数字图像处理的概念
遥感数字图像处理题库
理论部分一、概念解释题1.数字图像:用计算机存储和处理的图像,是一种空间坐标和灰度均不连续、以离散数学原理表达的图像2.数字图像处理:对一个物体的数字表示施加一系列的操作,以得到所期望的结果3.扫描:将一个数学虚拟网格覆盖在一幅图像上,图像的平面空间被离散化成一个个的有序的格子,然后按照格子的排列顺序依次读取图像的信息的过程4数字化:一幅图像从其原来的形式转换为数字形式的处理过程4.采样:将空间上连续的图像变换成离散点(即像素)的操作5.量化:采样后图像被分割成空间上离散的像素,但其灰度值没有改变。
量变是将像素灰度值转化成整数灰度级的过程6.采样定理:说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据7.直方图:是灰度级的描述,描述的是图像中各个灰度级像素的个数8.邻域:中心像素的行列成为该像素的领域9.特征空间:把从图像提取的m个特征量y1,y 2,…,y m,用m维的向量Y=[y1 y2…y m]t表示称为特征向量。
另外,对应于各特征量的m维空间叫做特征空间10.几何纠正:将含有畸变的图像纳入到某种地图投影11.内方位元素:表示摄影中心与相片之间相关位置的参数12.外方位元素:确定摄影光束在摄影瞬间的空间位置和姿态的参数13.GCP点:多项式纠正法地面控制点14.灰度重采样:像元灰度值根据周围阵列像元的灰度确定15.正射校正:16.辐射校正:消除图像数据中依附在辐亮度中的各种失真的过程17.大气校正:消除主要由大气散射、吸收引起的辐射误差的处理过程18.地形校正:19.图像镶嵌:将多个具有重叠部分的图像制作成一个没有重叠的新图像20.辐射增强:通过改变像元的亮度值来改变图像像元的对比度,从而改善图像质量的图像处理方法21.空间域增强:通过改变单个像元及相邻像元的灰度值来增强图像22.频率域增强:将图像经傅立叶变换后的频谱成分进行处理,然后逆傅立叶变换获得所需的图像23.直方图均衡化:对原始图像的像素灰度做某种映射变换,使变换后图像的灰度级均匀分布24.直方图规定化:为了使单波段图像的直方图变成规定形状的直方图而对图像进行转换的增强方法25.中值滤波:将窗口内的所有像素值按大小排序后,取中值作为中心像素的新值26.同态滤波:减少低频增加高频,对照度进行低通滤波,对反射度进行高通滤波,从而减少光照变化并锐化边缘或细节的图像滤波方法27.假彩色增强:对一幅自然彩色图像或同一景物的多光谱图像,通过映射函数变换成新的三基色分量28.HIS模型:色调H是描述纯色的颜色属性,而饱和度S提供了白光冲淡纯色程度的亮度29.植被指数:是基于植被叶绿素在红色波段的强烈吸收以及在近红外波段的强烈反射,通过红和近红外波段的比值或线性组合实现对植被信息状态的表达30.主成份变换:针对多波段图像进行的数学变换方法,常用于数据的压缩或噪声的去除31.缨帽变换:适用于LANDSAT图像的多波段经验性变换方法,变换结果可以较好的突出主体地物特征32.图像融合:采用一定的方法将不同类型的数据“融合”成一幅图像,可以同时达到高的光谱分辨率和空间分辨率33.计算机分类:对遥感图像上的地物进行属性的识别和分类34.模式识别:在图像分割的基础上提取特征,对图像中的内容进行判决分类35.监督分类:即先选择有代表性的验训练区,用已知地面的各种地物光谱特征来训练计算机,取得识别分类判别规则,并以此做标准对未知地区的遥感数据进行自动分类识别36.非监督分类:即按照灰度值向量或波谱样式在特征空间聚集的情况划分点群或类别37.最大似然度:38.Mahalanobis距离:是一种加权的欧式距离,它通过协方差矩阵来考虑变量的相关性39.ISODATA法分类:迭代式自组织数据分析算法40.分类后处理:为了解决光谱类和地物类的关系以及其他一些专业及专业制图的技术问题,分类后还需进行的各种处理41.生产者精度:表示实际的任意一个随机样本与分类图上同一地点的分类结果相一致的条件概率,用于比较各分类方法的好坏42.用户精度:表示从分类结果图中任取一个随机样本,其所具有的类型与地面的实际类型相同的条件概率,表示分类结果中各类别的可信度43.Kappa系数:测定两幅图之间吻合度或精度的指标二、简答题1.简述模拟图像处理和数字图像处理的区别。
数字图像处理与分析
数字图像处理与分析数字图像处理与分析(Image Processing and Analysis)是一门研究如何对数字图像进行处理和分析的技术学科。
它广泛应用于各个领域,例如医学图像处理、计算机视觉、模式识别等。
本文旨在介绍数字图像处理与分析的基本原理和常见应用。
首先,我们来了解一下数字图像的基本概念。
数字图像是由一系列的像素(Pixel)组成的,每个像素都具有一定的亮度和颜色信息。
图像处理的目标就是对这些像素进行一系列的操作,从而实现图像的增强、恢复、压缩等目的。
数字图像处理的基本原理涵盖了多个方面。
首先是图像增强(Image Enhancement),它通过调整图像的亮度、对比度、颜色饱和度等参数,使得图像更加清晰和易于观察。
其次是图像恢复(Image Restoration),它用于修复因噪声、模糊等原因导致的图像损坏。
常见的图像恢复方法包括去噪、去模糊等。
此外,还有图像压缩(Image Compression),用于减小图像的存储空间和传输带宽,提高图像的传输效率。
数字图像处理还涉及到一些高级的技术和方法。
例如,图像分割(Image Segmentation)用于将图像划分为若干个具有相似特征的区域,从而实现对图像中目标的提取。
图像配准(Image Registration)用于将多幅图像进行对齐,使得它们具有一致的空间参考。
目标检测与识别(Object Detection and Recognition)则用于在图像中寻找并识别出特定的目标。
数字图像处理与分析在许多领域的应用十分广泛。
在医学领域,它被用于医学图像的分析和诊断,例如CT扫描、MRI等。
在农业领域,数字图像处理被用于植物图像的分析,例如检测病虫害、测量农作物生长情况等。
在安防领域,数字图像处理被用于视频监控和行人检测,以提高监控系统的效率和准确性。
总结起来,数字图像处理与分析是一门研究如何对数字图像进行处理和分析的学科。
它涉及到图像增强、图像恢复、图像压缩等基础原理,以及图像分割、图像配准、目标检测与识别等高级技术。
数字图像处理在医学影像中的应用:技术、原理与应用研究
数字图像处理在医学影像中的应用:技术、原理与应用研究引言数字图像处理在医学影像中的应用已经成为医学领域中不可或缺的一部分。
随着技术的发展和进步,数字图像处理在医学影像中的应用越来越广泛,为医生提供了更多的信息和工具来辅助诊断、治疗和研究。
本文将介绍数字图像处理在医学影像中的技术、原理和应用研究。
一、数字图像处理的基础知识1.1 数字图像处理的定义和概念数字图像处理是将图像的采集、处理、存储和传输等过程转化为数字形式,并利用计算机进行处理和分析的技术。
它包括图像增强、图像恢复、图像压缩、图像分割、图像配准等多个方面。
1.2 数字图像处理的基本原理数字图像处理的基本原理是通过对图像的像素点进行操作,利用数学方法和算法对图像进行处理和分析。
常见的数字图像处理方法包括灰度变换、滤波、傅里叶变换等。
二、数字图像处理在医学影像中的技术与方法2.1 图像增强技术图像增强技术是指通过对图像进行处理,提高图像的质量、清晰度和对比度,使医生能够更好地观察和分析图像。
常用的图像增强技术包括直方图均衡化、线性滤波、非线性滤波等。
2.2 图像分割技术图像分割技术是指将图像划分为不同的区域或物体,用于定位和识别不同的组织结构和病变。
常用的图像分割技术包括阈值分割、边缘检测、区域生长等。
2.3 图像配准技术图像配准技术是指将不同位置、不同时间或不同模态的图像进行对齐和匹配,以实现图像的比较和融合。
常用的图像配准技术包括基于特征的配准、基于相似度度量的配准等。
2.4 图像压缩技术图像压缩技术是指通过减少图像数据的冗余性和冗长性,以减小图像文件的尺寸,使得图像的存储和传输更加高效。
常用的图像压缩技术包括无损压缩和有损压缩。
三、数字图像处理在医学影像中的应用研究3.1 诊断辅助数字图像处理在医学影像中的应用最主要的是辅助医生进行疾病的诊断。
通过对医学影像进行处理和分析,可以提取更多的信息和特征,帮助医生更准确地判断病变的位置、形状和大小,从而提高诊断的准确性和可靠性。
数字图像处理知识点总结
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
数字图像处理
第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。
二、数字图像处理的目的1、提高图像的视觉质量。
2、提取图像中的特征信息。
3、对图像数据进行变换、编码和压缩。
三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。
细节越多,采样间隔应越小。
把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。
一般,灰度图像的像素值量化后用一个字节(8bit)来表示。
二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。
为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。
对细节化图像,细采样,粗量化,以避免模糊。
三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。
彩色图像的像素值量化后用三个字节(24bit)来表示。
一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。
五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。
六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。
数字图像处理
数字图像处理学院:行12数信院姓名:姜晶学号:12202509教师:朱杰时间:2014年10月一绪论1.1人类传递信息的主要媒介是语音和图像。
据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。
目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。
数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。
数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。
图像的概念视觉是人类最重要的感知手段,图像视觉的基础。
图像处理是计算机信息处理的重要内容。
图像可以是可视的和非可视的,也可以是抽象的和实际的。
一般情况下,一幅图像是另一种事物的表示,它包含了有关其所表示物体的描述信息。
可以包括人眼看见的方式显示这一信息,也可以包括人眼不能感知的形式表示信息。
图像是器所表示物体信息的一个浓缩或概括。
一般来说,一幅图像包含的信息远比原物体要少。
因此,一幅图像是该物体的一个不完全、不精确的,但在某种意义上是恰当的表示。
实际上,图像与光学密切相关,即与光的照射、反射密切相关。
因此,从理论上来说,一幅图像可以被看作为空间各个坐标点上光的强度的集合。
数字图像处理
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
数字图像处理复习
数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。
图-是物体透射或反射光的分布,是客观存在的。
像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。
数字图像是物体的一个数字表示,是以数字格式存放的图像。
2. 数字图像处理的概念。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。
3. 数字图像处理的优点。
精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。
3.光强度与主观亮度曲线。
P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。
(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。
采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。
采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。
设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。
(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。
8. 领域空间内像素距离的计算。
(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。
数字图像处理的基本概念(2)2022优秀文档
LOGO
1.1 什么是数字图像
一幅照片、一张海报、一幅画都是图像,然而这些都是传统的模 拟图像,这些图像的载体是“原子〞。
随着数字技术的不断开展和运用,现实生活中的许多信息都可以 用数字方式的数据进展处置和存储,也就是说,以“比特〞的方式进 展存储,数字图像就是这种以数字方式进展存储和处置的图像。数字 图像的载体是计算机的硬盘、光盘、U盘等数字存储器。
LOGO
1.2 获得数字图像的方法
1.2.1 数字是如何表示图像的 如表1.1,是一个矩形数字点阵,其中每个数字都在0和255之间
,计算机运用0-255之间的数表示黑白图像的浓度,称为灰度级。0表 示纯黑色,255表示纯白色.
LOGO
1.2 获得数字图像的方法
1中的每个点“翻译〞成图1. 假设允许R、G、B分量不一样,图像就会呈现出彩色信息,构成彩色图像。 计算机图像处置中常用的颜色模型是RGB模型,这里R表示红色,G表示绿色,B表示蓝色。 1中的每个点“翻译〞成图1. 指该图像在空间域上的采样数。 在U盘、硬盘、光盘等数字存储器中,数字图像是以表1. 4 图像处置的主要入门概念 获得数字图像的过程是上述“翻译〞过程的逆过程。 3 数字图像的优势 2 获得数字图像的方法 在加工、处置、印刷方面,数字图像的优势更为明显 。 每个像素都是介于黑和白之间的一个灰度颜色,没有彩色信息,这样的图像称之为灰度图像。 思索图像分辨率和图像文件大小的关系,并举例阐明。
模拟图像中的图像信号是以延续的方式存在于图像介质中。
1,是一个矩个形数像字点素阵点,其都中每很个小数字,都在看0和起25来5之就间,成计算为机一运用个0-2延55之续间的的数图表示像黑白。图假像的设浓度我,们称为将灰度这级样。 的
基于OpenCV的数字图像处理技术_01数字图像处理技术简介
注:有些位图不需要调色板,如真彩色图, 它们的BITMAPINFOHEADER后面直接是位图数据
2. 数字图像的表示方法-续6
BMP格式,实际的图像数据 对于2色位图,1位表示一个像素颜色,
所以一个字节表示8个像素 对于16色位图,4位表示一个像素颜色,
所以一个字节表示2个像素 对于256色位图,1个字节表示1个像素 对于真彩色图,3个字节表示一个像素
物理图像及对应 的数字图像
1.1 数字图像的概念-续3
灰度 196
采样行
物理图像 采样列 像素
43
数字图像 灰阶像素
黑
0
行间隔
灰
128
图片
采样列间隔
白
255
1.1 数字图像的概念-续4
➢灰度级 灰度图像(128x128)及其对应的数值矩阵
(仅列出一部分(26x31))
125,153,158,157,127, 70,103,120,129,144,144,150,150,147,150,160,165,160,164,165,16 175,175,166,133, 60, 133,154,158,100,116,120, 97, 74, 54, 74,118,146,148,150,145,157,164,157,158,162,165,171,155,115, 88, 49, 155,163, 95,112,123,101,137,108, 81, 71, 63, 81,137,142,146,152,159,161,159,154,138, 81, 78, 84,114, 95, 167, 69, 85, 59, 65, 43, 85, 34, 69, 78,104,101,117,132,134,149,160,165,158,143,114, 99, 57, 45, 51, 57,
数字图像处理概述归纳总结
数字图像处理概述归纳总结数字图像处理是指将图像的像素信息进行数字化并对其进行处理的一门技术。
它广泛应用于计算机视觉、医学图像处理、工业检测等领域。
本文将对数字图像处理的基本概念、常见算法以及未来发展趋势进行归纳总结。
一、数字图像处理的基本概念数字图像由像素阵列组成,每个像素存储着图像的亮度信息。
在数字图像处理中,常用的表示方法是灰度图像和彩色图像。
灰度图像是指每个像素只包含一个亮度值,通常以8位表示,取值范围为0~255。
而彩色图像则包含了红、绿、蓝三个通道的亮度值,通常以24位表示,每个通道的取值范围也为0~255。
数字图像处理的主要任务包括图像增强、图像恢复、图像分割、图像压缩等。
二、数字图像处理的常见算法1. 图像增强算法图像增强旨在改善图像的视觉品质,常用的算法包括直方图均衡化、灰度拉伸、滤波等。
直方图均衡化可以通过调整图像的亮度分布来增强图像的对比度,从而使图像细节更加清晰可见。
2. 图像恢复算法图像恢复用于去除图像中的噪声,常见的算法有均值滤波、中值滤波、小波去噪等。
其中,中值滤波可以有效地去除椒盐噪声,而小波去噪能够在保持图像细节的同时消除高频噪声。
3. 图像分割算法图像分割旨在将图像划分为不同的区域,常用的算法有阈值分割、边缘检测、区域生长等。
阈值分割根据像素灰度值与设定阈值的大小关系将图像分为前景和背景,而边缘检测则可用于检测图像中的边界。
4. 图像压缩算法图像压缩是指通过减少图像的存储空间来实现数据压缩,常见的算法有无损压缩和有损压缩。
其中,无损压缩保证了图像的质量不受损失,而有损压缩通过舍弃图像中的冗余信息来实现更高的压缩比率。
三、数字图像处理的未来发展趋势1. 深度学习在图像处理中的应用随着深度学习的发展,其在数字图像处理中的应用越来越广泛。
通过深度学习算法,可以实现更精确的图像分类、目标检测等任务,从而提升图像处理的效果和准确性。
2. 多模态图像处理多模态图像处理是指处理多个不同模态的图像,比如红外图像、可见光图像等。
数字图像处理(DigitalImageProcessing)
图像变换
傅里叶变换
将图像从空间域转换到频率域,便于分析图 像的频率成分。
离散余弦变换
将图像从空间域转换到余弦函数构成的系数 空间,用于图像压缩。
小波变换
将图像分解成不同频率和方向的小波分量, 便于图像压缩和特征提取。
沃尔什-哈达玛变换
将图像转换为沃尔什函数或哈达玛函数构成 的系数空间,用于图像分析。
理的自动化和智能化水平。
生成对抗网络(GANs)的应用
02
GANs可用于生成新的图像,修复老照片,增强图像质量,以及
进行图像风格转换等。
语义分割和目标检测
03
利用深度学习技术对图像进行语义分割和目标检测,实现对图
像中特定区域的识别和提取。
高动态范围成像技术
高动态范围成像(HDRI)技术
01
通过合并不同曝光级别的图像,获得更宽的动态范围
动态特效
数字图像处理技术可以用于制作动态特效,如电影、广告中的火焰、 水流等效果。
虚拟现实与增强现实
数字图像处理技术可以用于虚拟现实和增强现实应用中,提供更真 实的视觉体验。
05
数字图像处理的未 来发展
人工智能与深度学习在数字图像处理中的应用
深度学习在图像识别和分类中的应用
01
利用深度学习算法,对图像进行自动识别和分类,提高图像处
医学影像重建
通过数字图像处理技术,可以将 CT、MRI等医学影像数据进行重建, 生成三维或更高维度的图像,便于 医生进行更深入的分析。
医学影像定量分析
数字图像处理技术可以对医学影像 进行定量分析,提取病变区域的大 小、形状、密度等信息,为医生提 供更精确的病情评估。
安全监控系统
视频监控
数字图像处理知识点与考点(经典)
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。
数字图像处理技术简介
数字图像处理技术简介在现代科技的飞速发展中,数字图像处理技术扮演了至关重要的角色。
无论是在医疗、工业、艺术还是娱乐领域,数字图像处理技术都有着广泛而深远的应用。
本文将对数字图像处理技术进行简要介绍,包括其基本概念、常见应用以及发展趋势。
1. 数字图像处理技术的基本概念数字图像处理技术是一种能够通过计算机对图像进行处理、分析和改善的方法。
它涵盖了图像获取、图像增强、图像恢复、图像压缩、图像分析和图像识别等多个方面。
在数字图像处理技术中,最常用的图像表达方式是像素矩阵,每个像素包含图像中一个单元的亮度值。
2. 数字图像处理技术的常见应用2.1 医疗图像处理在医疗领域,数字图像处理技术使得医生能够更轻松地观察和分析医疗图像,如X射线、MRI和CT扫描等。
通过数字图像处理技术,医生可以提高诊断准确性,同时减少对患者的侵入性检查。
2.2 工业品质控制数字图像处理技术在工业品质控制中也有着广泛应用。
通过对产品的图像进行处理和分析,能够快速检测和识别产品中的缺陷,实现质量的自动化控制。
这项技术不仅节省了人力成本,还提高了产品的一致性和可靠性。
2.3 艺术和娱乐数字图像处理技术在艺术和娱乐领域中揭示出了无限的想象力。
从电影特效到游戏设计,数字图像处理技术为创作者提供了广阔的创作空间。
通过对图像的处理和渲染,创作者能够打造栩栩如生的虚拟世界,为观众带来沉浸式的体验。
3. 数字图像处理技术的发展趋势随着计算机技术的不断进步,数字图像处理技术也在不断发展和创新。
下面将从三个方面展望数字图像处理技术的未来发展趋势。
3.1 深度学习的应用深度学习是人工智能领域的一个重要分支,它通过多层次的神经网络模拟人脑的工作原理,实现对图像的自动学习和分析。
未来,深度学习将广泛应用于数字图像处理技术中,从而实现更高效、更精确的图像处理和识别。
3.2 虚拟现实的融合虚拟现实技术的融合将使数字图像处理技术更具沉浸感和交互性。
未来,人们将能够通过虚拟现实设备直接与数字图像进行互动,创造全新的沉浸式体验。
数字图像处理的概念
数字图像处理的概念数字图像处理是指利用计算机对数字图像进行各种操作和处理的技术。
数字图像处理广泛应用于医学影像、遥感图像、工业检测、安防监控、图像识别等领域。
本文将详细介绍数字图像处理的概念、原理、方法和应用。
一、概念数字图像处理是指对数字图像进行各种算法和技术处理的过程。
数字图像是由离散的像素点组成的,每个像素点都有自己的亮度值或颜色值。
数字图像处理通过对这些像素点进行操作,改变图像的亮度、对比度、颜色、清晰度等特征,从而达到图像增强、图像复原、图像分割、图像压缩等目的。
二、原理数字图像处理的原理基于图像的数字化表示和计算机的处理能力。
首先,将模拟图像通过采样和量化的方式转换为数字图像。
然后,利用计算机的算法和技术对数字图像进行处理。
常用的处理方法包括滤波、变换、编码、分割、识别等。
最后,将处理后的数字图像重新转换为模拟图像,以便显示和输出。
三、方法1. 图像增强图像增强是指通过调整图像的亮度、对比度、清晰度等特征,使图像更加清晰、鲜明和易于观察。
常用的图像增强方法有直方图均衡化、灰度拉伸、滤波、锐化等。
2. 图像复原图像复原是指通过消除图像受到的噪声和失真,恢复图像的原始信息。
常用的图像复原方法有空域滤波、频域滤波、最小二乘法、反卷积等。
3. 图像分割图像分割是将图像分成若干个区域,每个区域具有相似的特征。
常用的图像分割方法有阈值分割、边缘检测、区域生长等。
4. 图像压缩图像压缩是通过减少图像的数据量,以达到减小存储空间和传输带宽的目的。
常用的图像压缩方法有无损压缩和有损压缩。
5. 图像识别图像识别是指通过计算机对图像中的目标进行自动识别和分类。
常用的图像识别方法有模板匹配、特征提取、机器学习等。
四、应用数字图像处理在各个领域都有广泛的应用。
1. 医学影像数字图像处理在医学影像领域中起到了重要的作用。
它可以帮助医生对病人进行诊断和治疗,如CT扫描、MRI、X光等。
2. 遥感图像数字图像处理在遥感图像领域中用于地理信息系统、农业、林业、环境保护等方面。
数字图像处理课件ppt
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。
数字图像处理
数字图像处理(1)(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.名词解释1. 数字图像:是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。
2.图像:是自然生物或人造物理的观测系统对世界的记录,是以物理能量为载体,以物质为记录介质的信息的一种形式。
3. 数字图像处理:采用特定的算法对数字图像进行处理,以获取视觉、接口输入的软硬件所需要数字图像的过程。
4. 图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
5. 灰度直方图:灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。
或:灰度直方图是指反映一幅图像各灰度级像元出现的频率。
6. 细化:提取线宽为一个像元大小的中心线的操作。
连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。
8.中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。
9.像素的邻域:邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。
即{(x=p,y=q)}p、q为任意整数。
像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1)10.直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为平坦的直方图,以此来修正原图像之灰度值。
11.采样:对图像f(x,y)的空间位置坐标(x,y)的离散化以获取离散点的函数值的过程称为图像的采样。
12.量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。
13.灰度图像:指每个像素的信息由一个量化的灰度级来描述的图像,它只有亮度信息,没有颜色信息。
14.图像锐化:是增强图象的边缘或轮廓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、数字图像处理的概念 1. 什么是图像“图”是物体投射或反射光的分布,“像” 是人的视觉系统对图的接受在大脑中形成的印象或反映。
是客观和主观的结合。
2数字图像是指由被称作象素的小块区域组成的二维矩阵。
将 物理图象行列划分后,每个小块区域称为像素(pixel )。
–每个像素包括两个属性:位置和灰度。
对于单色即灰度图像而言,每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示,0表示黑、255表示白,而其它表示灰度级别。
物理图象及对应 的数字图象3彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。
–通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。
4什么是数字图像处理数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 5对连续图像f (x ,y )进行数字化:空间上,图像抽样;幅度上,灰度级量化 x 方向,抽样M 行 y 方向,每行抽样N 点整个图像共抽样M ×N 个像素点一般取M=N=2n=64,128,256,512,1024,2048 6数字图像常用矩阵来表示:f(i,j)=0~255,灰度级为256,设灰度量化为8bitNN N N f N f N f N f f f N f f f y x f ⨯⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=)1,1( )1,1( )0,1( )1,1( )1,1( )0,1( )1,0( )1,0( )0,0( ),(7 数字图像处理的三个层次8 图像处理:9建立对图像的描述;以观察者为中心研究客观世界;图像分析是一个从图像到数据的过程。
10图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内容含义的理解及原来客观场景的解释;以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作(符号运算)11图像处理是比较低层的操作,处理的数据量非常大。
图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图像形式的描述。
图像理解主要是高层操作,基本上是对从描述抽象出来的符号进行运算,其处理过程和方法与人类的思维推理有许多类似之处12符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义13数字图像处理的历史与数字计算机的发展密切相关,它必须依靠数字计算机及数据存储、显示和传输等相关技术的发展。
14数字图像处理的应用领域多种多样。
最主要的图像源是电磁能谱,其他主要的能源包括声波、超声波和电子(用于电子显微镜)。
15伽马射线成像伽马射线成像的主要用途包括医学和天文观测。
16 X射线在医学诊断上的应用:(a)X光片(b)血管照相术(c)头部CAT切片图像X射线是最早用于成像的电磁辐射源之一X射线在工业和天文学上的应用(a)电路板(b)天鹅座星环17紫外光的应用多种多样平板印刷技术工业检测显微镜方法激光生物图像天文观测18可见光及红外波段成像这一波段的应用最为广泛,电视和多媒体,光显微镜;涉及的范围从药物到材料特性的检测天气观测与预报是卫星多光谱图像的主要应用领域; 图像识别19无线电波段成像主要应用在医学和天文学:在医学中,无线电波用于磁共振成像(MRI)20超声波图像产生的步骤:1.超声波系统向身体传输高频(1~5MHz)声脉冲。
2.声波传入体内并碰撞组织间的边缘,声波的一部分返回到探头,一部分继续传播直到另一边界并被反射回来。
3.反射波被探头收集起来并传给计算机。
4. 计算机根据声波在组织中的传播速度和每个回波返回的时间计算从探头到组织或者器官边界的距离。
5. 系统在屏幕上显示回波的距离和亮度形成的二维图像。
21电子显微镜成像:过热损坏的钨丝(250倍);损坏的IC电路(2500倍)22现状七十年代以来迅猛发展。
•1:主观需求:人类从外界获取得信息60~70%通过眼睛的图象信息。
•2:计算机技术的发展和通信手段的发展提供客观可能;以FFT为代表的数字信号处理算法和现代信号处理方法的精确性,灵活性与通用性。
•3:数学化的特点是该学科成熟的一个标志。
“一种科学只有在成功地运用数学时,才算真正达到了完美的地步”(分析,代数,几何)•总之:是一门在理论研究和应用开发两方面获得极大统一的学科。
23发展趋势1:结合网络和Internet技术需求而发展起来的新技术,比如网上图像、视频的传输、点播和新的浏览、查询手段。
2:高级图像处理技术,结合最新的数学进展,诸如小波、分形、形态学等技术。
3:智能化,图象自动分析、识别与理解。
24数字图像处理系统概要数字图象处理系统由图象数字化设备、图象处理计算机和图象输出设备组成。
输入及数字化设备•摄象机•鼓式扫描器•平台式光密度计•视频卡•扫描仪•数码相机•DV 显示及记录设备•图象显示器•鼓式扫描器•图象拷贝机•绘图仪•激光打印机•喷墨打印机25数字图像处理的主要研究内容.图像变换: 傅立叶变换/沃尔什变换/离散余弦变换/小波变换采用各种图像变换方法对图像进行间接处理.有利于减少计算量并进一步获得更有效的处理。
26.图像压缩编码图像压缩编码技术可以减少描述图像的数据量,以便节约图像存储的空间,减少图像的传输和处理时间。
图像压缩有无损压缩和有损压缩两种方式,编码是压缩技术中最重要的方法,在图像处理技术中是发展最早和应用最成熟的技术。
主要方法:熵编码,预测编码,变换编码,二值图像编码、分形编码……27图像的增强和复原图像增强和复原的目的是为了改善图像的视觉效果,如去除图像噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中感兴趣的部分。
图像复原要求对图像降质的原因有所了解,根据图像降质过程建立“退化模型”,然后采用滤波的方法重建或恢复原来的图像。
主要方法:灰度修正、平滑、几何校正、图像锐化、滤波增强、维纳滤波……28 图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割将图像中有意义的特征提取出来(物体的边缘、区域),它是进行进一步图像识别、分析和图像理解的基础。
虽然目前已研究出了不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
对图像分割的研究还在不断的深入中,是目前图像处理研究的热点方向之一。
主要方法:图像边缘检测、灰度阈值分割、基于纹理分割、区域增长……29图像描述:图像描述是图像分析和理解的必要前提。
图像描述是用一组数量或符号(描述子)来表征图像中被描述物体的某些特征。
主要方法:二值图像的几何特征、简单描述子、形状数、傅立叶描述子,纹理描述……30图像识别:图像识别是人工智能的一个重要领域,是图像处理的最高境界。
一副完整的图像经预处理、分割和描述提取有效特征之后,进而由计算机系统对图像加以判决分类。
31图像隐藏是指媒体信息的相互隐藏。
数字水印\图像的信息伪装32数字图像处理应用前景:数字图像处理除了通信领域的新应用外,另一个重要领域就是生物医学成像与诊断。
第二章数字图像处理基础1人眼的构造:镜头将光线聚焦,并将物体成像到视网膜上,视网膜上有许多光感应器叫做圆锥细胞(6~7百万)和杆细胞(75~150百万),圆锥细胞集中在中央凹周围并对颜色很敏感,而杆细胞比较分散,对低照度比较敏感。
光图像激活视杆体或视锥体时,发生光电化学反应,同时产生视神经脉冲,视觉系统散布视神经中有80万神经纤维,视觉系统传播视神经脉冲。
许许多多的视杆体和视锥体相互连接到神经纤维上。
视觉系统的可视波长范围为=380nm~780nm;视觉系统的可响应的亮度范围是:1~10个量级的幅度范围。
生理学已证实,视网膜中有三种视锥体,具有不同的光谱特性,峰值吸收分别在光谱的红、绿、兰区域。
吸收曲线有相当多的部分是相互重叠的。
这是三基色原理的生理基础。
2视锥细胞和视杆细胞在视网膜上的分布锥状(cone)视觉:白昼视觉,色彩;杆状(rod)视觉:夜视觉,低照度敏感。
3人眼的成像:人眼中的肌肉可以用来改变晶状体的形状,并允许我们对远近不同的物体进行聚焦。
而聚焦到视网膜上图像会刺激杆细胞和圆锥细胞,最终将信号发送到大脑。
4物理图像:我们所感知到的颜色是由光的特性被物体反射而决定的,比如,白光照在绿色物体上,大部分被吸收,而只有绿光被物体反射一般地,图像是由光照作用于场景并被部分的吸收,同时被场景中的物体反射形成的。
5人眼的视觉特性:视觉是主观对客观的反应,是一种主观感觉。
视觉包括亮度视觉和彩色视觉。
6人眼的视觉特性-视觉灵敏度何谓视觉灵敏度呢(视觉效应是由可见光刺激人眼引起的。
如果光的辐射功率相同而波长不同,则引起的视觉效果也不同,不仅颜色感觉不同,而且亮度感觉也不同。
为了确定人眼对不同波长光的敏感程度,在产生相同亮度感觉的情况下,测出各种波长光的辐射功率Ф(λ),则:光谱光视效能:K(λ)= 1 /Ф(λ)用来衡量视觉对波长为λ的光的敏感程度。
)实验表明,当λ=555nm时,有最大的光谱光视效能:Km=K(555)任意波长光的光谱光视效能K(λ)与Km之比称为光谱光视效率(相对视敏度),用函数V(λ)表示:V(λ)= K(λ)/ KmV(λ)也可用得到相同主观亮度感觉时所需各波长光的辐射功率Ф(λ)表示:V(λ)= Ф(555)/Ф(λ)人眼的视觉特性-彩色视觉彩色三要素亮度是光作用于人眼时所引起的明亮程度的感觉。
(光功率)色调是指颜色的类别,是决定色彩本质的基本参量。
(光波长)色饱和度是指彩色所呈现色彩的深浅程度(或浓度)。
色调与色饱和度合称为色度。
人眼的视觉特性-人眼分辨力何谓人眼的分辨力呢人在观看景物时人眼对景物细节的分辨能力。
人眼对被观察物体上刚能分辨的最紧邻两黑点或两白点的视角的倒数称为人眼的分辨力或视觉锐度。
人眼的视觉特性-视觉对比度图像中最大亮度Lmax 与最小亮度Lmin 的比值C 称为对比度。
C= Lmax/ Lmin例:实际传送的景物亮度200-20000cd/m2,电视屏幕亮度2-200cd/m2两者对比度都为100重现景物的亮度范围无需与实际景物的相等,只需保持二者的对比度相同。
视亮度——在一定背景亮度环境下人的主观亮度感觉。
费涅尔系数(相对对比度灵敏度阈) ξ=ΔBmin/B (随着环境的不同,在范围内变化) ΔBmin 称为可见度阈值。
人眼的视觉特性-同时对比度 感觉的亮度区域不是简单取决于亮度 相同亮度的方块在不同背景下,感觉亮度不同;位于中心位置的方块亮度相同,当背景变亮时,方块的亮度变暗。
一张白纸放在桌子上看上去很白,但用白纸遮蔽眼睛直视明亮的天空时,纸看起来总是黑的。
7在观察一个亮度渐变的边缘时,发现主观感受在亮度变化部位附近的暗区和亮区中分别存在一条更黑和更亮的条带,称之为“马赫带”。