2013年全国名校中考模拟试卷分类汇编4因式分解

合集下载

(全国120套)2013年中考数学试卷分类汇编(打包53套)-22.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-22.doc

列方程解应用题(一元一次方程不等式)1、(2013•资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人11,2、(2013•宜昌)地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为()头.3、(2013•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?,4、(2013•黔西南州)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?,5、(2013•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?由题意得:.所以长跳绳单价是由题意得:6、(2013年临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件? 解析:(1)设购买A 型学习用品x 件,则B 型学习用品为(1000)x -. ……(1分)根据题意,得2030(1000)26000x x +-=………………(2分)解方程,得x =400.则10001000400600x -=-=.答:购买A 型学习用品400件,购买B 型学习用品600件. ………………………(4分)(2)设最多购买B 型学习用品x 件,则购买A 型学习用品为(1000)x -件. 根据题意,得20(1000)+3028000x x -≤……………………(6分)解不等式,得800x ≤.答:最多购买B 型学习用品800件. ……………………(7分)7、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?)依题意得,=,8、(2013•恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?y,.29≤m≤329、(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.10、(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.解答:解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;11、(2013•德州)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值改变第4列改变第2行(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,解得:≤a,12、(2013•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?=;由题意,得≥,解得:x≥=13、(2013•泸州)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?由题意,得,当x=18时,30﹣x=12;当x=19时,30﹣x=11;当x=20时,30﹣x=10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个.(2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元);方案三的费用是:860×20+570×10=22900(元).14、(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?﹣3y+2.4×15、(2013•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?,16、(2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?,17、(2013•遵义)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)方法一:根据所付的费用等于两种车辆的燃油费之和列式整理,再根据一次函数的增减性求出费用的最小值;方法二:分别求出三种方案的燃油费用,比较即可得解.解答:解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,18、(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A 型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案..19、(2013年南京) 某商场促销方案规定:商场内所有商品案标价的80%出售,同时,当顾消费金额(元) 300~400 400~500 500~600 600~700 700~900 …返还金额(元) 30 60 100 130 150 …注:300~400表示消费金额大于300元且小于或等于400元,其他类同。

(全国120套)2013年中考数学试卷分类汇编(打包53套)

(全国120套)2013年中考数学试卷分类汇编(打包53套)

代数综合2、(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.,解得PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是否存在点M,能够使得△ADE是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,t+4 t=)﹣,﹣,﹣3、(2013达州压轴题)如图,在直角体系中,直线AB 交x 轴于点A (5,0),交y 轴于点B ,AO 是⊙M 的直径,其半圆交AB 于点C ,且AC=3。

取BO 的中点D ,连接CD 、MD 和OC 。

(1)求证:CD 是⊙M 的切线;(2)二次函数的图象经过点D 、M 、A ,其对称轴上有一动点P ,连接PD 、PM ,求△PDM 的周长最小时点P 的坐标; (3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使16QAMPDMSS=?若存在,求出点Q 的坐标;若不存在,请说明理由。

解析:(1)证明:连结CM. ∵OA 为⊙M 直径, ∴∠OCA=90°. ∴∠OCB=90°. ∵D 为OB 中点, ∴DC=DO.∴∠DCO=∠DOC.………………………(1分) ∵MO=MC,∴∠MCO=∠MOC.………………………(2分)∴∠DCM=∠DCO+∠MCO=∠DOC+∠MOC=∠DOM=90°.………………………(3分) 又∵点C 在⊙M 上,∴DC 是⊙M 的切线.………………………(4分) (2)解:在Rt △ACO 中,有OC=22AC OA -.又∵A 点坐标(5,0), AC=3, ∴OC=2235-=4. ∴tan ∠OAC=OAOB ACOC =.∴534OB =.解得 OB=320. 又∵D 为OB 中点,∴OD=310.D 点坐标为(0,310).………………………(5分)连接AD ,设直线AD 的解析式为y=kx+b,则有 ⎪⎩⎪⎨⎧=+=.05,310b k b j 解得⎪⎪⎩⎪⎪⎨⎧-==.32,310k b ∴直线AD 为y=-32x+310. ∵二次函数的图象过M (25,0)、A(5,0),∴抛物线对称轴x=415.………………………(6分)∵点M 、A 关于直线x=415对称,设直线AD 与直线x=415交于点P,∴PD+PM 为最小. 又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=415的交点.………………………(7分)当x=415时,y=-32⨯415+310=65.故P 点的坐标为(415,65).………………………(8分)(3)解:存在. ∵S △PDM =S △DAM -S △PAM =21AM ·y D -21AM ·y P =21AM(y D -y p ). S △QAM =21AM ·Q y ,由(2)知D (0,310),P(415,65),∴61×(310-65)=y Q 解得y Q =±125………………………(9分) ∵二次函数的图像过M(0,25)、A(5,0),∴设二次函数解析式为y=a(x-25)(x-5).又∵该图象过点D (0,310),a ×(-25)×(-5)=310,a=154.∴y=154(x-25)(x-5).………………………(10分) 又∵C 点在抛物线上,且y Q =±125,∴154(x-25)(x-5)=±125.解之,得x 1=42515+,x 2=42515-,x 3=415.∴点Q 的坐标为(42515+,125),或(42515-,125),或(415,-125).…………(12分)4、(2013•天津压轴题)已知抛物线y 1=ax 2+bx+c (a≠0)的对称轴是直线l ,顶点为点M .若自变量x 和函数值y 1的部分对应值如下表所示: (Ⅰ)求y 1与x 之间的函数关系式;(Ⅱ)若经过点T (0,t )作垂直于y 轴的直线l′,A 为直线l′上的动点,线段AM 的垂直平分线交直线l 于点B ,点B 关于直线AM 的对称点为P ,记P (x ,y 2). (1)求y 2与x 之间的函数关系式;12t 的取值范围.0 )得出,)>,><也符合题意.).+bx++bx+上,∴,解得,∴y1与x之间的函数关系式为:y1=﹣x2+x+;(II)∵y1=﹣x2+x+,∴y1=﹣(x﹣1)2+3,(+ x x+,x﹣x+,,y1﹣y2=﹣(x﹣1)+3﹣[(x﹣1)+]=(x﹣1)2+,若3t﹣11≠0,要使y1<y2恒成立,只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在轴下方,∵3﹣t<0,只要3t﹣11>0,解得t>,符合题意;<t=t≥5、(2013年江西省压轴题)已知抛物线抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.【答案】解:(1)∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―a12+ a1=0,∴a1=0或1.由已知可知a1>0,∴a1=1.即y1=―(x―1)2+1方法一:令y1=0代入得:―(x―1)2+1=0,∴x1=0,x2=2,∴y1与x轴交于A0(0,0),A1(2,0)∴b1=2,方法二:∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―(b1―1)2+1=0,b1=2或0,b1=0(舍去).∴b1=2.又∵抛物线y2=―(x―a2)2+a2与x轴交于点A1(2,0),∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去).∴取a2=4,抛物线y2=―(x―4)2+4.(2)(9,9);(n2,n2)y=x.详解如下:∵抛物线y2=―(x―4)2+4令y2=0代入得:―(x―4)2+4=0,∴x1=2,x2=6.∴y2与x轴交于点A1(2,0),A2(6,0).又∵抛物线y3=―(x―a3)2+a3与x轴交于A2(6,0),∴―(6―a3)2+a3=0∴a3=4或9,∵a3> a3,∴a3=4(舍去),即a3=9,∴抛物线y3的顶点坐标为(9,9).由抛物线y1的顶点坐标为(1,1),y2的顶点坐标为(4,4),y3的顶点坐标为(9,9),依次类推抛物线y n的顶点坐标为(n2,n2).∵所有抛物线的顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:y= x;③∵A0(0,0),A1(2,0),∴A0A1=2.又∵y n=―(x―n2)2+n2,令y n =0,∴―(x ―n 2)2+n 2=0,即x 1=n 2+n ,x 2=n 2-n ,∴A n -1(n 2-n ,0),A n (n 2+n ,0),即A n -1 A n =( n 2+n )-( n 2-n )=2 n . ②存在.是平行于直线y =x 且过A 1(2,0)的直线,其表达式为y =x -2.【考点解剖】 本题考查了二次函数的一般知识,求字母系数、解析式、顶点坐标;字母表示数(符号意识),数形结合思想,规律探究,合情推理,解题方法的灵活性等等,更重要的是一种胆识和魄力,敢不敢动手,会不会从简单,从特殊值入手去探究一般规律,画一画图帮助思考,所有这些都是做学问所必需的品质和素养,也是新课程改革所倡导的精神和最高境界.【解题思路】 (1)将A 0坐标代入y 1的解析式可求得a 1的值;a 1的值知道了y 1的解析式也就确定了,已知抛物线就可求出b 1的值,又把(b 1,0)代入y 2,可求出a 2 ,即得y 2的解析式;(2)用同样的方法可求得a 3 、a 4 、a 5 ……由此得到规律2n a n =,所以顶点坐标满足的函数关系式是:y = x ;(3)由(2)可知0112232,4,6A A A A A A ===得12n n A A n -=; 最后一问我们会猜测这是与直线y =x 平行且过A (2,0)的一条直线,用特殊值法取2(4)4,2y x y x ⎧=--+⎨=-⎩得112,0x y =⎧⎨=⎩和225,3x y =⎧⎨=⎩,得所截得的线段长度为试试,求出的值也为222(),2y x n n y x ⎧=--+⎨=-⎩得21211,1x n y n ⎧=+⎪⎨=-⎪⎩和22222,4x n y n ⎧=-⎪⎨=-⎪⎩,求得所截得的线段长度也为. 【解答过程】 略.【方法规律】 掌握基础(知识),灵活运用(方法),敢于动手,不畏艰难.【关键词】二次函数 抛物线 规律探究6、(2013年武汉压轴题)如图,点P 是直线l :22--=x y 上的点,过点P 的另一条直线m 交抛物线2x y =于A 、B 两点. (1)若直线m 的解析式为2321+-=x y ,求A 、B 两点的坐标;(2)①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB成立.(3)设直线l 交y 轴于点C ,若△AOB 的外心在边AB 上,且∠BPC =∠OCP ,求点P 的坐标.(1)依题意,得⎪⎩⎪⎨⎧=+-=.,23212x y x y 解得⎪⎪⎩⎪⎪⎨⎧=-=492311y x ,⎩⎨⎧==1122y x ∴A (23-,49),B (1,1).(2)①A 1(-1,1),A 2(-3,9).②过点P 、B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为G 、H.设P (a ,22--a ),A (m ,2m ),∵PA =PB ,∴△PAG ≌△BAH , ∴AG =AH ,PG =BH ,∴B (a m -2,2222++a m ),将点B 坐标代入抛物线2x y =,得0224222=--+-a a am m , ∵△=()()081816168228162222>++=++=---a a a a a a∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的 点P ,抛物线上总能找到两个满足条件的点A .(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (m ,2m ),B (n ,2n ).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H . ∵△AOB 的外心在AB 上,∴∠AOB =90°, 由△AGO ∽△OHB ,得BHOH OGAG =,∴1-=mn .联立⎩⎨⎧=+=2xy b kx y 得02=--b kx x ,依题意,得m 、n 是方程02=--b kx x 的两根,∴b mn -=,∴1-=b ,即D (0,1). ∵∠BPC =∠OCP ,∴DP =DC =3.P设P (a ,22--a ),过点P 作PQ ⊥y 轴于Q ,在Rt △PDQ 中,222PD DQ PQ =+,∴()2223122=---+a a .∴01=a (舍去),5122-=a ,∴P (512-,514).∵PN 平分∠MNQ ,∴PT =NT ,∴()t tt -=+-22212,7、(2013•内江压轴题)已知二次函数y=ax 2+bx+c (a >0)的图象与x 轴交于A (x 1,0)、B(x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程x 2+4x ﹣5=0的两根. (1)若抛物线的顶点为D ,求S △ABC :S △ACD 的值; (2)若∠ADC=90°,求二次函数的解析式.线的解析式.解答:解:(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,由于x1<x2,则有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).抛物线的解析式为:y=a(x+5)(x﹣1)(a>0),∴对称轴为直线x=2,顶点D的坐标为(﹣2,﹣9a),令x=0,得y=﹣5a,∴C点的坐标为(0,﹣5a).依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE﹣OC=4a.,(=﹣﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)),﹣∵y=﹣x﹣x=﹣(x+1)+,∴抛物线的对称轴为x=﹣1.∵点C在对称轴x=﹣1上,△BOC的周长=OB+BC+CO;∵OB=2,要使△BOC的周长最小,必须BC+CO最小,∵点O与点A关于直线x=﹣1对称,有CO=CA,△BOC的周长=OB+BC+CO=OB+BC+CA,∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小.设直线AB的解析式为y=kx+t,则有:,解得:﹣,﹣)﹣+y(x+(﹣x+x x+(﹣×+,的坐标为(﹣,)9、(2013聊城压轴题)已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.考点:二次函数综合题.分析:(1)先表示出BC边上的高,再根据三角形的面积公式就可以表示出表示y与x之间的函数关系式,当y=48时代入解析式就可以求出其值;(2)将(1)的解析式转化为顶点式就可以求出最大值.(3)由(2)可知△ABC的面积最大时,BC=10,BC边上的高也为10过点A作直线L平行于BC,作点B关于直线L的对称点B′,连接B′C 交直线L于点A′,再连接A′B,AB′,根据轴对称的性质及三角形的周长公式就可以求出周长的最小值.解答:解:(1)由题意,得y==﹣x2+10x,当y=48时,﹣ x2+10x=48,解得:x1=12,x2=8,∴面积为48时BC的长为12或8;(2)∵y=﹣x2+10x,∴y=﹣(x﹣10)2+50,∴当x=10时,y最大=50;(3)△ABC面积最大时,△ABC的周长存在最小的情形.理由如下:由(2)可知△ABC的面积最大时,BC=10,BC边上的高也为10过点A作直线L平行于BC,作点B关于直线L的对称点B′,连接B′C 交直线L于点A′,再连接A′B,AB′则由对称性得:A′B′=A′B,AB′=AB,∴A′B+A′C=A′B′+A′C=B′C,当点A不在线段B′C上时,则由三角形三边关系可得:△ABC的周长=AB+AC+BC=AB′+AC+BC >B′C+BC,当点A在线段B′C上时,即点A与A′重合,这时△ABC的周长=AB+AC+BC=A′B′+A′C+BC=B′C+BC,因此当点A与A′重合时,△ABC的周长最小;这时由作法可知:BB′=20,∴B′C==10,∴△ABC的周长=10+10,因此当△ABC面积最大时,存在其周长最小的情形,最小周长为10+10.点评:本题是一道二次函数的综合试题,考查了二次函数的解析式的运用,一元二次方程的解法和顶点式的运用,轴对称的性质的运用,在解答第三问时灵活运用轴对称的性质是关键.10、(2013•苏州压轴题)如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(﹣1,0).(1)b= +c ,点B的横坐标为﹣2c (上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得△PB C 的面积为S.①求S的取值范围;②若△PBC的面积S为整数,则这样的△PBC共有11 个.b=,即xx+c y=y=x+;解方程组x+cy=﹣,﹣x﹣2),则点F坐标为(x,x﹣2),PF=PG﹣GF=﹣x2+2x,S=PF•OB=﹣x2+4x=﹣(x﹣2)2+4,根据二次函数的性质求出S最大值=4,即0<S≤4.则0<S<5;②由0<S<5,S为整数,得出S=1,2,3,4.分两种情况进行讨论:(Ⅰ)当﹣1<<0时,根据△PBC中BC边上的高h小于△ABC中BC边上的高AC=,得出满足条件的△PBC共有4个;(Ⅱ)当0<x<4时,由于S=﹣x2+4x,根据一元二次方程根的判别式,得出满足条件的△PBC共有7个;则满足条件的△PBC共有4+7=11个.解答:解:(1)∵抛物线y=x2+bx+c过点A(﹣1,0),×(﹣+cxx=y=,x+cx+m×(﹣,y=x+由,解得,,∴点E坐标为(1﹣2c,1﹣c).∵点C坐标为(0,c),点D坐标为(2,0),∴直线CD的解析式为y=﹣x+c.∵C,D,E三点在同一直线上,∴1﹣c=﹣×(1﹣2c)+c,(与+c=﹣x x,﹣y=x=,﹣(﹣x x=PF•OB=(﹣x∴AC2+BC2=AB2,∠ACB=90°,BC边上的高AC=.∵S=BC•h,∴h===S.如果S=1,那么h=×1=<,此时P点有1个,△PBC有1个;如果S=2,那么h=×2=<,此时P点有1个,△PBC有1个;如果S=3,那么h=×3=<,此时P点有1个,△PBC有1个;h=×4=,此时故答案为11、(2013•宜昌压轴题)如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A (t,4),k= (k>0);(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.横坐标是+4t+4=,其顶点坐标为(,﹣)y=×=,y=②如图1,过点E作EK⊥x轴于点K.∵AC⊥x轴,∴AC∥EK.∵点E是线段AB的中点,∴K为BC的中点,∴EK是△ACB的中位线,∴EK=AC=2,CK=BC=2,∴E(t+2,2).∵点E在抛物线y=x(x﹣t)上,,则x=的横坐标是+t+t12、(2013•黄冈压轴题)如图,在平面直角坐标系中,四边形ABCD是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求经过A,B,C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).的解析式,得出,),,x+∴△OPQ的高为:OQ×sin60°=(4﹣t)×,又∵OP=2t,∴S=×2t×(4﹣t)×=﹣(t2﹣4t)(2≤t≤3);(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,此时OP=2t,OQ=,x﹣x,,y=﹣,(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,即M在直线PQ上;当2<t≤3时,OQ=4﹣t,∠QOP=60°,∴Q(,),代入上式得:×(1﹣t)=﹣2t,(均不合题意,舍去)(2013•荆门压轴题)已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1 13、的图象交于两点A(x1,y1)、B(x2,y2);(x1<x2)(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想.(3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想.(平面内两点间的距离公式).,角形,根据勾股定理得出AB=AC,根据两点间距离公式及完全平方公式求出AB=;同理,当k=1,m=1时,AB=;(2)当k=1,m为任何值时,联立,得x2﹣(2m+1)x+m2+m﹣1=0根据一元二次方程根与系数的关系得到x1+x2=2m+1,x1•x2=m2+m﹣1,同(1)可求出AB=;(3)当m=0,k为任意常数时,分三种情况讨论:①当k=0时,由,得A(﹣时,联立1,则为任意实数时,联立AC=|x;AB=AB=AC=|x;由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;②当k=1时,则一次函数为直线y=x+1,由,得x2﹣x﹣1=0,∴x1+x2=1,x1•x2=﹣1,AC=|x,+2k14、(2013•黔东南州压轴题)已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.(1)求抛物线的解析式;(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P 在抛物线上,当S△PAB≤6时,求点P的横坐标x的取值范围.15、(13年北京7分23)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B 。

【中考宝典】2013年中考数学真题分类汇编(Word版,含答案)

【中考宝典】2013年中考数学真题分类汇编(Word版,含答案)

第一单元数与式一、实数1、绝对值、相反数、倒数2、科学记数法3、实数的概念及其运算二、整式1.幂的运算、整式的乘除2.因式分解三、分式四、二次根式第二单元方程(组)与不等式组一、一次方程(方程组)二、一元一次不等式与一元一次不等式组三、一元二次方程四、分式方程第三单元函数及其图像一、函数及其图像二、一次函数三、反比例函数四、二次函数五、函数的应用第四单元图形的认识与三角形一、角、相交线与平行线二、三角形与全等三角形三、等腰三角形与直角三角形第五单元四边形一、多边形与平行四边形二、矩形、菱形、正方形三、梯形第六单元圆一、圆的有关概念及性质二、点、直线、圆和圆的位置关系三、和圆有关的计算第七单元图形与变换一、尺规作图、视图与投影二、图形的对称、平移与旋转三、图形的相似与位似四.锐角三角函数和解直角三角形第八单元概率与统计一、统计二、概率第二单元 方程(组)与不等式组一、一次方程(方程组) 1、(2013黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有( )A .1种B .11种C .6种D .9种解析:设6人的帐篷有x 顶,4人的帐篷有y 顶,依题意,有:6x+4y=60,整理得y=15-1.5x ,因为x 、y 均为非负整数,所以15-1.5x≥0,解得:0≤x≤10,从2到10的偶数共有5个,所以x 的取值共有6种可能,即共有6种搭建方案. 答案:C2.(2013广安)如果y x b a 321与12+-x y b a 使同类项,则( )A. ⎩⎨⎧=-=32y xB.⎩⎨⎧==3-2y xC.⎩⎨⎧=-=3-2y xD.⎩⎨⎧==32y x解析:y x b a 321 与12+-x y b a 是同类项,∴⎩⎨⎧+==123x y y x ,解得:⎩⎨⎧==32y x 。

答案:D3、(2013凉山州)已知方程组⎩⎨⎧=+=+5242y x y x ,则y x +的值为 ( )A .-1B .0C .2D .3 解析:利用两式相加得:9)(3=+y x ,3=+y x .答案:D4、(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多 ( )A .60元B .80元C .120元D .180元 解析:设衣服的进价为x 元,依题意得300×80%-x=60,解得x=180.因此这款服装每件的标价比进价多300-180=120(元).答案:C5、(2013淄博)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x 张成人票,y 张儿童票,根据题意,下列方程组正确的是 ( )+=20.35+70=1225x y A x y ⎧⎨⎩ +y=20.70+35=1225x B x y ⎧⎨⎩ +=1225.70+35=20x y C x y ⎧⎨⎩ +=1225.35+70=20x y D x y ⎧⎨⎩ 解析:确定等量关系:总票数=承认票数+儿童票数,总票钱数=成人票钱数+儿童票钱数.依据等量关系列出方程组即可.答案:B6、(2013•永州)已知(x-y+3)2+y x +2=0,则x+y 的值为( ) A .0 B .-1 C .1 D .5解析:∵ 02)3(2=+++-y x y x ,∴⎩⎨⎧=+=+-0203y x y x ,解得⎩⎨⎧=-=21y x∴121=+-=+y x 答案:C7、(2013南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .15解析:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得,解得:2x+2y=16.答案:C答案:B8、(2013毕节)二元一次方程组⎩⎨⎧=-=+112312y x y x 的解是_。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-4.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-4.doc

命题1、(绵阳市2013年)下列说法正确的是( D )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直的梯形是等腰梯形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形[解析]由矩形的性质可知,只有D正确。

平行四边形的对角线是互相平行,菱形的对角线互相平分且垂直,故A、C错,等腰梯形的对角线相等B也错。

2、(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.3、(2013凉山州)下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|﹣5|的算术平方根是5;④点P(1,﹣2)在第四象限,其中正确的个数是()A.0 B.1 C.2 D.3考点:算术平方根;点的坐标;对顶角、邻补角;中位数;众数.分析:根据邻补角、算术平方根、中位数及众数的定义、点的坐标的知识,分别进行各项的判断即可.解答:解:①邻补角是互补的角,说法正确;②数据7、1、3、5、6、3的中位数是5,众数是3,原说法错误;③|﹣5|的算术平方根是,原说法错误;④点P(1,﹣2)在第四象限,说法正确;综上可得①④正确,共2个.故选C.点评:本题考查了邻补角、中位数、众数及算术平方根的知识,掌握基础知识是解答此类题目的关键.的平方根是±y=的自变量8、(2013聊城)下列命题中的真命题是()A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形考点:命题与定理.分析:根据矩形、菱形、正方形的判定以及正五边形的性质得出答案即可.解答:解:A.根据四个角相等的四边形是矩形,故此命题是假命题,故此选项错误;B.根据对角线互相垂直、互相平分且相等的四边形是正方形,故此命题是假命题,故此选项错误;C.顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;D.正五边形是轴对称图形不是中心对称图形,故此命题是假命题,故此选项错误.故选:C.点评:此题主要考查了矩形、菱形、正方形的判定以及正五边形的性质等知识,熟练掌握相关定理是解题关键.10、(2013•包头)已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则=a;③对角线互相平行且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.=a;逆命题:若15、(2013•鄂州)下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中有意义,则(17、(2013年深圳市)下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

全国各地2013年中考数学试题最新分类汇编 因式分解

全国各地2013年中考数学试题最新分类汇编 因式分解

因式分解(2013•某某)已知a+b=2,ab=1,则a2b+ab2的值为 2 .考点:因式分解的应用.专题:计算题.分析:所求式子提取公因式化为积的形式,将各自的值代入计算即可求出值.解答:解:∵a+b=2,ab=1,∴a2b+ab2=ab(a+b)=2.故答案为:2点评:此题考查了因式分解的应用,将所求式子进行适当的变形是解本题的关键.(2013•株洲)多项式x2+mx+5因式分解得(x+5)(x+n),则m= 6 ,n= 1 .考点:因式分解的意义.专题:计算题.分析:将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.解答:解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n∴,∴,故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可. 分解因式:2a 2﹣8= 2(a+2)(a ﹣2) .考点:提公因式法与公式法的综合运用. 专题:因式分解. 分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解. 解答: 解:2a 2﹣8=2(a 2﹣4),=2(a+2)(a ﹣2).故答案为:2(a+2)(a ﹣2).点评: 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(2013•达州)分解因式:39x x =_ _.答案:x (x +3)(x -3)解析:原式=x (x 2-9)=x (x +3)(x -3)(2013•某某)把多项式分解因式:ax 2-ay 2=(2013凉山州)已知(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13)可分解因式为(3x+a )(x+b ),其中a 、b 均为整数,则a+3b=.考点:因式分解-提公因式法.分析:首先提取公因式3x ﹣7,再合并同类项即可得到a 、b 的值,进而可算出a+3b 的值. 解答:解:(2x ﹣21)(3x ﹣7)﹣(3x ﹣7)(x ﹣13),=(3x ﹣7)(2x ﹣21﹣x+13),=(3x ﹣7)(x ﹣8),则a=﹣7,b=﹣8,a+3b=﹣7﹣24=﹣31,故答案为:﹣31.点评:此题主要考查了提公因式法分解因式,关键是找准公因式.(2013•某某)分解因式:24x y y -= .(2013•某某)因式分解:2442x y x y -=。

2013年中考数学模拟试卷四及答案(含答题卡)A3

2013年中考数学模拟试卷四及答案(含答题卡)A3

A
D
(2)已知 1 + 1 = 5 (a≠b),求 a b 的值.
O
ab
b(a b) a(a b)
17. (9 分)如图,四边形 ABCD 是矩形,对角线 AC,BD 相交于点
B
C
O,BE∥AC 交 DC 的延长线于点 E.
(1)求证:BD=BE;
(2)若DBC=30,BO=4,求四边形 ABED 的面积.

8. 已知二次函数 yax2bxc 的图象如图所示,它与 x 轴的两个
y
交点分别为(1,0),(3,0).对于下列命题:
①b2a0;②abc<0;③a2b4c<0;④8ac>0.其中正确的 有【 】
1 O
3x
A.3 个
B.2 个
C.1 个
D.0 个
二、填空题(每小题 3 分,共 21 分)
E
18. (9 分)某市把中学生学习情绪的自我控制能力分为四个等级,即 A 级:自我控制能力
很强;B 级:自我控制能力较好;C 级:自我控制能力一般;D 级:自我控制能力较
差.通过对该市的初中学生学习情绪的自我控制能力的随机抽样调查,得到下面两幅
不完整的统计图,请根据图中的信息解决下面的问题.
(1)在这次随机抽样调查中,共抽查了多少名学生?
14. 如图,∠MON=30°,点 A1,A2,A3,…在射线 ON 上,点 B1,B2,B3,…在射线 OM
上,△ A1B1A2 ,△ A2B2 A3 ,△ A3B3 A4 …均为等边三角形.若 OA1 1 ,则△ AnBn An1 的边
长为_____________.
1
15. 如图,已知 Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF 绕着

(全国120套)2013年中考数学试卷分类汇编(打包53套)-38.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-38.doc

方位角1、(2013年潍坊市)一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时答案:D .考点:方向角,直角三角形的判定和勾股定理.点评;理解方向角的含义,证明出三角形ABC 是直角三角形是解决本题的关键.2、(2013•株洲)如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )3、(2013年河北)如图1,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里B.60海里C.70海里D.80海里答案:D解析:依题意,知MN=40×2=80,又∠M=70°,∠N=40°,所以,∠MPN=70°,从而NP=NM=80,选D4、(2013•荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.=5、(2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)=56、(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.7、(2013年广东湛江)如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30ο的方向上,随后渔政船以80海里小时的速度向北偏东30ο的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船的北偏西60ο的方向上,求此时渔政船距钓鱼岛A 的距离AB .1.732≈)解:延长EB 至F ,则030CBF ∠=,00000180180603090ABC EBF CBF ∴∠=-∠-∠=--=,在Rt △ABC 中,060ACB ∠=,180402BC =⨯=,tan ,AB ACB BC=∠tan 44 1.732 6.9AB BC ACB ∴=∠=≈⨯≈答:此时渔政船距钓鱼岛A 的距离AB 约为:6.9海里8、(2013•荆门)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速公路是否穿过风景区,请说明理由.=9、(2013•苏州)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)BF=BF=kmPD=xkmx=2AB=1kmBF=km之间的距离为10、(2013•莱芜)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)(小时)(小时)11、(2013泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C 处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).考点:解直角三角形的应用-方向角问题.专题:应用题.分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.解答:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5海里.故答案为:67.5.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.12、(2013•烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1),CD==6﹣≈6.2(海里)13、(2013•遂宁)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)中,BD=AB•sin∠BAD=20×=10BC==(海里)海里.14、(2013•资阳)钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)=≈0.35,∴∠AEN=20.5°,∴∠NEM=69.5°,即必须沿北偏东至少转向69.5°航行,才能恰好避免进入钓鱼岛12海里禁区.(2)过点D作DH⊥AB于点H,由题意得,BD=2×12=24海里,在Rt△DBH中,DH=BD=12海里,BH=12海里,∵AF=12海里,的时间为:===2.415、(2013•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M 的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A 相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.km==16∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)作线段BR⊥x轴于R,作线段CS⊥x轴于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).cos30°=8×∴BR=40•sin60°=20=20=,16、(2013年黄石)高考英语听力测试期间,需要杜绝考点周围的噪音。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-50.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-50.doc

几何体1、(绵阳市2013年)把右图中的三棱柱展开,所得到的展开图是( B )[解析]两个全等的三角形,再侧面三个长方形的两侧,这样的图形围成的是三棱柱,一个底面相邻可以是三个长方形,只有B。

2、(2013年南京)如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是答案:B解析:涂有颜色的面在侧面,而A、C还原后,有颜色的面在底面,故错;D还原不回去,故错,选B。

3、(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一4、(2013河南省)如图是正方形的一种张开图,其中每个面上都标有一个数字。

那么在原正方形中,与数字“2”相对的面上的数字是【】(A)1 (B)4 (C)5 (D)6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。

【答案】B5、(2013•自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为(),高为=6、(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是()【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B、C中两个小的与两个大的相邻,错,D中底面不符合,只有A符合。

7、(2013•温州)下列各图中,经过折叠能围成一个立方体的是()8、(2013•巴中)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()9、(2013菏泽)下列图形中,能通过折叠围成一个三棱柱的是( )A .B .C .D .考点:展开图折叠成几何体.分析:根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.解答:解:A .另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.点评:本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.10、(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()B C...13、(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()14、(2013台湾、25)附图的长方体与下列选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?( )A .B .C .D .考点:几何体的表面积.分析:根据立体图形的面积求法,分别得出几何体的表面积即可. 解答:解:∵立体图形均是由边长为1公分的小正方体紧密堆砌而成,∴附图的表面积为:6×2+3×2+2×2=22,只有选项B的表面积为:5×2+3+4+5=22.故选:B.点评:此题主要考查了几何体的表面积求法,根据已知图形求出表面积是解题关键.15、(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16、(2013•咸宁)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是泉.。

2013年江西省南昌市十四校中考第四次联合模拟数学试卷及答案(word解析版)

2013年江西省南昌市十四校中考第四次联合模拟数学试卷及答案(word解析版)

江西省南昌市十四校2013年中考第四次联合模拟数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)每小题只有一个正确选项. 1.(3分)(2013•南昌模拟)下列各数中,最小的数是()A.﹣2 B.﹣1 C.0D.考点:实数大小比较.分析:根据正数都大于0,负数都小于0,两个负数,绝对值大的反而小即可解答.解答:解:∵在这一组数中﹣2,﹣1为负数,0,为正数;又∵|﹣2|>|﹣1|,∴﹣2<﹣1.即四个数中﹣2最小.故选A.点评:此题主要考查了实数的大小的比较,要求学生掌握比较数的大小的方法:(1)正数大于0,负数小于0,正数大于一切负数;(2)两个负数,绝对值大的反而小.2.(3分)(2013•南昌模拟)去括号:﹣(a﹣b)等于()A.a﹣b B.a+b C.﹣a﹣b D.b﹣a考点:去括号与添括号.分析:根据去括号的法则去括号时,不要漏乘括号里的每一项.解答:解:原式=﹣a﹣(﹣b)=﹣a+b=b﹣a.故选D.点评:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.3.(3分)(2013•南昌模拟)下列计算正确的是()A.2+4=6B.=4C.÷=3 D.=﹣3考点:实数的运算.分析:A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.解答:解:A、2+4不是同类项不能合并,故选项错误;B、=2,故选项错误;C、÷=3,故选项正确;D、=3,故选项错误.故选C.点评:此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.4.(3分)(2013•南昌模拟)若规定符号“⊕”的意义是a⊕b=ab﹣b2,则2⊕(﹣3)的值等于()A.0B.﹣15 C.﹣3 D.3考点:有理数的混合运算.专题:新定义.分析:根据题中的新定义将所求式子化为普通运算,计算即可得到结果.解答:解:根据题意得:2⊕(﹣3)=2×(﹣3)﹣(﹣3)2=﹣6﹣9=﹣15.故选B点评:此题考查了有理数混合运算的应用,弄清题中的新定义是解本题的关键.5.(3分)(2013•南昌模拟)已知等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.50°或80°D.40°或65°考点:等腰三角形的性质;三角形内角和定理.专题:分类讨论.分析:因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.解答:解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°,故选C.点评:根据等腰三角形的性质分两种情况进行讨论.6.(3分)(2013•南昌模拟)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为()A.B.C.D.考点:函数的图象.分析:根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.解答:解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为A.故选B.点评:此题考查了函数的图象;用到的知识点是函数图象的应用,需注意容器粗细和水面高度变化的关联.7.(3分)(2013•南昌模拟)用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第20个图形需棋子()枚.A.60 B.61 C.62 D.63考点:规律型:图形的变化类.分析:根据已知图形得出在4的基础上,依次多3个,得到第n个图中共有的棋子数.解答:解:观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(n﹣1)=3n+1.当n=20时,即原式=60+1=61.故第20个图形需棋子61枚.故选:B.点评:此题考查了规律型中的图形变化问题,主要培养学生的观察能力和空间想象能力.8.(3分)(2013•南昌模拟)下列运算正确的是()A.3a﹣2a=1 B.(a﹣3)2=a2+6a+9 C.a2•a3=a6D.(a+2)•(a2﹣2a)=a3﹣4a考点:多项式乘多项式;合并同类项;同底数幂的乘法;完全平方公式.分析:根据合并同类项的法则判断A;根据完全平方公式判断B;根据同底数幂的乘法运算性质判断C;根据多项式乘多项式的法则判断D.解答:解:A、3a﹣2a=a,故本选项错误;B、(a﹣3)2=a2﹣6a+9,故本选项错误;C、a2•a3=a5,故本选项错误;D、(a+2)•(a2﹣2a)=a3﹣2a2+2a2﹣4a=a3﹣4a,故本选项正确.故选D.点评:本题考查了合并同类项,完全平方公式,同底数幂的乘法,多项式乘多项式,是基础题,比较简单.9.(3分)(2013•南昌模拟)如图,四边形ABCD是圆内接四边形,∠BAD=108°,E是BC 延长线上一点,若CF平分∠DCE,则∠DCF的大小是()A.52°B.54°C.56°D.60°考点:圆内接四边形的性质.分析:由“圆内接四边形的任意一个外角等于它的内对角”知∠DCE=∠BAD=108°,然后根据角平分线的定义来求∠DCF的大小.解答:解:∵四边形ABCD是圆内接四边形,∠BAD=108°,E是BC延长线上一点,∴∠DCE=∠BAD=108°.∵CF平分∠DCE,∴∠DCF=∠DCE=54°.故选B.点评:本题考查了圆内接四边形的性质.圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.10.(3分)(2013•南昌模拟)一元二次方程2x2+kx﹣3=0的根的情况是()A.由k的符号决定B.没有实数根.C.有两个相等的实数根D.有两个不相等的实数根考点:根的判别式.分析:先计算出判别式△=k2﹣4×2×(﹣3)=k2+24,根据非负数的性质易得k2+24>0,即△>0,然后根据判别式的意义判断根的情况.解答:解:△=k2﹣4×2×(﹣3)=k2+24,∵k2≥0,∴k2+24>0,即△>0,∴方程有两个不相等的实数根.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(3分)(2013•南昌模拟)李明为好友制作了一个正方体礼品盒,六面上各有一字,其中“善”的对面是“良”,“真”的对面是“诚”,“忍”的对面是“让”,则它的平面展开图可能是()A.B.C.D.考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、“善”的对面是“良”,“真”的对面是“诚”,“忍”的对面是“让”,故本选项正确;B、“善”的对面是“让”,“真”的对面是“诚”,“忍”的对面是“良”,故本选项错误;C、不是正方体的展开图,故本选项错误;D、“善”的对面是“让”,“真”的对面是“诚”,“忍”的对面是“良”,故本选项错误.故选A.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.(3分)(2013•南昌模拟)将一块直径是10cm的量角器如图放置,点A与180°刻度重合,点B与0°刻度重合,角的另一边与40°刻度重合(点C),则AC等于()cm.(参考数据:sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342 ).A.6.43 B.7.66 C.9.40 D.3.42考点:圆周角定理;解直角三角形的应用.专题:探究型.分析:连接BC,OC,因为点A与180°刻度重合,点B与0°刻度重合,角的另一边与40°刻度重合(点C),所以∠BOC=40°,由圆周角定理可知∠A=20°,由于AB是⊙O的直径,故∠ACB=90°,根据直角三角形的性质可求出∠ABC的度数,再根据AC=AB•sin∠ABC即可得出结论.解答:解:连接BC,OC,∵点A与180°刻度重合,点B与0°刻度重合,角的另一边与40°刻度重合(点C),∴∠BOC=40°,∴∠A=∠BOC=20°,∵AB是⊙O的直径,AB=10cm,∴∠ACB=90°,∴∠ABC=90°﹣∠A=90°﹣20°=70°,∴AC=AB•sin∠ABC=10×0.940=9.40(cm).故选C.点评:本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)(2013•南昌模拟)如果﹣2+△=﹣8,则“△”表示的数应是﹣6.考点:有理数的加法.分析:根据第二个加数=和﹣第一个加数,列式计算即可得到“△”表示的数.解答:解:“△”表示的数应是﹣8﹣(﹣2)=﹣6.故答案为:﹣6.点评:考查了有理数的加法和减法之间的关系,是基础题型.14.(3分)(2013•南昌模拟)因式分解:3a2﹣3=3(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用平方差公式继续分解.解答:解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2013•南昌模拟)如图,折叠一张矩形纸片,使它的一个顶点落在长边上,已知:β=110°,求α=20度.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:由折叠及矩形的性质得到∠AFE为直角,利用平角的定义得到一对角互余,再由AB 与DC平行,利用两直线平行同旁内角互补得到一对角互补,求出∠AFC的度数,即可确定出α的度数.解答:解:由折叠的性质得:∠AFE=90°,∴α+∠AFC=90°,∵AB∥CD,∴∠β+∠AFC=180°,∵∠β=110°,∴∠AFC=70°,则α=20°.故答案为:20点评:此题考查了平行线的性质,以及翻折变换,熟练掌握平行线的性质是解本题的关键.16.(3分)(2013•南昌模拟)如图,一次函数y=x+2交x轴于A点,交y轴于B点,直线AB绕A点旋转,交y轴于B′点;在旋转的过程中,当△AOB′的面积恰好等于△AOB面积的一半;求此时直线AB′的解析式或.考点:一次函数图象与几何变换.分析:此题,分两种情况:直线AB绕点A顺时针旋转和逆时针旋转.根据三角形的面积公式知OB′=OB,所以利用待定系数法来求求旋转后的直线方程即可.解答:解:∵一次函数y=x+2交x轴于A点,交y轴于B点,∴A(﹣2,2),B(0,2).∵△AOB′的面积恰好等于△AOB面积的一半,∴OA•OB=OA•OB′,则OB′=OB,∴B′(0,1)或B′(0,﹣1).设直线AB′的解析式为y=kx+b(k≠0).当B′的坐标是(0,1)时,,解得,,∴直线AB′的解析式为:y=x+1.同理,当B′的坐标是(0,﹣1)时,直线AB′的解析式为:y=﹣x﹣1.综上所述,直线AB′的解析式为:或.故答案是:或.点评:本题考查了一次函数图象与几何变换.解题时,要分类讨论,以防漏掉另一个答案.三、(本大题共4个小题,每小题6分,共24分)17.(6分)(2013•南昌模拟)解不等式组:,并判断x=2是否是该不等式组的一个解.考点:解一元一次不等式组;估算无理数的大小.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后判断x=2是否是该不等式组的一个解.解答:解:,解不等式(1)得:x>3,解不等式(2)得:x≤8,故不等式组的解集是3<x≤8,是该不等式组的一个解.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(6分)(2013•南昌模拟)从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上.(1)问从中随机抽取一张扑克牌是梅花8的概率是多少?(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率.考点:列表法与树状图法.专题:计算题.分析:(1)直接根据概率的定义可求出随机抽取一张扑克牌是梅花8的概率;(2)先列表展示所有6种等可能的结果,其中抽取两张扑克牌成为一对的占2种,然后利用概率定义求解.解答:解:(1)随机抽取一张扑克牌是梅花8的概率==;(2)列表如下:共有6种等可能的结果,其中抽取两张扑克牌成为一对的占2种,所以随机抽取两张扑克牌成为一对的概率==.点评:本题考查了列表法与树状图法:先通过列表法或树状图法展示一个实验发生的所有等可能的结果,再从中找出某事件发生的结果数,然后根据概率的定义求这个事件的概率.19.(6分)(2013•南昌模拟)如图中的每个小方格都是边长为1的正方形,点A,B,C是方格纸的格点,请仅用无刻度的直尺,准确作出∠ABC的平分线,并计算tan=.考点:勾股定理;等腰三角形的判定与性质;锐角三角函数的定义.专题:网格型.分析:取格点D,连接BD则BD为∠ABC的平分线,再利用正切的定义即可求出tan的值.解答:解:如图所示:则tan=.故答案为.点评:本题考查了角平分线的作法以及正切的定义,属于基础性题目.20.(6分)(2013•南昌模拟)如图:等腰直角△ABC放置在直角坐标系中,∠BAC=90°,AB=AC,点A在x轴上,点B的坐标是(0,3),点C在第一象限内,作CD⊥x轴.(1)求证:△AOB≌△CDA;(2)若点C恰好在曲线y=上,求点C的坐标.考点:反比例函数综合题.分析:(1)先根据直角三角形的性质得出∠1=∠4,∠2=∠3,再由ASA定理即可得出结论;(2)由△AOB≌△ACD可知OA=CD,AD=OB=3,设OA=m,则C(m+3,m),再根据点C在反比例函数y=的图象上可知m(m+3)=10,由此可得出m的值,进而得出点C的坐标.解答:(1)证明:∵∠BAC=90°,∴∠1+∠2=90°,∵CD⊥x轴,∴∠2+∠4=90°,∴∠1=∠4,∠2=∠3,∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA);(2)解:∵△AOB≌△ACD,∴OA=CD,AD=OB=3,设OA=m,∴C(m+3,m),∵点C在反比例函数y=的图象上,∴m(m+3)=10,解得m1=2,m2=﹣5(舍去),∴点C的坐标为(5,2).点评:本题考查的是反比例函数综合题,涉及到全等三角形的判定于性质、反比例函数图象上点的坐标特点等知识,难度适中.四、(本大题共3小题,每小题8分,共24分)21.(8分)(2013•南昌模拟)琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.考点:二元一次方程组的应用.分析:设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据条件可以建立三个方程,从而构成三元一次方程组,求出其解即可.解答:解:设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,由题意,得,解得:.答:笔记本每本的价格是4元,水笔每支1.5元,练习本0.5元.点评:本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.22.(8分)(2013•南昌模拟)如图,▱ABCD的顶点A,B,C都在⊙O上,AD与⊙O相切于点A,⊙O的半径为4,设∠D=α,∠OBC=β(1)若β=50°,则α=70度.(2)猜想α与β之间的关系,并说明理由.(3)若α=60°,请直接写出▱ABCD的面积.考点:切线的性质;勾股定理;平行四边形的性质.分析:(1)设∠ABO=x°,则∠BAO=∠ABO=x°,根据∠BAD+∠ABC=180°即可列方程求得x的值,从而得到α的值;(2)解法与(1)相同;(3)根据(2)的结果求得β=30°,易证四边形ABCD是菱形,作OE⊥AB于点E,利用三角函数以及垂径定理即可求得四边形的边长,则面积可以求得.解答:解:(1)设∠ABO=x°,∵OA=OB,∴∠BAO=∠ABO=x°,∠ABC=β+x=50+x°.∵AD是圆的切线,∴∠OAD=90°,则∠BAD=90+x°,∵AD∥BC,∴∠BAD+∠ABC=180°,即50+x+(90+x)=180,解得:x=20,故∠ABC=50+20=70°,又∵▱ABCD中,α=∠ABC,∴α=70°.(2)同(1)设∠ABO=x°,则∠ABC=β+x°,∠BAD=90+x°,则β+x+(90+x)=180,即β+2x=90…①,又∵α=∠ABC=β+x…②,由①②可得:2α﹣β=90°;(3)α=60°,则根据(2)得:β=30°,∠ABO=30°,则△ABO≌△CBO,∴AB=BC,则四边形ABCD是菱形.作OE⊥AB于点E.在直角△OBE中,BE=OB•cos∠ABO=4×=2,则AB=2BE=4,∴BC=AB=4,则S▱ABCD=AB•BC•sin∠ABC=4×4×=24.点评:本题是平行四边形的性质、三角函数以及垂径定理的综合应用,正确求得∠ABO的度数是关键.23.(8分)(2013•南昌模拟)某校为了解八年级400名学生的自然科学素质,随机抽查了50名学生进行自然科学测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据频数分布表和扇形统计图所提供的信息解答下列问题:最终成绩(分)5分制原成绩(分)百分制频数1 (分)x<60 32 (分)60≤x<70 m3 (分)70≤x<80 104 (分)80≤x<90 n5 (分)90≤x≤100 11(1)频数分布表中的m=6,n=20;(2)样本的中位数是4分(5分制),扇形统计图中,得4分这组所对应的扇形圆心角是144度;(3)请估计该校八年级学生自然科学测试的平均最终成绩.(4)若这次测试最终成绩得4分与5分者为优秀,请你估计该校八年级的学生中,自然科学测试成绩为优秀的大约有多少人?考点:频数(率)分布表;用样本估计总体;扇形统计图.分析:(1)根据4分的占40%,共有50名学生,求出n的值,再用总人数减去1分、3分、4分、5分的频数,即可求出m的值;(2)根据共有50名学生和中位数是第25和26的平均数,即可求出中位数,再用得4分所占的百分比乘以360°,即可求出得4分这组所对应的扇形圆心角的度数;(3)把所有人数得分加起来,再除以总人数,即可得出八年级学生自然科学测试的平均最终成绩;(4)求出4分与5分所占的百分比,再乘以总人数,即可得出答案.解答:解:(1)∵4分的占40%,共有50名学生,∴n=50×40%=20(名),m=50﹣3﹣10﹣20﹣11=6(名);(2)共有50名学生,中位数是第25和26的平均数,则中位数是(4+4)÷2=4(分),得4分这组所对应的扇形圆心角是40%×360=144(度);(3)根据题意得:(1×3+2×6+3×10+4×20+5×11)÷50=3.6(分).答:该校八年级学生自然科学测试的平均最终成绩是3.6分;(4)根据题意得:(20+11)÷50×400=248(人).答:自然科学测试成绩为优秀的大约有248人.故答案为:6,20;4,144.点评:此题考查了频率分布表、扇形统计图、中位数,用样本估计总体,解题的关键是读懂统计图、掌握好中位数的定义以及用样本估计总体的计算公式,解答此题要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.五、(本大题共2小题,每小题12分,共24分)24.(12分)(2013•南昌模拟)矩形ABCD中AB=8,BC=6,∠ACB=53°;将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AD延长线上(图1).(1)求∠B′AC的度数与C′D的长度;(2)如图2 将△AB′C′向右平移得△A′B′C′,两直角边与矩形相交于点E、F;在平移的过程中出现了△AA′E≌△DFC′;求此时平移的距离AA′.(设AA′=x)(3)当平移的距离是多少时,能使△B′EF与原△ABC相似.考点:相似形综合题.分析:(1)根据矩形的性质得出BC=AD=6,BC∥AD,∠B=90°,求出∠BCA=∠CAD=53°,∠BAC=∠B′AC′=37°,即可求出答案;勾股定理求出AC=10=AC′,求出C′D即可;(2)证△A′AE∽△A′B′C′求出AE=,根据△AA′E≌△DFC′,得出AE=C′D,得出方程10﹣6﹣x=x,求出方程的解即可;(3)根据△A′AE∽△A′B′C′求出A′E=x,B′E=8﹣x,根据△C′DF∽△A′B′C′求出C′F=(4﹣x),B′F=6﹣(4﹣x),当满足B′E:B′F=6:8或B′E:B′F=8:6,两三角形相似,代入求出即可.解答:解:(1)∵四边形ABCD是矩形,∴BC=AD=6,BC∥AD,∠B=90°,∴∠BCA=∠CAD=53°,∠BAC=∠B′AC′=90°﹣53°=37°,∴∠B′AC=53°﹣37°=16°,在Rt△CBA中,AB=8,BC=6,由勾股定理得:AC=10=AC′,∴C′D=10﹣6=4;(2)∵∠A′=∠A′,∠C′B′A′=∠EAA′=90°,∴△A′AE∽△A′B′C′,∴=,∴=,∴AE=,∵△AA′E≌△DFC′,∴AE=C′D,∴10﹣6﹣x=x,x=,即此时平移的距离AA′是;(3)∵△A′AE∽△A′B′C′,∴=,∴=,∴A′E=x,∴B′E=8﹣x,同理由△C′DF∽△A′B′C′求出C′F=(4﹣x),∴B′F=6﹣(4﹣x),当满足B′E:B′F=6:8或B′E:B′F=8:6时,能使△B′EF与原△ABC相似即(8﹣x):[6﹣(4﹣x)]=6:8或(8﹣x):[(6﹣(4﹣x)]=8:6,解得:x=3.4或x=,∴当平移的距离是3.4或x=时,能使△B′EF与原△ABC相似.点评:本题考查了矩形性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力.25.(12分)(2013•南昌模拟)已知抛物线m:y=ax2﹣2ax+a﹣1,顶点为A,将抛物线m 绕着点(﹣1,0)旋转180°后得到抛物线n,顶点为C.(1)当a=1时.试求抛物线n的顶点C的坐标,再求它的解析式;(2)在(1)中,请你分别在抛物线m、n上各取一点B、D(除点A、C外),使得四边形ABCD成为平行四边形(直接写出所取点的坐标);(3)抛物线n与抛物线m的对称轴的交点为P,①若AP=6,试求a的值.②抛物线m与抛物线n的对称轴的交点为Q,若四边形APCQ能成为菱形,直接求出菱形的周长;若四边形APCQ不能成为菱形,说明理由.考点:二次函数综合题.分析:(1)将a=1代入y=ax2﹣2ax+a﹣1,得到抛物线m的解析式为y=x2﹣2x,运用配方法得到其顶点A的坐标为(1,﹣1),根据中心对称的性质得出点A绕着点(﹣1,0)旋转180°后的对应点C的坐标为(﹣3,1),由此得出抛物线n的解析式为y=﹣(x+3)2+1,或y=﹣x2﹣6x﹣8;(2)设B点坐标为(p,p2﹣2p),D(q,﹣q2﹣6q﹣8),根据平行四边形的性质得出平行四边形ABCD的对角线AC的中点与BD的中点重合,由中点坐标公式求出AC的中点坐标为(﹣1,0),则=﹣1,即q=﹣2﹣p,任意取一个p的值,可计算得出点B、D的坐标,例如取p=2,则q=﹣4,p2﹣2p=0,﹣q2﹣6q﹣8=0,即B(2,0),D(﹣4,0),答案不唯一;(3)①设抛物线n的解析式为y=﹣a(x+3)2+1,将x=1代入,得到y=﹣16a+1,即点P(1,﹣16a+1),根据AP=6,列出方程|﹣1﹣(﹣16a+1)|=6,解方程即可;②设抛物线m的解析式为y=a(x﹣1)2﹣1,将x=﹣3代入,得到y=16a﹣1,即点Q的坐标为(﹣3,16a﹣1).由A、P、C、Q四点的坐标可知AP∥CQ且AP=CQ,则四边形APCQ是平行四边形.若四边形APCQ能成为菱形,则AP=CP,由此列出方程(﹣16a+2)2=(1+3)2+(﹣16a+1﹣1)2,解方程求出a=﹣,则AP=5,根据菱形的周长公式即可求解.解答:解:(1)当a=1时,抛物线m的解析式为y=x2﹣2x=(x﹣1)2﹣1,顶点A(1,﹣1),点A绕着点(﹣1,0)旋转180°后得到顶点C的坐标为(﹣3,1),根据题意,可得抛物线n的解析式为y=﹣(x+3)2+1,或y=﹣x2﹣6x﹣8;(2)如图,设B点坐标为(p,p2﹣2p),D(q,﹣q2﹣6q﹣8),∵四边形ABCD是平行四边形,∴对角线AC与BD互相平分,即AC的中点与BD的中点重合,∵AC的中点坐标为(﹣1,0),∴=﹣1,q=﹣2﹣p.取p=2,则q=﹣4,p2﹣2p=0,﹣q2﹣6q﹣8=0,即B(2,0),D(﹣4,0);取p=0,则q=﹣2,p2﹣2p=0,﹣q2﹣6q﹣8=0,即B(0,0),D(﹣2,0);取p=3,则q=﹣5,p2﹣2p=3,﹣q2﹣6q﹣8=﹣3,即B(3,3),D(﹣5,﹣3);答案不唯一;(3)①如图,设抛物线n的解析式为y=﹣a(x+3)2+1,∵抛物线m的对称轴为直线x=1,∴当x=1时,y=﹣16a+1,∴点P的坐标为(1,﹣16a+1),∵AP=6,A(1,﹣1),∴|﹣1﹣(﹣16a+1)|=6,∴16a﹣2=±6,当16a﹣2=6时,a=;当16a﹣2=﹣6时,a=﹣;②如图,设抛物线m的解析式为y=a(x﹣1)2﹣1,∵抛物线n的对称轴为直线x=﹣3,∴当x=﹣3时,y=16a﹣1,∴点Q的坐标为(﹣3,16a﹣1).又∵A(1,﹣1),C(﹣3,1),P(1,﹣16a+1),∴AP∥CQ∥y轴,AP=CQ=﹣16a+2,∴四边形APCQ是平行四边形.若四边形APCQ能成为菱形,则AP=CP,即(﹣16a+2)2=(1+3)2+(﹣16a+1﹣1)2,整理,得16a=﹣3,解得a=﹣,∴当a=﹣时,四边形APCQ能成为菱形,∵AP=﹣16a+2=5,∴菱形的周长为:4AP=20.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数的性质,中心对称的性质,平行四边形的判定与性质,中点坐标公式,两点间的距离公式,菱形的性质,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。

2013年全国各地中考数学解析汇编-因式分解(10页)

2013年全国各地中考数学解析汇编-因式分解(10页)

2013年全国各地中考数学解析汇编(按章节考点整理)因式分解(分3个考点精选48题)11.1 提公因式法(2013北京,9,4)分解因式:269mn mn m ++= .【解析】原式=m (n 2+6n +9)=m (n +3)2【答案】m (n +3)2【点评】本题考查了提公因式及完全平方的知识点。

(2013广州市,13, 3分)分解因式a 2-8a 。

【解析】提取公因式即可分解因式。

【答案】:a(a -8).【点评】本题考查了因式分解的方法。

比较简单。

(2013浙江省温州市,5,4分)把24a a -多项式分解因式,结果正确的是( )A. ()4a a -B. (2)(2)a a +-C. (2)(2)a a a +-D. 2(2)4a --【解析】分解因式按“一提二套”原则:有公因式的先提取公因式,再套用平方差公式或完全平方公式,本题可直接提公因式.【答案】A【点评】有公因式的要先提取公因式,然后再考虑运用平方差公式或完全平方公式进行分解.因式分解要分解到每个多项式因式都不能再分解为止,此题较基础.(湖南株洲市3,9)因式分解:22a a -= .【解析】22(2)a a a a -=-【答案】(2)a a -【点评】本题主要考查因式分解的常用方法及步骤:先提取公因式,再运用公式法进行分解.(2013四川成都,1l ,4分)分解因式:25x x -=________.解析:因式分解的基本方法是提取公因式法、公式法、分组分解法。

本题只有两项,所以,只能用提取公因式法和平方差公式法。

观察可知有公因式x ,提取公因式法分解为x(x-5)。

答案:x(x-5)。

点评:公因式的确定方法是:系数是各项系数的最大公约数,字母是各项都有的字母,指数取最小。

(2013湖北随州,11,4分)分解因式:249x -=______________________。

解析:22249(2)3(23)(23)x x x x -=-=+-。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-41.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-41.doc

函数自变量取值范围1、(2013•资阳)在函数y=中,自变量x的取值范围是()2、(2013•泸州)函数自变量x的取值范围是()3、(2013•包头)函数y=中,自变量x的取值范围是()4、(2013•铁岭)函数y=有意义,则自变量x的取值范围是x≥1且x≠2.5、(2013•湘西州)函数y=的自变量x的取值范围是x.解得:x≥.6、(2013•郴州)函数y=中自变量x的取值范围是()7、(2013•常德)函数y=中自变量x的取值范围是()8、 (2013年广东湛江)函数y =中,自变量x 的取值范围是( ).A 3x >- .B 3x ≥- .C 3x ≠- .D 3x ≤- 解析:函数中含二次根式的部分,要求其被开方数是非负数,即30,3x x +≥∴≥-,∴选B9、(2013•眉山)函数y=中,自变量x 的取值范围是 x≠2 .10、(2013•恩施州)函数y=的自变量x 的取值范围是 x≤3且x≠﹣2 .11、(2013•绥化)函数y=中自变量x 的取值范围是 x >3 .12、(2013•巴中)函数y=中,自变量x 的取值范围是 x≥3 .13、(2013•牡丹江)在函数y=中,自变量x 的取值范围是 x≥ . 解得,x≥14、(2013•内江)函数y=中自变量x 的取值范围是 x≥﹣且x≠1 .15、(2013哈尔滨)在函数3x y x =+中,自变量x 的取值范围是 . 考点:分式意义的条件.分析:根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.解答:∵ 式子3x y x =+在实数范围内有意义, ∴ x +3≠≥0,解得x ≠-3.1 在实数范围内有意义,则x的取值范围16、(13年安徽省4分、11)若x317、(2013•常州)函数y=中自变量x的取值范围是x≥3;若分式的值为0,则x= .根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3;2x﹣3=0且x+1≠0,解得x=且x≠﹣1,所以,x=.故答案为:x≥3;。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-36.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-36.doc

矩形1、(2013陕西)如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 是,连接BM 、DN ,若四边形MBND 是菱形,则MDAM等于 ( ) A .83 B .32 C .53 D .54考点:矩形的性质及菱形的性质应用。

解析:矩形的性质应用较为常见的就是转化成直角三角形来解决问题,菱形的性质应用较常见的是四条边相等或者对角线的性质应用。

此题中求的是线段的比值,所以在解决过程中取特殊值法较为简单。

设AB=1,则AD=2,因为四边形MBND 是菱形,所以MB=MD ,又因为矩形ABCD ,所以∠A=90°,设AM=x,则MB=2-x ,由勾股定理得:AB 2+AM 2=MB 2,所以x 2+12=(2-x)2解得:43=x ,所以MD=45432=-,534543==MD AM ,故选C .2、(2013济宁)如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( )A . cm 2B . cm 2C .cm 2D .cm 2考点:矩形的性质;平行四边形的性质. 专题:规律型. 分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD 的面积为S=20cm 2, ∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的, ∴平行四边形AOC 1B 的面积=S ,∵平行四边形AOC 1B 的对角线交于点O 1,∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的, ∴平行四边形AO 1C 2B 的面积=×S=,B CDA第9题图 MN…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()4、(2013四川南充,3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B. 24C. 123D. 163答案:D解析:由两直线平行内错角相等,知∠DEF=∠EFB=60°,又∠AEF=∠'A EF=120°,所以,A B AB=,矩形ABCD的面积为∠'A E'B=60°,'A E=AE=2,求得''S=×8=D。

全国各地2013年中考数学试卷分类汇编 整式与因式分解

全国各地2013年中考数学试卷分类汇编 整式与因式分解

整式与因式分解一、选择题1.(2013某某黄冈,4,3分)下列计算正确的是( ) A .1644x x x =⋅ B .()9423a aa =⋅C .()()4232ab ab ab-=-÷ D .()()13426=÷a a【答案】D .【解析】A 选项中应为x 4·x 4=x 4+4=x 8;B 选项中应为(a 3)2·a 4=a 6·a 4=a 6+4=a 10;C 选项中应为(ab 2)3÷(-ab )2=a 3b 6÷a 2b 2=a 3-2b 6-2=ab 4;D 选项中(a 6)2÷(a 4)3=a 12÷a 12=1.所以只有D 正确.【方法指导】本题考查幂的运算.解决此类题的关键是熟练掌握幂的运算法则:(1)a m·an=a m +n(m ,n 为整数,a ≠0);(2)(a m )n=a mn(m ,n 为整数,a ≠0);(3)(ab )n=a n b n(n 为整数,ab ≠0);(4)a m÷a n=am -n(m ,n 为整数,a ≠0).【易错警示】易把同底数幂的乘法和幂的乘方相混淆,如x 4·x 4=x 8和(x 4)4=x 16,即(a m )n和a m ·a n混淆.2.(2013某某某某,2,3分)计算-2x 2+3x 2的结果为( ). A .-5x 2B .5x 2C .-x 2D .x 2【答案】D .【解析】计算-2x 2+3x 2=(-2+3)x 2=x 2,所以应选D .【方法指导】所含字母相同且相同字母的指数也相同的项叫做同类项.合并同类项时,系数相加减,相同的字母及其指数不变.【易错警示】本题主要考查同类项的概念,以及合并同类项.对同类项的概念把握不准,合并同类项的方法不对而出错. 3.(2013某某某某,9,3分)已知x -1x =3,则4-12x 2+32x 的值为( ). A .1B .32C .52D .72【答案】D . 【解析】因为x -1x =3,可将x -1x=3两边都乘以x ,得x 2-1=3x ,x 2-3x -1=0,两边都乘以-12,得-12x 2+32x +12=0,两边都加上4、减去12,得4-12x 2+32x =72.所以应选D .【方法指导】本题是等式性质的灵活运用,关键是将已知的等式变形,得出所求的代数式. 【易错警示】等式变形的方法不正确而出错.4.(2013某某某某,2,3分)下列运算中,结果是6a ( ). A .32a a ⋅ B .212a a ÷ C .()33a D .()6a -【答案】D .【解析】A 项错误,根据同底数幂的乘法,可得5a ;B 项错误,根据同底数幂的除法,可得结果为10a ;C 项错误,根据幂的乘方,可得结果为9a ; D 正确,根据积的乘方可得结果()661a -⨯=6a ,所以应选D .【方法指导】本题考查了同底数幂的乘法公式:a m·b n=a m+n,幂的乘方公式:()m n a =a mn,积的乘方公式(ab )n=a n·b n,同底数幂的除法公式:a m÷b n=am -n.【易错警示】混淆幂的运算公式以及幂的运算公式的运用错误,如a m÷b n=a m ÷n.5.(2013某某市(A ),2,4分)计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 2【答案】A .【解析】根据积的乘方及幂的乘方,得(2x 3y )2=22(x 3) 2y 2=4x 6y 2.【方法指导】本题考查幂的运算.幂的运算法则有(1)同底数幂相乘的性质:a m ×a n =am +n(m 、n 都是正整数);(2)幂的乘方的性质:(a m )n=a mn(m 、n 都是正整数);积的乘方的法则性质:(a ×b )n=a n×b n(n 是正整数);(3)同底数幂除法的性质:a m÷a n=a m -n(a ≠0,m 、n 都是正整数,且m >n ).【易错警示】幂的乘方和积的乘方,以及同底数幂相乘,这几个运算法则容易混淆. 6.(2013某某某某,4,3分)下列运算正确的是( ) A .x 2+x 3=x5B .(x -2)2=x 2-4C .2x 2·x 3=2x5D .(x 3)4=x 7【答案】C .【解析】A 不是同类项,故不能在计算,B 是一个完全平方式,故结果错误,C 项计算正确, D 项的运算结果应为x 12.【方法指导】幂的主要运算有:同底数幂的乘法,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方等于各因式分别乘方的积.合并同类项时,系数相加减,相同的字母及其指数不变.熟练掌握幂的运算是学好整式乘法的关键,把法则与公式结合起来记忆. 【易错点分析】法则中的幂的乘方与积的乘方易混淆不清. 7. (2013某某某某,2,4分)下列计算正确的是( ) A .623=÷a aB .422)(ab ab =C .22))((b a b a b a -=-+D .222)(b a b a +=+【答案】:C【解析】A 项是同底数幂相除,应该底数不变,指数相减,所以错;B 项是积的乘方,其结果应该是乘方的积,所以错;D 项是完全平方,其结果应该有2ab ,所以也错。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-1.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-1.doc

实数运算1、(2013•衡阳)计算的结果为()C2、(2013•常德)计算+的结果为()=3、(2013年河北)下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D.2-1=12答案:D解析:9是9的算术平方根,9=3,故A错;3-8=-2,B错,(-2)0=1,C也错,选D。

4、(2013台湾、6)若有一正整数N为65、104、260三个公倍数,则N可能为下列何者?()A.1300 B.1560 C.1690 D.1800考点:有理数的混合运算.专题:计算题.分析:找出三个数字的最小公倍数,判断即可.解答:解:根据题意得:65、104、260三个公倍数为1560.故选B点评:此题考查了有理数的混合运算,弄清题意是解本题的关键.5、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣= ﹣1 .=.6、(2013•衡阳)计算= 2 .)=4³=27、(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0= 2..8、(2013•黔西南州)已知,则a b= 1 .9、(2013杭州)把7的平方根和立方根按从小到大的顺序排列为 .考点:实数大小比较.专题:计算题. 分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<. 故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.10、(2013•娄底)计算:= 2 . ﹣4³+211、(2013•恩施州)25的平方根是 ±5 .12、(2013陕西)计算:=-+-03)13()2( .考点:本题经常实数的简单计算、特殊角的三角函数值及零(负)指数幂及绝对值的计算。

解析:原式=718-=+-13、(2013•遵义)计算:20130﹣2﹣1= .,故答案为:.14、(2013•白银)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0. 45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,﹣﹣(﹣﹣.15、(2013•宜昌)计算:(﹣20)³(﹣12)+.16、(2013成都市)计算:2- (2)解析:(1)2- (2)217、(2013•黔西南州)(1)计算:.)原式=1³4+1+|﹣2³﹣|18、(2013•荆门)(1)计算:³19、(2013•咸宁)(1)计算:+|2﹣|﹣(12)﹣1+2﹣.20、(2013•毕节地区)计算:.21、(2013安顺)计算:2sin60°+2﹣1﹣20130﹣|1﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、绝对值、负指数幂等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2³+﹣1﹣(﹣1)=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、绝对值、负指数幂等考点的运算.22、(2013安顺)计算:﹣++= .考点:实数的运算.专题:计算题.分析:本题涉及二次根式,三次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:﹣++=﹣6++3=﹣.故答案为﹣.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.23、(2013•玉林)计算:+2cos60°﹣(π﹣2﹣1)0.零指数幂的运算,然后特殊角的三角函数值后合并即可得解:原式=2+2³﹣24、(2013•郴州)计算:|﹣|+(2013﹣)0﹣()﹣1﹣2sin60°.﹣2³25、(2013•钦州)计算:|﹣5|+(﹣1)2013+2sin30°﹣.﹣1+2³26、(2013•湘西州)计算:()﹣1﹣﹣sin30°.﹣27、(13年北京5分14)计算:10)41(45cos 22)31(-+︒--+-。

2013年全国中考数学试题分类解析汇编专题4因式分解

2013年全国中考数学试题分类解析汇编专题4因式分解

2013年全国中考数学试题分类解析汇编专题4: 因式分解一、选择题1. (2012安徽省4分)下面的多项式中,能因式分解的是【 】A.n m +2B. 12+-m mC. n m -2D.122+-m m【答案】D 。

【考点】因式分解的条件。

【分析】在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,分解到每个因式不能再分为止。

因此,根据多项式特点和公式的结构特征,对各选项分析判断后利用排除法求解:A 、2m n +不能分解因式,故本选项错误;B 、21m m -+不能分解因式,故本选项错误;C 、2m n -不能分解因式,故本选项错误;D 、()2221=1m m m -+-是完全平方式,故本选项正确。

故选D 。

2. (2012浙江温州4分)把多项式a²-4a 分解因式,结果正确的是【 】A.a (a-4)B. (a+2)(a-2)C. a(a+2)( a-2)D. (a -2 ) ²-4【答案】A 。

【考点】提公因式法因式分解。

【分析】直接提取公因式a 即可:a 2-4a=a (a -4)。

故选A 。

3. (2012江苏无锡3分)分解因式(x ﹣1)2﹣2(x ﹣1)+1的结果是【 】A . (x ﹣1)(x ﹣2)B . x 2C . (x+1)2D .(x ﹣2)2【答案】D 。

【考点】运用公式法因式分解。

【分析】把x ﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可:(x ﹣1)2﹣2(x ﹣1)+1=(x ﹣1﹣1)2=(x ﹣2)2。

故选D 。

4. (2012湖北恩施3分)a 4b ﹣6a 3b+9a 2b 分解因式得正确结果为【 】A .a 2b (a 2﹣6a+9)B .a 2b (a ﹣3)(a+3)C .b (a 2﹣3)2D .a 2b (a ﹣3)2【答案】D 。

2013年全国各地中考模拟卷分类汇编:因式分解

2013年全国各地中考模拟卷分类汇编:因式分解

2013年全国各地中考模拟卷分类汇编---因式分解一、选择题1、(2013年聊城莘县模拟)把a 3-ab 2分解因式的正确结果是( )A 、(a +ab ) (a -ab )B 、a (a 2-b 2)C 、a (a +b )(a -b )D 、a (a -b )2答案:C2、(2013温州模拟)5.下列式子中是完全平方式的是( ▲ )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 【答案】D3.(2013年上海静安区二摸)下列式子中,从左到右的变形为多项式因式分解的是(A ))2)(2(22-+=-x x x (B )2)2)(2(2-=-+x x x(C ))2)(2(4-+=-x x x (D )4)2)(2(-=-+x x x 答案:A4、10.(2013年唐山市二模)已知a 、b 、c 是△ABC 的三边长,且满足223223ac b a b bc ab a ++=++,则△ABC 的形状是 ( )A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形答案:C二、填空题1、(2013年安徽凤阳模拟题二)分解因式:x 3− 4x = .答案:.x (x +2)(x -2)2(2013年安徽凤阳模拟题三).分解因式:29xy x -= .答案:x (y +3)(y -3)3.(2013年安徽初中毕业考试模拟卷一)因式分解3233a ab -= . 答案:3()()a a b a b +-4.(2013年北京房山区一模)分解因式:3x y xy -= .答案:(1)(1)xy x x +-5.(2013年北京龙文教育一模)分解因式:2212123b ab a +-= 答案:()223b a -6.(2013年北京平谷区一模)分解因式:324a ab -=__________ .答案:(2)(2)a a b a b +-7.(2013年北京顺义区一模)分解因式:231212ab ab a -+= . 答案:23(2)a b -8、(2013年安徽省模拟六)因式分解:3a+12a 2+12a 3= .答案:23(21)a a +9、(2013年安徽省模拟八)分解因式xy 2-x = .答案:x (y -1)(y +1)10、(2013年湖北荆州模拟5)分解因式 x (x -1)-3x +4= ▲ .答案: (x -2)211、(2013年湖北荆州模拟6)分解因式:xy 2-x =______▲____.答案:x (y +1)(y -1)12、(2013年上海奉贤区二模)分解因式:1682+-x x = ▲ ;答案:2)4(-x ;13、(2013届宝鸡市金台区第一次检测)分解因式:269mn mn m ++= 答案:m (n +3) 214、(2013年上海长宁区二模)在实数范围内分解因式:32-m = .答案:(m +3)(m -3)15.(2013浙江省宁波模拟题)因式分解:x 2y -y =______________.答案:y (x +1)(x -1)16. (2013沈阳一模)分解因式x 3-6x 2+9x =__________.答案:x (x -3)217. (2013沈阳一模)若m 为实数,且13m m -=,221m m-则= .答案:±13318.(2013盐城市景山中学模拟题)分解因式: x 2-36= ◆ .答案:(x +6)(x -6);19、(2013年江苏南京一模)分解因式:224a b -= .【答案】.(m +1)(m -1)31、(2013浙江东阳吴宇模拟题)分解因式:182x -8= .答案:2(3x -2)(3x +2)32. (2013上海黄浦二摸)分解因式:123+++x x x = ▲ .答案:()()211x x ++33.(2013年上海闵行区二摸)因式分解:2x y x y -= ▲ .答案:(1)x y x -34.(2013郑州外国语预测卷)分解因式:3m (2x -y )2-3mx 2= . 答案:3m (x -y )(3x -y ); 35、(2013凤阳县县直义教教研中心)分解因式:3ax 2+6axy +3ay 2=______。

(全国120套)2013年中考数学试卷分类汇编(打包53套)-15.doc

(全国120套)2013年中考数学试卷分类汇编(打包53套)-15.doc

反比例函数应用题1、(2013•曲靖)某地资源总量Q 一定,该地人均资源享有量与人口数n的函数关系图象=;故,的实际意义n=是>2、(2013•绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()y=得,,解得;(7≤x≤)所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;×3=5,不在14≤x≤﹣×2=14≤x≤×2=≈8.3,14≤x≤3、(2013•玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y (℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?中,进一步求解可得答案.y=600=,y=x≤20),得解答该类问题的关键是确4、(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?,=13.5工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=,得y=,得(2≤x≤3)(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.考点:反比例函数的应用;分式方程的应用.分析:(1)根据每天运量×天数=总运量即可列出函数关系式;(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.解答:解:(1)∵每天运量×天数=总运量∴nt=4000∴n=;(2)设原计划x天完成,根据题意得:解得:x=4经检验:x=4是原方程的根,答:原计划4天完成.点评:本题考查了反比例函数的应用及分式方程的应用,解题的关键是找到题目中的等量关系.7、(2013浙江丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为x m,DC的长为y m。

2013中考全国100份试卷分类汇编:分解因式

2013中考全国100份试卷分类汇编:分解因式

2013中考全国100份试卷分类汇编分解因式2233、(2013年河北)下列等式从左到右的变形,属于因式分解的是A .a (x -y )=ax -ayB .x 2+2x +1=x (x +2)+1C .(x +1)(x +3)=x 2+4x +3D .x 3-x =x (x +1)(x -1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A 、B 、C 都不符合,选D 。

4、(2013年佛山市)分解因式a a -3的结果是( )A .)1(2-a aB .2)1(-a aC .)1)(1(-+a a aD .)1)((2-+a a a 分析:首先提取公因式a ,再利用平方差公式进行二次分解即可解:a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1),故选:C .点评:此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止5、(2013台湾、32)若A=101×9996×10005,B=10004×9997×101,则A ﹣B 之值为何?( )A .101B .﹣101C .808D .﹣808考点:因式分解的应用.分析:先把101提取出来,再把9996化成(10000﹣4),10005化成(10000+5),10004化成(10000+4),9997化成(10000﹣3),再进行计算即可.解答:解:∵A=101×9996×10005,B=10004×9997×101,∴A ﹣B=101×9996×10005﹣10004×9997×101=101[(10000﹣4)(10000+5)﹣(10000+4)(10000﹣3)]=101(100000000+10000﹣20﹣100000000﹣10000+12)=101×(﹣8)=﹣808;故选D .点评:此题考查了因式分解的应用,解题的关键是提取公因式,把所给的数都进行分解,再进行计算.6、(2013台湾、24)下列何者是22x 7﹣83x 6+21x 5的因式?( )A .2x+3B .x 2(11x ﹣7)C .x 5(11x ﹣3)D .x 6(2x+7)考点:因式分解-十字相乘法等;因式分解-提公因式法.专题:计算题.分析:已知多项式提取公因式化为积的形式,即可作出判断.解答:解:22x 7﹣83x 6+21x 5=x 5(22x 2﹣83x+21)=x 5(11x ﹣3)(2x ﹣7),则x 5(11x ﹣3)是多项式的一个因式.故选C点评:此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.7、(2013年潍坊市)分解因式:()()=+-+a a a 322_________________.答案:(a -1)(a +4)考点:因式分解-十字相乘法等.点评:本题主要考查了整式的因式分解,在解题时要注意因式分解的方法和公式的应用是本题的关键.8、(2013•宁波)分解因式:x 2﹣4= (x+2)(x ﹣2) .9、分解因式:2a 2﹣8= 2(a+2)(a ﹣2) .10、(2-2因式分解·2013东营中考)分解因式2228a b -= . ()()222a b a b +-.解析:先提取公因式2,再利用平方差公式进行因式分解.11、(2013泰安)分解因式:m 3﹣4m= .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.解答:解:m 3﹣4m ,=m (m 2﹣4),=m (m ﹣2)(m+2).点评:本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题的关键,要注意分解因式要彻底.12、(2013•莱芜)分解因式:2m 3﹣8m= 2m (m+2)(m ﹣2) .= b (a+2b )(a ﹣2b ) .14、(2013菏泽)分解因式:3a 2﹣12ab+12b 2= 3(a ﹣2b )2 .考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案. 解答:解:3a 2﹣12ab+12b 2=3(a 2﹣4ab+4b 2)=3(a ﹣2b )2.故答案为:3(a ﹣2b )2.点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.15、(2013•滨州)分解因式:5x 2﹣20= 5(x+2)(x ﹣2) .16、(2013山西,13,3分)分解因式:a2-2a= .【答案】a(a-2)【解析】原式提取公因式a 即可,本题较简单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解
一、选择题
1、(2013山西中考模拟六)因式分解()2
19x --的结果是( )
A. ()()24x x +-
B. ()()81x x ++
C. ()()24x x -+
D. ()()108x x -+ 答案:A 二、填空题
1、(2013山东省德州一模)因式分解:224a a -= .
答案:2a(a-2)
2、 (2013·吉林中考模拟)把多项式a 3—2a 2+a 分解因式的结果是 .
答案:a (a -1)2
3、(2013·温州市中考模拟)因式分解:x 3-x =____________.
答案:x(x+1)(x -1)
4、(2013·湖州市中考模拟试卷1)分解因式:x 3-4x = _.
答案:x (x+2)(x -2)
5、(2013·湖州市中考模拟试卷3)因式分解:22
a x a y -=_ .
答案:()()a x y x y -+
6、(2013·湖州市中考模拟试卷8)因式分解22x x -= . 答案:x(x -2)
7、(2013·湖州市中考模拟试卷10)因式分解m m 43- = .
答案:)2)(2(-+m m m
8、 (2013年深圳育才二中一摸)分解因式:=+-a a a 232▲
答案:2
)1(-a a
9、(2013年广西南丹中学一摸)分解因式:2x 2-8= .
答案:2(x +2)(x -2)
10、(2013年河北省一摸)|把a 3-ab 2分解因式的结果为 . 答案:13.))((b a b a a -+;
11、(2013年河北二摸)分解因式am an bm bn +++= . 答案:(a +b )(m +n )
12、(2013年温州一摸)因式分解:x 3-x =____________.
答案:X(x+1)(x-1)
13、分解因式:22944x y y ---= ▲ . 答案:(32)(32)x y x y ++--。

相关文档
最新文档