义,完成下列填空:
本 课 时 栏 目 开 关
sin α= y ,cos α= x ;
π sin2 -α=
x
π ,cos2-α=
§1.3(二)
本 课 时 栏 目 开 关
§1.3(二)
【学习要求】 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化 简与证明问题. 本 课 时 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与 栏 目 个性,培养由特殊到一般的数学推理意识和能力. 开 关 现问题、解决问题的能力.

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

sin
2
cos
,
cos
2
sin .
sin
2
cos
,
cos
2
sin
.
cos180 cos
原式=
cos
sin
sin cos
1
练习 利用公式求下列三角函数值:
1 cos 420 cos60 cos 60 1 2
2 sin
7 6
sin
5 6
sin
6
1 2
3sin 1300
4
cos
79 6
cos
5 6
cos
6
3 2
练习
化简 1sin 180 cos sin 180
4 tan 324 32 __ta_n__3_5_2_8_;
化简11scio原ns式52=cs2ions•22sin•2sin •c•osco2s
;
= sin • sin • cos
cos
= sin2
化简
2 cos2
tan 360
sin .
原式=cos2 tan sin
1.思考
给定一个角α (1)终边与角α的终边关于原点对称的角 与α有什么关系?它们的三角函数之间有 什么关系?
公式二
y
P(x,y)
sin(π+α)=-sinα cos(π+α)=-cosα
π +α α
O
x
tan(π+α)=tanα
P(-x,-y)
(2)终边与角α的终边关于x轴对称的角与α 有什么关系?它们的三角函数之间有什么 关系?
y
P(-x,y)
π-α P(x,y)

1.3 三角函数的诱导公式 课件(共19张PPT)高中数学人教A版必修四

1.3 三角函数的诱导公式 课件(共19张PPT)高中数学人教A版必修四

2k (k Z)、 、 的三角函数值,等于
的同名函数值,前面加上一个把 看成锐角时原函
数值的符号。
14
理论迁移
例1 求下列各三角函数的值:
(1)cos225
(2)sin 11
3
(3)sin(-16 )
3
(4)cos(-2040 )
15
利用诱导公式一~四,可以把任意角的三角函数转化为锐角三角函数,一般可按下面 步骤进行:
任意负角的 用公式一 任意正角的 三角函数 或公式三 三角函数
用公式一
锐角的三角 用公式二 0~2π的角
函数
或公式四 的三角函数
这是一种化归与转化的数学思想.
16
课堂小结: 1.小结使用诱导公式化简任意角的三 角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想. 3.“学会”学习的习惯.
17
作业布置:
公式二:
sin( ) sin cos( ) cos tan( ) tan
10
问题4:公式中的角 仅是锐角 吗?
11
知识探究(二)
对于任意给定的一个角α,-α的终边与α的终边
有什么关系?
那么它们之间的三角函
数值有什么关系?
y
α的终边
P(x,y)
公式三:
o
Q(x,-y)
x
sin( ) sin
1
(一)回顾旧知
问题1: (1)我们是怎样利用单位圆定义任意角的三角函数? (2) 终边相同的角的三角函数之间有什么关系?
2
温故而知新
1、任意角的三角函数的定义
sin y
y
α的终边
cos x tan y (x 0)
x

高中数学第一章三角函数第3节三角函数的诱导公式第2课时诱导公式五六教案含解析新人教A版必修4

高中数学第一章三角函数第3节三角函数的诱导公式第2课时诱导公式五六教案含解析新人教A版必修4

第2课时 诱导公式五、六[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 26~P 27的内容,回答下列问题. 如图所示,设α是任意角,其终边与单位圆交于点P 1(x ,y ),与角α的终边关于直线y =x 对称的角的终边与单位圆交于点P 2.(1)P 2点的坐标是什么? 提示:P 2(y ,x ).(2)π2-α的终边与角α的终边关于直线y =x 对称吗?它们的正弦、余弦值有何关系?提示:对称.sin ⎝ ⎛⎭⎪⎫π2-α=cos α,cos ⎝ ⎛⎭⎪⎫π2-α=sin α. 2.归纳总结,核心必记 (1)诱导公式五和公式六(2)诱导公式的记忆诱导公式一~六可归纳为k ·π2±α的形式,可概括为“奇变偶不变,符号看象限”:①“变”与“不变”是针对互余关系的函数而言的.②“奇”、“偶”是对诱导公式k ·π2±α中的整数k 来讲的.③“象限”指k ·π2±α中,将α看成锐角时,k ·π2±α所在的象限,根据“一全正,二正弦、三正切,四余弦”的符号规律确定原函数值的符号.[问题思考](1)诱导公式五、六中的α是任意角吗? 提示:是.(2)在△ABC 中,角A 2与角B +C2的三角函数值满足哪些等量关系?提示:∵A +B +C =π,∴A 2=π2-B +C2,∴sin A 2=sin ⎝ ⎛⎭⎪⎫π2-B +C 2=cos B +C 2,cos A 2=cos ⎝ ⎛⎭⎪⎫π2-B +C 2=sin B +C 2.[课前反思](1)诱导公式五: ;(2)诱导公式六: .知识点1化简求值讲一讲1.已知f (α)=sin π-αcos 2π-αcos ⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-αsin ()-π-α.(1)化简f (α);(2)若α为第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值;(3)若α=-31π3,求f (α)的值.[尝试解答] (1)f (α)=sin αcos α()-sin αsin αsin α=-cos α.(2)∵cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α=15,∴sin α=-15, 又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=265.(3)f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-6×2π+5π3 =-cos 5π3=-cos π3=-12.类题·通法三角函数式化简的方法和技巧(1)方法:三角函数式化简的关键是抓住函数名称之间的关系和角之间的关系,据此灵活应用相关的公式及变形,解决问题.(2)技巧:①异名化同名;②异角化同角;③切化弦. 练一练1.已知f (x )=sin 3π-x cos ⎝⎛⎭⎪⎫x -3π2tan x -2πsin ⎝ ⎛⎭⎪⎫π2-x cos ⎝⎛⎭⎪⎫-x -π2tan x -5π.(1)化简f (x );(2)当x =π3时,求f (x )的值;(3)若f (x )=1,求sin ⎝⎛⎭⎪⎫3π2-x cos ⎝ ⎛⎭⎪⎫-x -7π2的值.解:(1)f (x )=sin x -sin x tan xcos x -sin x tan x =tan x .(2)当x =π3时,f (x )=tan π3= 3.(3)若f (x )=1,则tan x =1,所以sin ⎝⎛⎭⎪⎫3π2-x cos ⎝⎛⎭⎪⎫-x -7π2=-cos x sin x =-1tan x =-1.知识点2条件求值问题讲一讲2.(1)已知cos 31°=m ,则sin 239°tan 149°的值是( ) A.1-m2mB.1-m 2C .-1-m 2mD .-1-m 2(2)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α的值为________. [尝试解答] (1)sin 239°tan 149°=sin(180°+59°)·tan(180°-31°) =-sin 59°(-tan 31°)=-sin(90°-31°)·(-tan 31°) =-cos 31°·(-tan 31°)=sin 31°=1-cos 231°=1-m 2. (2)cos ⎝⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=12. 答案:(1)B (2)12类题·通法解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角,函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.练一练2.已知cos(π+α)=-12,求cos ⎝ ⎛⎭⎪⎫π2+α的值. 解:∵cos(π+α)=-cos α=-12,∴cos α=12,∴α为第一或第四象限角.①若α为第一象限角,则cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫122=-32; ②若α为第四象限角,则cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫122=32.知识点3三角恒等式的证明讲一讲3.求证:2sin ⎝⎛⎭⎪⎫θ-3π2cos ⎝ ⎛⎭⎪⎫θ+π2-11-2sin 2π+θ=tan 9π+θ+1tan π+θ-1. [尝试解答] 左边=-2sin ⎝ ⎛⎭⎪⎫3π2-θ·-sin θ-11-2sin 2θ =2sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝ ⎛⎭⎪⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=sin θ+cos θ2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ,右边=tan 9π+θ+1tan π+θ-1=tan θ+1tan θ-1=sin θ+cos θsin θ-cos θ,∴左边=右边,原式得证.类题·通法三角恒等式的证明策略对于恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一、变更论证的方法.常用定义法、化弦法,拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法.练一练3.求证:sin2π-θcos π+θcos ⎝ ⎛⎭⎪⎫π2+θcos ⎝ ⎛⎭⎪⎫11π2-θcos π-θsin 3π-θsin -π-θsin ⎝ ⎛⎭⎪⎫9π2+θ=-tan θ.证明:sin2π-θcos π+θcos ⎝ ⎛⎭⎪⎫π2+θcos ⎝ ⎛⎭⎪⎫11π2-θcos π-θsin 3π-θsin -π-θsin ⎝ ⎛⎭⎪⎫9π2+θ=-sin θ·-cos θ·-sin θ·co s ⎝⎛⎭⎪⎫3π2-θ-cos θ·sin θ·sin θ·si n ⎝ ⎛⎭⎪⎫π2+θ=sin θ·cos θ·sin θ·sin θ-cos θ·sin θ·sin θ·cos θ=-tan θ.[课堂归纳·感悟提升]1.本节课的重点是诱导公式五、六及其应用,难点是利用诱导公式解决条件求值问题. 2.要掌握诱导公式的三个应用(1)利用诱导公式解决化简求值问题,见讲1; (2)利用诱导公式解决条件求值问题,见讲2; (3)利用诱导公式解决三角恒等式的证明问题,见讲3. 3.本节课要掌握一些常见角的变换技巧π6+α=π2-⎝ ⎛⎭⎪⎫π3-α⇔⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫π3-α=π2,π4+α=π2-⎝ ⎛⎭⎪⎫π4-α⇔⎝ ⎛⎭⎪⎫π4+α+⎝⎛⎭⎪⎫π4-α=π2,⎝ ⎛⎭⎪⎫5π6+α-⎝ ⎛⎭⎪⎫π3+α=π2等.。

数学:《三角函数的诱导公式》教案(新人教A版必修4)高一

数学:《三角函数的诱导公式》教案(新人教A版必修4)高一

一、 1.公式 1: (复习) sin(360k+) = sin, cos(360k+) =cos. tan(360k+) = tg, cot(360k+) = ctg. sec(360k+) = sec, csc(360k+) = csc
2.对于任一 0到 360的角,有四种可能(其中为不大于 90的非负角)
, 360 ) 为第四象限角

3.公式单位圆交于点 P(x,y),则 180+终边与单位圆交于点 P’(-x,-y)
sin(180+) = sin, tan(180+) = tg,
P (-x, -y)
cos(180+) = cos. cot(180+) = ctg. csc(180+) = csc
csc() = csc
5.公式 4:
sin(180) = sin[180+()] = sin() = sin, cos(180) = cos[180+()] = cos() = cos,
同理可得:
sin(180) = sin, tan(180) = tan, sec(180) = sec,
课题 科目 数学 年级 高一
§诱导公式(1)
主备人 审核人
要求学生掌握 360 k + ,
教学目标
180 ,
180 + ,
360 ,
诱导公式的推
导过程,并能运用化简三角式,从而了解、领会把未知问题化归为已知问题的数学思想。
教学重点 教学难点 主要教具 直尺 教 学 过 程 设 计 备 注
教后感:
三、小结:360 k + ,

[教案精品]新课标高中数学人教A版必修四全册教案1. 3三角函数的诱导公式(二)

[教案精品]新课标高中数学人教A版必修四全册教案1. 3三角函数的诱导公式(二)

1.3诱导公式<二)教案目标<一)知识与技能目标⑴理解正弦、余弦的诱导公式.⑵培养学生化归、转化的能力.<二)过程与能力目标<1)能运用公式一、二、三的推导公式四、五.<2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.<三)情感与态度目标通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.教案重点掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.教案难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.教案过程一、复习:诱导公式<一)诱导公式<二)诱导公式<三)诱导公式<四)sin(p-a>=sina cos(p-a>=-cosa tan(p-a>=-tanab5E2RGbCAP诱导公式(五>诱导公式<六)二、新课讲授:练习1.将下列三角函数转化为锐角三角函数:练习2:求下列函数值:例1.证明:<1)<2)例2.化简:解:例4.小结:①三角函数的简化过程图:练习3:教材P28页7.化简:例5.三.课堂小结①熟记诱导公式五、六;②公式一至四记忆口诀:函数名不变,正负看象限;③运用诱导公式可以将任意角三角函数转化为锐角三角函数.四.课后作业:①阅读教材;②《学案》P.16-P.17的双基训练.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

03【数学】1.3《三角函数的诱导公式》教案(新人教A版必修4)

03【数学】1.3《三角函数的诱导公式》教案(新人教A版必修4)

第一章三角函数4-1.3三角函数的诱导公式一、教材分析(一)教材的地位与作用:1、本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。

2、求三角函数值是三角函数中的重要问题之一。

诱导公式是求三角函数值的基本方法。

诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90°角的三角函数值问题。

诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式。

这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。

(二)教学重点与难点:1、教学重点:诱导公式的推导及应用。

2、教学难点:相关角边的几何对称关系及诱导公式结构特征的认识。

二、目标分析根据教学内容的结构特征,依据学生学习的心理规律和新课程标准的要求,结合学生的实际水平,本节课的教学目标为:1、知识目标:(1)识记诱导公式。

(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明。

2、能力目标:(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法。

(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式。

(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力。

3、情感目标:(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神。

(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想。

300 2100 х三、过程分析(一)创设问题情景,引导学生观察、联想,导入课题I 重现已有相关知识,为学习新知识作铺垫。

必修4教案1.3 三角函数的诱导公式(2课时)

必修4教案1.3 三角函数的诱导公式(2课时)

教学要求:掌握π+α、-α、π-α三组诱导公式,并能熟练运用进行化简与求值. 教学重点:应用诱导公式.教学难点:理解诱导公式推导.教学过程:一、复习准备:1. 写出2k π+α的诱导公式.2. 提问:求任意角的三角函数值如何求?二、讲授新课:1. 教学诱导公式:① 讨论:利用诱导公式(一),将任意范围内的角的三角函数值转化到0~2π后,又将如何将0~2π间的角转化到0~2π呢? 方法:设0°≤α≤90°, (写成β的分段函数)则90°~180°间角,可写成180°-α;180°~270°间的角,可写成180°+α;270°~360°间的角,可写成360°-α.② 推导π+α的诱导公式:复习单位圆:以原点为圆心,单位长为半径的圆.思考:角α的终边与单位圆交于点P (x , y ),则sin α=?cos α=?讨论:α与π+α终边有何关系?设交单位圆于P (x , y )、P ’,则P ’坐标怎样?计算sin(π+α)、cos(π+α)、tan(π+α),并与sin α、cos α、tan α比较.提出诱导公式二.③ 仿上面的步骤推导-α、π-α的诱导公式.讨论:如何由π+α、-α的诱导公式得到π-α的诱导公式? 变角:π-α=π+(-α) 列表比较四组诱导公式,观察符号情况? 口诀:函数名不变,符号看象限. (“符号”是把任意角α看成锐角时,2()k k Z πα±∈所在象限的三角函数值的符号.)2. 教学例题:① 出示例1:求值:sin225°、 cos 43π、sin(-3π)、cos (-76π)、tan (-200°) 分析角的特点→学生口答. 小结:运用诱导公式的格式;注意符号.② 出示例2:化简sin(180)cos(720)cos(180)sin(180)αααα︒+︒+--︒-︒- 师生共练→小结:公式运用③ 练习:已知cos(π+x )=0.5,求cos(2π-x )的值;思考:求cos(π-x )的值.④ 讨论:四组诱导公式的作用? (分别化哪个范围的角到哪个范围?)3. 小结:四组诱导公式的推导、记忆、运用.三、巩固练习:1. 求证:tan(2)sin(2)cos(6)cos()sin(5)παπαπααππα-----+=tan α2. 化简:sin 250cos790︒+︒(-1) 4. 作业:教材P31 2、3、4题.教学要求:掌握2πα、2π+α两组诱导公式,能熟练运用六组诱导公式进行求值、化简、证明. 教学重点:熟练运用诱导公式.教学难点:诱导公式的推导.教学过程:一、复习准备:1. 默写关于2k π+α、π+α、-α、π-α的四组诱导公式2. 推导2π-α的诱导公式.二、讲授新课:1. 教学诱导公式推导:① 讨论:2π-α的终边与α的终边有何关系? (关于直线y =x 对称) ② 讨论:2π-α的诱导公式怎样? ③ 讨论:如何由前面的诱导公式得到2π+α的诱导公式? 比较:两组诱导公式的记忆 ④ 讨论:如何利用诱导公式,将任意角转化为锐角的三角函数?(转化思想)⑤ 比较:六组诱导公式的记忆. (六组诱导公式都可统一为“()2k k Z πα±∈”的形式,记忆的口诀为“奇变偶不变,符号看象限”. 符号看象限是把α看成锐角时原三角函数值的符号)2. 教学例题:① 出示例1:求下列各角的三个三角函数的值.56π、 43π、 74π、 1050°、 -514π (示范-514π的求值;其余学生试练,四人板演;订正;小结:诱导公式的运用) ② 出示例2:求证cos()sin(5)sin(4)sin(7)cot()παπαπαπααπ---+--=1 (学生分析公式运用→试练→订正→小结:公式运用. )③ 练习: 列表写出0~2π间所有特殊角的三个三角函数的值.3. 小结:诱导公式的记忆是重中之重;利用诱导公式,将任意角的三角函数值转化为求锐角三角函数的值,这是学习诱导公式的主要目的;注意公式之间的相互联系和变形使用公式.三、巩固练习:1. 化简:tan(150)cos(210)cos(420)cot(600)sin(1050)-︒-︒-︒-︒-︒ ) 2. 已知tan(π+α)=4, 则sin(π+α)cos(π-α)= .3. 化简:sin()sin()sin()cos()k k k k πααπαπαπ++-+- (k ∈Z )4. 求函数y =+. 5. 作业:教材P31 5、6、7题.。

高中数学1.3三角函数的诱导公式(二)课件新人教A必修4

高中数学1.3三角函数的诱导公式(二)课件新人教A必修4

sin2x°+sin2(90°-x°)=sin2x°+cos2x°=1 (1≤x≤44,
x∈N),
所以原式=(sin21°+sin289°)+(sin22°+sin288°)
+…+(sin244°+sin246°)+sin290°+sin245°
(3)当化成的角是270°到360°间的角,则利用360°-α及
-α的诱导公式化为0°到90°间的角的三角函数.
(4)善于发现类似 -与 间的互余关系, -与 2
3 6 3 3
间的互补关系,利用角的变换结合诱导公式做题 .
【变式训练】(2013·广东高考)已知 sin( 5 ) 1 , 那么
2 cos( -) . 6 3 2 (2) sin(- ) sin[- -( -)] 3 2 6 -sin[ ( -)] 2 6 2 -cos( -) - . 6 3 3 2 6
【拓展提升】角的转化方法
(1)对于负角的三角函数求值,可先利用诱导公式三,化为正 角的三角函数.若转化了以后的正角大于360°,再利用诱导 公式一,化为0°到360°间的角的三角函数. (2)当化成的角是90°到180°间的角时,再利用180°-α的 诱导公式化为0°到90°间的角的三角函数.
所以 tan( ) - 1 ,即tan( )与tan 互为负倒数.
2 tan 2
【知识点拨】 1.三角形中的诱导公式 由于A+B+C=π,所以A+B=π-C,所以 所以sin(A+B)=sin(π-C)=sin C; cos(A+B)=cos(π-C)=-cos C;

高中数学1.3三角函数的诱导公式(一)诱导公式二三四教案新人教A版必修4

高中数学1.3三角函数的诱导公式(一)诱导公式二三四教案新人教A版必修4

3 三角函数的诱导公式(一)诱导公式二三四一、关于教学内容的思考教学任务:帮助学生理解,,πααπα+--与α的正弦、余弦、正切值的关系;会利用诱导公式进行化简、求值。

教学目的:引导学生如何利用三角函数线探讨上述关系;教学意义:培养学生数形结合的思想。

二、教学过程1.理解,,πααπα+--与α的正弦、余弦、正切值的关系①,,πααπα+--与α终边的对称性;②观察三角函数线的关系:相等、相反;③得出关系式。

απ+ α- απ- α 关于原点对称 关于x 轴对称关于y 轴对称 三角函数线正弦线、余弦线互为相反 正切线相同 正弦线、正切线互为相反 余弦线相同 正切线、余弦线互为相反 正弦线相同诱导公式 ααπααπααπtan )tan(;cos )cos(;sin )sin(=+-=+-=+ 公式二 sin()sin ;cos()cos ;tan()tan αααααα-=--=-=- 公式三 sin()sin ;cos()cos ;tan()tan πααπααπαα-=-=--=-公式四④总结:,,πααπα+--的三有函数值,等于α的同名函数值,前面加上把α看成锐角时原函数值的符号。

2.利用诱导公式一二三四求值、化简例 ①=︒225cos ;②π311sin = ;③)316sin(π-= ;④=︒-)2040cos( 。

①22-;②23-;③23;④21-。

例 )180cos()180sin()360sin()180cos(︒--︒--︒++︒αααα= ;1 三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子1.在ABC ∆中,31cos =B ,则)cos(C A +等于( B ) A.31 B.31- C.322 D.322-2.求)417sin()417cos(ππ---的值。

2 3.在ABC ∆中,2cos sin =+A A ,)cos(2cos 3B A --=π,求ABC ∆的三个内角。

1.3 三角函数的诱导公式-人教A版高中数学必修四讲义(解析版)

1.3 三角函数的诱导公式-人教A版高中数学必修四讲义(解析版)

知识点一诱导公式一设角α的终边与单位圆的交点为P,由三角函数定义知P点坐标为(cos α,sin α).思考角π+α的终边与角α的终边有什么关系?角π+α的终边与单位圆的交点P1(cos(π+α),sin(π+α))与点P(cos α,sin α)呢?它们的三角函数之间有什么关系?答案角π+α的终边与角α的终边关于原点对称,P1与P也关于原点对称,它们的三角函数关系如下:诱导公式一sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.知识点二诱导公式二思考角-α的终边与角α的终边有什么关系?角-α的终边与单位圆的交点P2(cos(-α),sin(-α))与点P(cos α,sin α)有怎样的关系?它们的三角函数之间有什么关系?教材要点学科素养学考高考考法指津高考考向1.απ+与α的正弦、余弦、正切值的关系数学抽象水平1 水平11.熟练掌握相应角的终边上点的坐标的特点。

2.使用诱导公式的目的在于将任意角的三角函数转化为锐角的三角函数。

【考查内容】诱导公式的应用,三角函数的基本关系式。

【考查题型】选择题、填空题【分值情况】5分2.α-与α的正弦、余弦、正切值的关系数学抽象水平1 水平 13.απ-与α的正弦、余弦、正切值的关系数学抽象水平1 水平14.απ±2与α的正弦、余弦、正切值的关系数学抽象水平1 水平1第三讲三角函数的诱导公式知识通关答案 角-α的终边与角α的终边关于x 轴对称,P 2与P 也关于x 轴对称,它们的三角函数关系如下: 诱导公式二知识点三 诱导公式三思考 角π-α的终边与角α的终边有什么关系?角π-α的终边与单位圆的交点P 3(cos(π-α),sin(π-α))与点P (cos α,sin α)有怎样的关系?它们的三角函数之间有什么关系?答案 角π-α的终边与角α的终边关于y 轴对称,P 3与P 也关于y 轴对称,它们的三角函数关系如下: 诱导公式三梳理 公式一~三都叫做诱导公式,它们分别反映了2k π+α(k ∈Z ),π+α,-α,π-α的三角函数值与α的三角函数之间的关系,这三组公式的共同特点是:2k π+α(k ∈Z ),π+α,-α,π-α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.知识点四 诱导公式四完成下表,并由此总结角α,角π2-α的三角函数值间的关系.(1)sin π6=12,cos π3=12,sin π6=cos π3;(2)sin π4=22,cos π4=22,sin π4=cos π4;(3)sin π3=32,cos π6=32,sin π3=cos π6.由此可得 诱导公式四知识点五 诱导公式五思考 能否利用已有公式得出π2+α的正弦、余弦与角α的正弦、余弦之间的关系?答案 以-α代替公式四中的α得到 sin ⎝⎛⎭⎫α+π2=cos(-α), cos ⎝⎛⎭⎫α+π2=sin(-α). 由此可得 诱导公式五知识点六 诱导公式的推广与规律1.sin ⎝⎛⎭⎫32π-α=-cos α,cos ⎝⎛⎭⎫32π-α=-sin α, sin ⎝⎛⎭⎫32π+α=-cos α,cos ⎝⎛⎭⎫32π+α=sin α.2.诱导公式记忆规律:公式一~三归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式四~五归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”. 五组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.记忆口诀:奇变偶不变,符号看象限.其中“奇、偶”是指k ·π2±α(k ∈Z )中k 的奇偶性,当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变.“符号”看的应该是诱导公式中,把α看成锐角时原函数值的符号,而不是α函数值的符号.题型一 利用诱导公式求值 命题角度1 给角求值问题变式训练1-1 求下列各三角函数式的值: (1)sin 1 320°;(2)cos ⎝⎛⎭⎫-31π6;(3)tan(-945°).解析: (1) sin 1 320°=sin(3×360°+240°) =sin 240°=sin(180°+60°)=-sin 60°=-32. (2) cos ⎝⎛⎭⎫-31π6=cos ⎝⎛⎭⎫-6π+5π6 =cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (3)tan(-945°)=-tan 945°=-tan(225°+2×360°) =-tan 225°=-tan(180°+45°)=-tan 45°=-1.命题角度2 给值求值或给值求角问题 例1-2 (1)已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3 C.π6 D.π3答案 D-α)题型三 利用诱导公式求值例3、 已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2, 求sin ⎝⎛⎭⎫α+2π3的值. 解析: ∵α+2π3=⎝⎛⎭⎫α+π6+π2, ∴sin ⎝⎛⎭⎫α+2π3=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35.变式训练3已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫π3-α的值. 解析: ∵π6+α+π3-α=π2,∴π3-α=π2-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α =sin ⎝⎛⎭⎫π6+α=33. 题型四 利用诱导公式证明三角恒等式 规律方法 例4、求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.证明: ∵左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin 2α-cos αsin α=-sin αcos α=-tan α=右边. ∴原等式成立. 变式训练4求证:sin θ+cos θsin θ-cos θ=2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ).证明: 右边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=左边, 所以原等式成立.题型五 诱导公式的综合应用 规律方法例5 已知f (α)=sin (π-α)cos (-α)sin ⎝⎛⎭⎫π2+αcos (π+α)sin (-α).(1)化简f (α);(2)若角A 是△ABC 的内角,且f (A )=35,求tan A -sin A 的值. 解析: (1)f (α)=sin αcos αcos α-cos α(-sin α)=cos α.(2)因为f (A )=cos A =35,又A 为△ABC 的内角,所以由平方关系,得sin A =1-cos 2A =45,所以tan A =sin A cos A =43,所以tan A -sin A =43-45=815.变式训练5已知f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αcos (-α-π).(1)化简f (α);(2)若f ⎝⎛⎭⎫π2-α=-35,且α是第二象限角,求tan α. 解析:(1)f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αcos (-α-π)=-tan α·cos α·cos α-cos α=sin α.(2)由sin ⎝⎛⎭⎫π2-α=-35,得cos α=-35, 又α是第二象限角,所以sin α=1-cos 2 α=45, 则tan α=sin αcos α=-43.一、选择题1.已知tan α=4,则tan(π-α)等于( ) A .π-4 B .4 C .-4 D .4-π 解析: tan(π-α)=-tan α=-4. 答案 C2.cos(π+x )等于( ) A .cos x B .-cos x C .sin xD .-sin x解析: 由诱导公式得cos(π+x )=-cos x . 答案 B3.已知sin(π+α)=35,且α是第四象限角,则cos(α-2π)的值是( )A .-45 B.45 C .-35 D.35解析: 因为sin(π+α)=35,且sin(π+α)=-sin α,所以sin α=-35,又因为α是第四象限角,所以cos(α-2π)=cos α=1-sin 2α =1-⎝⎛⎭⎫-352=45. 答案 B4.记cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析: ∵cos(-80°)=k ,∴cos 80°=k , ∴sin 80°=1-k 2,则tan 80°=1-k 2k.∴tan 100°=-tan 80°=-1-k 2k.A 组 基础演练答案 B5.若sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对解析: ∵sin(π-α)=sin α=32log 2-2=-23,α∈⎝⎛⎭⎫-π2,0, ∴cos(π+α)=-cos α=-1-sin 2α=-1-49=-53. 答案 B6.若cos(2π-α)=53,则sin ⎝⎛⎭⎫3π2-α等于( ) A .-53B .-23C.53D .±53解析: ∵cos(2π-α)=cos(-α)=cos α=53, ∴sin ⎝⎛⎭⎫3π2-α=-cos α=-53. 答案 A7.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)等于( )A .2B .-2C .0 D.23解析: sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.答案 B8.已知sin ⎝⎛⎭⎫5π2+α=15,那么cos α等于( )A .-25B .-15C.15D.25解析: sin ⎝⎛⎭⎫5π2+α=cos α,故cos α=15,故选C. 答案 C9.已知sin 10°=k ,则cos 620°的值为( ) A .k B .-k C .±k D .不确定解析: cos 620°=cos(360°+260°)=cos 260°=cos(270°-10°)=-sin 10°=-k 答案 B.10.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A 2解析: ∵A +B +C =π,∴A +B =π-C ,∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 项不正确; ∵A +C =π-B ,∴A +C 2=π-B2,∴cos A +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 项不正确; ∵B +C =π-A , ∴sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 项正确. 答案 D二、填空题11.已知600°角的终边上有一点P (a ,-3),则a 的值为______. 解析: tan 600°=tan(360°+240°)=tan(180°+60°)=tan 60°=-3a=3,即a =- 3.答案 -3 12.cos (-585°)sin 495°+sin (-570°)的值是________.解析: 原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2.答案 2-213.已知a =tan ⎝⎛⎭⎫-7π6,b =cos 23π4,c =sin ⎝⎛⎭⎫-33π4,则a ,b ,c 的大小关系是________.解析: ∵a =-tan 7π6=-tan π6=-33, b =cos ⎝⎛⎭⎫6π-π4=cos π4=22, c =-sin 33π4=-sin π4=-22,∴b >a >c . 答案 b >a >c14.化简sin ⎝⎛⎭⎫15π2+αcos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫9π2-αcos ⎝⎛⎭⎫3π2+α= .解析: 原式=sin ⎝⎛⎭⎫32π+α·cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2-αsin α=(-cos α)·sin αcos α·sin α=-1.答案 -1三、解答题16.化简下列各式:(1)cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α);(2)cos 190°·sin (-210°)cos (-350°)·tan (-585°).解析: (1)原式=-cos α·sin α-sin (π+α)·cos (π+α)=cos α·sin αsin α·cos α=1.(2)原式=cos (180°+10°)·[-sin (180°+30°)]cos (-360°+10°)·[-tan (360°+225°)]=-cos 10°·sin 30°cos 10°·[-tan (180°+45°)]=-sin 30°-tan 45°=12.17.已知角α的终边经过单位圆上的点P ⎝⎛⎭⎫45,-35.(1)求sin α的值;(2)求cos (2π-α)sin (π+α)·tan (π+α)cos (3π-α)的值.解析: (1)∵点P 在单位圆上,∴由正弦的定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α,由余弦的定义得cos α=45,故原式=54.一、选择题1.已知sin ⎝⎛⎭⎫α-π4=32,则sin ⎝⎛⎭⎫5π4-α的值为( )A.12 B .-12 C.32 D .-32解析: sin ⎝⎛⎭⎫5π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫α-π4=32.答案 C2.化简sin 2(π+α)-cos(π+α)·cos(-α)+1的值为( )A .1B .2sin 2αC .0D .2解析: 原式=(-sin α)2-(-cos α)·cos α+1=sin 2α+cos 2α+1=2.答案 D3.已知n 为整数,化简sin (n π+α)cos (n π+α)所得的结果是( )A .tan nαB .-tan nαC .tan αD .-tan α解析: 当n =2k ,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+α)cos (2k π+α)=sin αcos α=tan α;当n =2k +1,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+π+α)cos (2k π+π+α)=sin (π+α)cos (π+α)=-sin α-cos α=tan α.故选C.答案 C4.已知sin ⎝⎛⎭⎫α+π4=13,则cos ⎝⎛⎭⎫π4-α的值为( ) A.223 B .-223 C.13 D .-13解析: cos ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫α+π4=13.答案 C5.化简sin ⎝⎛⎭⎫α+π2·cos ⎝⎛⎭⎫α-3π2·tan ⎝⎛⎭⎫π2-α的结果是( )A .1B .sin 2αC .-cos 2αD .-1解析: 因为sin ⎝⎛⎭⎫α+π2=cos α,cos ⎝⎛⎭⎫α-3π2=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-α=-sin α,tan ⎝⎛⎭⎫π2-α=sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=cos αsin α,所以原式=cos α(-sin α)cos αsin α=-cos 2α,故选C.答案 C6.已知f (sin x )=cos 3x ,则f (cos 10°)的值为( )A .-12 B.12 C .-32 D.32解析: f (cos 10°)=f (sin 80°)=cos 240°=cos(180°+60°)=-cos 60°=-12.答案 A7.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( )A .-2m 3 B.2m 3 C .-3m 2 D.3m2解析: ∵sin(π+α)+cos ⎝⎛⎭⎫π2+α=-sin α-sin α=-m ,∴sin α=m2.故cos ⎝⎛⎭⎫32π-α+2sin(2π-α)=-sin α-2sin α=-3sin α=-3m2.答案 C解析:∵f (2017)=a sin(2017π+α)+b cos(2017π+β)+4=3,∴a sin(2017π+α)+b cos(2017π+β)=-1,∴f (2018)=a sin(2017π+α+π)+b cos(2017π+β+π)+4=-a sin(2017π+α)-b cos(2017π+β)+4=1+4=5.答案 C10.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( )A .89B .90 C.892D .45解析:原式=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+sin 2(90°-44°)+…+sin 2(90°-3°)+sin 2(90°-2°)+sin 2(90°-1°)=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+cos 244°+…+cos 23°+cos 22°+cos 21°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+(sin 23°+cos 23°)+…+(sin 244°+cos 244°)+sin 245°=44+12=892. 答案 C二、填空题11.化简cos (-α)tan (7π+α)sin (π-α)=________. 解析: cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α =cos αtan αsin α=cos αsin αcos αsin α=1. 答案 112.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数,若f (2 017)=-1,则f (2 018)=________. 解析: ∵f (2 018)=a sin(2 018π+α)+b cos(2 018π+β)=a sin(π+2 017π+α)+b cos(π+2 017π+β)=-a sin(2 017π+α)-b cos(2 017π+β)=-f (2 017),又f (2 017)=-1,∴f (2 018)=1.答案 113.已知f (x )=⎩⎪⎨⎪⎧sin πx ,x <0,f (x -1)-1,x >0,则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 解析: 因为f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6 =sin ⎝⎛⎭⎫-2π+π6=sin π6=12; f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-12-2=-52, 所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=-2. 答案 -214.给出下列三个结论,其中正确结论的序号是 .①sin(π+α)=-sin α成立的条件是角α是锐角;②若cos(n π-α)=13(n ∈Z ),则cos α=13; ③若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=-1tan α. 解析: 由诱导公式二,知α∈R 时,sin(π+α)=-sin α,所以①错误.当n =2k (k ∈Z )时,cos(n π-α)=cos(-α)=cos α,此时cos α=13, 当n =2k +1(k ∈Z )时,cos(n π-α)=cos [(2k +1)π-α]=cos(π-α)=-cos α,此时cos α=-13,所以②错误. 若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2+α=cos α-sin α=-1tan α,所以③正确. 答案 ③三、解答题15. 化简下列各式:(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α); (2)1+2sin 290°cos 430°sin 250°+cos 790°. 解析: (1)原式=sin (2π-α)cos (2π-α)·sin (-α)cos (-α)cos (π-α)sin (π-α)=-sin α(-sin α)cos αcos α(-cos α)sin α=-sin αcos α=-tan α.(2)原式=1+2sin (360°-70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°) =1-2sin 70°cos 70°-sin 70°+cos 70°=|cos 70°-sin 70°|cos 70°-sin 70°=sin 70°-cos 70°cos 70°-sin 70°=-1.16.已知sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ=72,求sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ的值.解析: ∵sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ =sin(π-θ)+sin ⎝⎛⎭⎫π2-θ=sin θ+cos θ=72,∴sin θcos θ=12[(sin θ+cos θ)2-1]=12×⎣⎡⎦⎤⎝⎛⎭⎫722-1=38,∴sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ=cos 4θ+sin 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2×⎝⎛⎭⎫382=2332.17.已知α是第四象限角,且f (α)=sin (π-α)cos (2π-α)cos ⎝⎛⎭⎫π2-αsin (-π-α)cos (2π+α).(1)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值;(2)若α=-1 860°,求f (α)的值.解析: f (α)=sin (π-α)cos (2π-α)cos ⎝⎛⎭⎫π2-αsin (-π-α)cos (2π+α)=sin αcos α-sin αsin (π+α)cos α=1sin α.(1)∵cos ⎝⎛⎭⎫α-3π2=15,∴cos ⎝⎛⎭⎫α-3π2+2π=15,∴cos ⎝⎛⎭⎫π2+α=15,∴sin α=-15,∴f (α)=1sin α=-5.(2)当α=-1 860°时,f (α)=1sin α=1sin (-1 860°)=1-sin 1 860°=1-sin (5×360°+60°)=1-sin 60° =-233.高中数学,同步讲义必修四第一章三角函数第三讲三角函数的诱导公式。

高中数学第一章三角函数1.3三角函数的诱导公式2课件新人教版A

高中数学第一章三角函数1.3三角函数的诱导公式2课件新人教版A

【例 2】
化简
cos 52π-������ cos(-������) sin 32π+������ cos 212π-������
=
.
解析:原式
cos
=
-sin
π 2
=
sin
cos 2π+ π2-������ cos������ π+ π2+������ cos 10π+ π2-������
π2 -������ cos������
六都叫做诱导公式
归纳总结诱导公式五和六可用口诀“函数名改变,符号看象限”记 忆,“函数名改变”是指正弦变余弦,余弦变正弦.“符号看象限”是把α 看成锐角时原三角函数值的符号.
【做一做1】 已知sin 25.7°=m,则cos 64.3°等于( )
A.m
B.-m
C.m2
D. 1-������2
答案:A
+ ������
cos
π 2
-������
sin������cos������ = -cos������sin������ = −1.
答案:-1
题型一 题型二 题型三 题型四
【变式训练 2】
化简
cos(π+������) cos������[cos(π-������)-1]
+
sin
������-32π
2
公式六 sin ������ + α = cos ������
2
cos ������ + α = −sin ������
2
公式五和公式六可以概括为:
������ 2±
������的正弦
余弦
函数值, 分别等于������的余弦

[教案精品]新课标高中数学人教A版必修四全册教案1.3三角函数的诱导公式(二)

[教案精品]新课标高中数学人教A版必修四全册教案1.3三角函数的诱导公式(二)

1. 3诱导公式(二)教学目标(一)知识与技能目标⑴理解正弦、余弦的诱导公式.⑵培养学生化归、转化的能力.(二)过程与能力目标(1)能运用公式一、二、三的推导公式四、五.(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.(三)情感与态度目标通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.教学重点掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.教学难点运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.教学过程一、复习:诱导公式(一)sin(360 k 二)=sin :cos(360 k 件篇)=cos:tan(360 k,.工)=tan:诱导公式(二)sin(180'=二)二-sin :cos(1805'=) = -cos:tan(180、r 壽)=tan:诱导公式(三)sin(「:-)= —sin :诱导公式(四)sin (二一:)=sin : 诱导公式(五)COS(Y)二cos:tan( Y)二-tan:cos( 二一:)=一cos:tan (二一:)= —tan:nsi n() = cos-2诱导公式(六)n:cos( ) = sin :2nsin() = cos : 2二、新课讲授:n:cos( ) = -sin : 2练习1.将下列三角函数转化为锐角三角函数:3兀31兀也17 (1) tan , (2)sin , (3)cos519 , (4)sin( ).5 36 3练习2:求下列函数值:65兀31兀亠亠(1) cos , (2)sin( ), (3)sin 670 , (4)tan580 ).6 4 '例1 .证明:/八3兀(1)sin( ) = -cos-23兀(2)cos( ) = -sin :sin (2二-:)cos (亠二) 例2 .化简: cos (二 八)sin (3二八)sin (_:—二)sin (专 :)2cos ( ) -3sin (::) 例3.已知tan^ . ) = 3,求:4cos (—a ) +sin (2兀一a )解军: t an (,亠黒)=3,. tan : =3.原式 -2COS H " 3sin ・--2 3tan ・「-2 3 3 7丿^原工J f . 4co 贸—si n a 4—ta n a 4—3例 4. 已知 sin (_:i 心.)=4,且 sin :• cos 〉 0,求 2sin ( ' -__3tan ( 3 - )的值. 5②三角函数的简化过程口诀: 负化正,正化小,化到锐角就行了 练习3:教材P28页7.化简:兀1 I 2sin (: -2 ) cos2—二); (2) cos 2(「)— t a n l 6°fsing )1 7 j[例5.已知sin ,cos 是关于x 的方程x 1 2 -ax • - = 0的两根,且::: ■■ < - 2 2 tan (6 - )sin ( -2? —)cos6 _ )的值cos© —佃 0?sin (900“ —口)三. 课堂小结① 熟记诱导公式五、六;② 公式一至四记忆口诀:函数名不变,正负看象限;③ 运用诱导公式可以将任意角三角函数转化为锐角三角函数.四. 课后作业:① 阅读教材;② 《学案》P.16-P.17的双基训练. 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3诱导公式(二)
教学目标
(一)知识与技能目标
⑴理解正弦、余弦的诱导公式.
⑵培养学生化归、转化的能力.
(二)过程与能力目标
(1)能运用公式一、二、三的推导公式四、五.
(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.
(三)情感与态度目标
通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.
教学重点
掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.
教学难点
运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.
教学过程
一、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα
诱导公式(五)
诱导公式(六)
二、新课讲授:
练习1.将下列三角函数转化为锐角三角函数:
练习2:求下列函数值:
例1.证明:(1)
(2)
例2.化简:
解:
例4.
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习3:教材P28页7.
化简:
例5.
三.课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.四.课后作业:
①阅读教材;
②《学案》P.16-P.17的双基训练.。

相关文档
最新文档