红外光谱振动峰分析
红外光谱分析法
第一节 基本理论
一、红外吸收光谱的测定与表示法
1. 测定方法 红外光谱测定时所需样品极少,一般为1~5mg。 *固体样品有三种处理方法:
1)配成溶液, 2)与饱和烃如医用石蜡油研成胡状 3)与粉状溴化钾压片,一般用1~2mg样品,与200mg溴化 钾压制成片,可避免溶剂干扰。 *液体样品处理方法: 若不配成溶液,一小滴就够,可直接放在两片吸收池窗板中 间进行测定,叫液膜法。
图2-5正辛烷的红外光谱 (Ⅰ):2960~2850cm-1; (Ⅱ)-CH2-的剪式振动:1465cm-1; (Ⅲ)δ -CH3 (对称):1380cm-1; (Ⅳ)的平面摇摆振动:~725cm-1
43
CH3
(21)375CcHm-1两CH个3:强度当接分近子的中吸出收现带异,丙基时,甲基的1380cm-1带分裂为1385、 (3) -C(CH3)3:叔丁基与异丙基相似,也使1380cm-1带发生分裂,
另一部分光透过,若将其透过的光用单色器进行色散,就可以得到
一带暗条的谱带。若以波长或波数为横坐标,以百分吸收率为纵坐
标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,获得红
外振动信息。
14
红外吸收光谱的图谱多以波长(或波数 )为横坐标,以表示吸收峰的位置;若 用吸收百分率(adsorption%)表示吸收 强度时,吸收峰向上,但是通常以透射 百分率(transmittance%)表示。
振动或称伸张振动),常用符号“S”或
“ν”表示。
H
H
H
H
C
C
对称伸缩振动(νSCH2)
非对称伸缩振动(νasCH2)
2、弯曲振动:
面内弯曲振动 面外弯曲振动 (1)面内弯曲振动:分为剪式和平面摇摆弯曲振动两种。
红外吸收光谱特征峰
红外吸收光谱特征峰1. 水平振动峰:大部分物质在红外光谱中显示出实数振动峰,这些峰通常位于1500-4000 cm^-1区间。
在这个区间内,主要的振动模式有:C-H拉伸振动,C=O伸缩振动,C-N伸缩振动和O-H伸缩振动等。
2. 弯曲振动峰:这些峰通常位于500-1500 cm^-1区间,代表物质中相对较低能量的振动模式。
其中,主要的弯曲振动包括:C-H弯曲振动、O-H弯曲振动和C-N弯曲振动等。
3. 拉曼峰:拉曼光谱是一种与红外光谱类似的光谱,主要用于研究物质的分子振动。
拉曼光谱中的峰通常位于200-4000 cm^-1区间,包括了与红外光谱重叠的水平和弯曲振动。
4. 振动-转动峰:当分子既有振动运动又有转动运动时,红外光谱中会出现振动-转动峰。
这些峰通常位于0-500 cm^-1区间,具有特定的振动和转动组合频率,可以用来确定分子的对称性。
5. 过渡金属峰:一些过渡金属化合物在红外光谱中显示出独特的吸收峰。
这些峰通常位于400-2000 cm^-1区间,对应于金属-配体之间的振动模式。
6. 质子峰:质子(H+)在红外光谱中呈现为一个孤立线峰。
质子峰的位置通常在1500-2500 cm^-1之间,变化范围较大,取决于质子的环境。
红外吸收光谱中的这些特征峰可以提供物质的结构、键合和功能基团等信息。
通过分析化合物在红外光谱中的峰值位置和形状,可以确定其化学组成和化学结构,实现化合物的鉴定和分析。
同时,红外光谱还可以用于跟踪反应过程、监测化学变化和定量分析等方面。
这些特征峰在各个研究领域,如有机化学、材料科学和生物化学等中都有广泛的应用。
红外谱图峰位分析方法
红外谱图分析(一)基团频率和特征吸收峰物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。
多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。
这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。
实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。
通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。
根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1氢键区2 500~2 000 cm-1产生吸收基团有O—H、C—H、N—H;叁键区2 000~1 500 cm-1C≡C、C≡N、C═C═C双键区1 500~1 000 cm-1C═C、C═O等单键区按吸收的特征,又可划分为官能团区和指纹区。
一、官能团区和指纹区红外光谱的整个围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。
4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。
由于基团的特征吸收峰一般位于高频围,并且在该区域,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。
在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。
当分子结构稍有不同时,该区的吸收就有细微的差异。
这种情况就像每个人都有不同的指纹一样,因而称为指纹区。
指纹区对于区别结构类似的化合物很有帮助。
指纹区可分为两个波段(1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振动和C═S,S═O,P═O等双键的伸缩振动吸收。
(2)900~600 cm-1这一区域的吸收峰是很有用的。
红外光谱分析.
红外光谱分析序言二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。
到四十年代红外光谱技术得到了广泛的研究和应用。
当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。
红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。
因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。
一、基本原理1、基本知识光是一种电磁波。
可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。
表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。
红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。
通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1(2.5-15.4μ)或4000-400cm-1。
这段波长范围反映出分子中原子间的振动和变角振动,分子在振动运动的同时还存在转动运动。
在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。
每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。
红外光谱所用的单位波长μ,波数cm-1。
光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。
设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ)波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。
目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。
红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。
2、红外光谱的几种振动形式主要的基本可以分为两大类:伸缩振动和弯曲振动。
(1)伸缩振动(υ)沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。
红外光谱特征峰解析常识
红外光谱特征峰解析常识红外光谱是一种非常常用的分析技术,它可以用于确定化合物的结构和功能团,检测物质的组分和纯度,因此在化学、药学、生物学、环境科学等领域中得到了广泛的应用。
在红外光谱中,各个峰的位置和强度可以提供有关样品中化学键的信息,因此对红外光谱中常见的峰有一些基本的了解是很重要的。
1. 对称振动(伸缩)峰:对称振动是指分子中的原子以相对同样的方式沿着键轴向两个方向振动。
这种振动形成了红外光谱中的峰。
一般来说,对称伸缩振动的峰位于4000-2500 cm-1的高频区域。
它们的强度通常比较强,因为对称振动会导致比较大的偶极矩的变化。
2. 非对称振动(伸缩)峰:非对称振动是指分子中的原子以不同的方式沿着键轴向两个方向振动。
非对称振动一般出现在4000-1500 cm-1的区域。
它们的强度通常比较弱,因为非对称振动会导致较小的偶极矩的变化。
3. 弯曲振动峰:分子中的原子围绕键的轴线进行弯曲振动,形成了红外光谱中的弯曲振动峰。
这些峰通常位于1500-400 cm-1的区域。
弯曲振动的强度通常非常弱,并且其强度与非对称伸缩振动的强度相比要弱得多。
4. 指纹区域峰:指纹区域是位于1500-400 cm-1的区域,其中包含了分子结构中独特的振动模式。
这些峰的位置和形状具有高度的特异性和指示性,可以用于确定物质的结构和识别化合物。
5.进一步解析峰的位置:了解常见的波数峰值范围和化学键的振动模式是很重要的,但要对红外光谱中的峰进行更准确的解析,通常需要参考红外光谱数据库或文献中的标准光谱。
这些数据库和文献中提供了大量的已知化合物的红外光谱数据,可以用来对未知样品进行鉴定。
总之,红外光谱分析是一种非常有用的技术,可以提供关于化合物结构和功能团的重要信息。
掌握常见的红外光谱特征峰的解析常识可以帮助科学家们更好地理解和利用红外光谱技术。
7-光学分析-红外光谱分析(DZ)
特点 光谱响应宽且一致性 好、灵敏度高、受热噪 音影响大 稳定、中等灵敏度、较 宽线性范围、受热噪音 影响大 响应极快,可进行高速 扫描(中红外区只需 1s)。适于 FT-IR。
在该区域出现的峰较少; (1)RC CH (2100 2140 cm-1 )
RC CR’ (2190 2260 cm-1 ) R=R’ 时,无红外活性 (2)RC N (2100 2140 cm-1 ) 非共轭 2240 2260 cm-1
共轭 2220 2230 cm-1 仅含C、H、N时:峰较强、尖锐;
二者相互作用而产生强吸收峰或发生裂分的现象。
COCl
Ar-C()=880-860cm-1 C=O(as)=1774cm-1
1773cm-1 1736cm-1
5)空间效应 由于空间阻隔,分子平面与双键不在同一平面,此时
共轭效应下降,红外峰移向高波数。
O
C CH3
C=O=1663cm-1
O
C CH 3
动
R-Ar-H
650-900
H-C-H
1450
常见基团的红外吸收带
=C-H C-H CC C=C
O-H O-H(氢键) S-H P-H
C=O C-C,C-N,C-O N-O N-N C-F C-X
N-H
CN C=N
3500 3000 2500 2000 特征区
C-H,N-H,O-H
1500
1000 500 指纹区
红外光谱特征吸收峰讲解
红外光谱特征吸收峰讲解在红外光谱中,红外光与物质分子相互作用,使得分子中不同的化学键发生振动,从而吸收特定的红外辐射能量。
这些振动涉及键的拉伸、弯曲、扭转等运动,其振动频率和强度与分子结构和化学键的性质有关。
因此,红外光谱特征吸收峰可以提供分子结构和化学键信息。
红外光谱的横坐标是波数(cm-1),波数是光的频率的倒数,与光的能量成反比。
而纵坐标则是吸光度,表示物质对红外光的吸收程度。
吸收峰的位置可以通过测量吸收带的最大峰值处的波数来确定。
下面介绍一些常见的红外光谱特征吸收峰:1. 羧酸吸收峰(1700-1715 cm-1):羧酸的OH键弯曲振动和C=O双键伸缩振动引起的强吸收峰。
该吸收峰可以用来鉴别羧酸。
2. 羧酸盐吸收峰(1560-1640 cm-1):与羧酸吸收峰相比,羧酸盐的C=O双键伸缩振动引起的吸收峰位置左移。
3. 醛和酮吸收峰(1690-1750 cm-1):与羧酸吸收峰类似,它们也是由于C=O双键伸缩而引起的吸收峰。
但醛和酮的吸收峰位置通常比羧酸略高。
4. 羧酸和酮醇吸收峰(3200-3550 cm-1):由于羟基(OH)的振动引起的宽吸收峰。
在红外光谱中,羧酸和酮醇的羟基吸收峰位置和形状相似。
5. 烷基的C-H伸缩振动吸收峰(2850-3000 cm-1):烷基的C-H键伸缩振动引起的吸收峰。
短直链烷烃的C-H伸缩振动吸收峰出现在2850-2960 cm-1的范围内,而长直链烷烃的C-H伸缩振动峰则出现在2960-3000 cm-16. 芳香族化合物的C-H伸缩振动吸收峰(3020-3100 cm-1):芳香环中C-H键伸缩振动引起的吸收峰的位置通常在3020-3100 cm-17. N-H伸缩振动吸收峰(3300-3500 cm-1):含氮化合物中的氮氢键伸缩振动引起的吸收峰。
在氮-氢键的存在下,吸收峰位置可能出现在3300-3500 cm-1之间。
这些是红外光谱中常见的一些特征吸收峰范围和其对应的化学结构或基团。
红外光谱振动峰分析
红外光谱振动峰分析物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。
多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。
这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。
实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和CC等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。
通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。
一、基团频率区和指纹区(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650~3580 cm-1处出现游离O-H 基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
各类化合物的红外光谱特征
各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。
不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。
有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。
在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。
2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。
在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。
在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。
3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。
在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。
在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。
4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。
在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。
在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。
5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。
在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。
在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。
6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。
在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。
在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。
7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。
在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。
8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。
在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。
红外光谱的分析实验报告
一、实验目的1. 了解红外光谱的基本原理和实验方法。
2. 掌握红外光谱仪的操作技能。
3. 通过红外光谱分析,鉴定样品的化学成分。
二、实验原理红外光谱分析是一种基于分子振动和转动能级跃迁的光谱分析方法。
当分子吸收红外光时,分子中的化学键发生振动和转动,从而产生特征的红外光谱。
红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于化学、化工、生物、医药等领域。
三、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪、样品制备仪、样品瓶、玻璃棒、酒精、丙酮等。
2. 试剂:待测样品、KBr、压片机、滤纸等。
四、实验步骤1. 样品制备:将待测样品研磨成粉末,用玻璃棒搅拌均匀,然后将粉末与KBr按一定比例混合,压制成薄片。
将薄片放置在样品室中。
2. 红外光谱扫描:打开红外光谱仪,预热仪器至规定温度。
将样品薄片放入样品室,进行红外光谱扫描。
扫描范围为4000~400cm-1,分辨率为4cm-1。
3. 数据处理:将扫描得到的数据输入计算机,进行数据处理和峰位定位。
4. 结果分析:根据红外光谱的特征峰,对照标准光谱图,对样品进行定性分析。
五、实验结果与分析1. 样品A:在红外光谱图中,出现以下特征峰:(1)3340cm-1:O-H伸缩振动峰,表明样品中含有羟基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1450cm-1:C-H弯曲振动峰,表明样品中含有烷烃基。
综合以上特征峰,样品A为醇类化合物。
2. 样品B:在红外光谱图中,出现以下特征峰:(1)3420cm-1:N-H伸缩振动峰,表明样品中含有氨基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1050cm-1:C-O伸缩振动峰,表明样品中含有醚键。
综合以上特征峰,样品B为酰胺类化合物。
六、实验讨论1. 实验过程中,样品制备是关键步骤,需确保样品均匀、无气泡。
pvdf红外光谱特征峰
pvdf红外光谱特征峰
PVDF是一种聚合物材料,广泛应用于电池、太阳能电池和传感器等领域。
红
外光谱是一种常用的表征PVDF材料结构和性质的方法。
在PVDF的红外光谱中,有许多特征峰,其中一些峰具有重要的研究意义。
PVDF的红外光谱特征峰主要有C-H伸缩振动峰、C=O伸缩振动峰、CF2对称伸缩振动峰、CF2非对称伸缩振动峰、CF2振弯振动峰、CF2振扭振动峰和C-F伸缩振动峰等。
其中,C-H伸缩振动峰是PVDF红外光谱中较为明显的特征峰之一,该峰位在2930 cm-1左右。
C=O伸缩振动峰是另一个明显的特征峰,位于1775 cm-1左右。
CF2对称伸缩振动峰、CF2非对称伸缩振动峰、CF2振弯振动峰和CF2振扭振动峰,分别位于1140 cm-1左右、1210 cm-1左右、650 cm-1左右和540 cm-1左右。
而C-
F伸缩振动峰则位于1200 cm-1左右。
这些特征峰的位置和强度可以反映出PVDF的分子结构和化学键的类型与数量。
因此,在研究PVDF的应用和性质时,红外光谱特征峰的分析非常重要。
对于PVDF的红外光谱特征峰的研究也有一定的发展历程,现在已经有一些比较成熟的红外光谱分析方法。
以上是对于PVDF红外光谱特征峰的简要介绍,希望能为您提供一些参考。
红外光谱振动峰分析
红外光谱振动峰分析物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。
多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。
这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。
实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和CC 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。
通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。
一、基团频率区和指纹区(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H 基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。
红外光谱分析
红外光谱分析有机化合物的红外光谱分析⼀、实验⽬的(1)初步掌握两种基本样品制备技术及傅⾥叶变换光谱仪器的简单操作。
(2)通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的⼀般过程。
⼆、实验原理物质分⼦中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发⽣振动能级之间的跃迁,形成各⾃独特的红外吸收光谱。
据此,可对物质进⾏定性和定量分析。
特别是对化合物结构的鉴定,应⽤更为⼴泛。
三、仪器和试样1. 仪器傅⾥叶变换红外光谱仪(德国Bruker公司,TENSOR 27型;);压⽚机;玛瑙研钵;红外灯。
2. 试剂NaCl窗⽚、KBr晶体、待分析试样等。
四、实验步骤1.样品制备(1) 固体样品:KBr压⽚法⽤⼀玛瑙研钵将KBr晶体充分研磨后加⼊其量5%左右的待测固体样品,混合研磨直⾄均匀,并使其颗粒⼤⼩⽐所检测的光波长更⼩(约2µm以下)。
在⼀个具有抛光⾯的⾦属模具上放⼀个圆形纸环,⽤刮勺将研磨好的粉末移⾄环中,盖上另⼀块模具,放⼊油压机中进⾏压⽚。
KBr压⽚形成后,⽤夹具固定测试。
油压机的使⽤⽅法a压⽚模具放置在活塞下⽅。
b关紧通⽓⼝。
c上下摇把,使活塞下⾏,压紧模具,直⾄压⼒指⽰到500Kgf/cm2停⽌摇把,保持1分钟。
d打开通⽓⼝,压⼒指⽰回零,取出模具。
(2)液体样品:液膜法取⼀对NaCl窗⽚,⽤刮勺沾取液体滴在⼀块窗⽚上,然后⽤另⼀块窗⽚覆盖在上⾯,形成⼀个没有⽓泡的⽑细厚度薄膜,⽤夹具固定,即可放⼊仪器光路中进⾏测试,此法适⽤于⾼沸点液体样品。
2.仪器测试与解析(1)打开红外光谱测试软件→进⼊测试对话框→背景测试→样品测试→标峰值→打印谱图→取出样品室中样品。
(2)解析谱图,推出可能的结构式。
(3)查阅萨特勒标准谱图集,直⾄查到与所测试样品红外光谱图完全⼀致的谱图才能确定化合物结构。
五、结果处理1、样品及仪器:KBr压⽚法适合于固体样品,液膜法适合于沸点较⾼不易挥发的液体样品,操作仪器时需要注意背景的测量以及保持样品室的稳定。
红外光谱分析实验报告
红外光谱分析实验报告摘要:本实验旨在通过对苯甲酸与红外光谱仪进行红外光谱分析,探究它在红外光谱图上的不同吸收峰和峰位,从而得到苯甲酸的结构信息。
实验结果表明,苯甲酸在红外光谱图上有多个不同的吸收峰,每个峰对应不同的化学键振动,从而可以推测出苯甲酸的结构。
1.引言红外光谱分析是一种常用的分析方法,通过测量分子在红外光谱范围内的吸收光谱,可以得到分子的结构信息。
红外光谱通常分为三个区域:波长大于4000 cm-1的区域为近红外区,波长在4000-400 cm-1之间的区域为中红外区,波长小于400 cm-1的区域为远红外区。
每个区域内的吸收峰和峰位都对应不同的化学键振动,通过分析吸收峰的位置和强度,可以推测出分子的结构。
2.实验方法2.1实验仪器本实验使用的是红外光谱仪,包括光源、样品室、分光仪和检测器等部分。
2.2实验样品本实验使用的样品为苯甲酸,是一种有机化合物,化学式为C7H6O22.3实验步骤(1)将样品固态苯甲酸粉末放入红外吸收基片中。
(2)将基片放入红外吸收仪的样品室中。
(3)调节仪器到合适的波长范围,并选择合适的分辨率。
(4)开始记录红外光谱。
3.实验结果与分析通过实验记录的红外光谱图,我们可以看到苯甲酸在红外光谱上有多个吸收峰。
3.1振动峰的解释根据已知的红外光谱对照表,我们可以将各个峰位与不同化学键的振动相对应。
(1)在3100-2850 cm-1的范围内,我们观察到了一个强吸收峰,对应C-H的伸缩振动。
(2)在1700-1580 cm-1的范围内,我们观察到了一个强吸收峰,对应羧基的伸缩振动。
(4)在740-690 cm-1的范围内,我们观察到了一个强吸收峰,对应苯环上的C-H的弯曲振动。
3.2结构推测根据各个化学键的振动峰对应,在苯甲酸的红外光谱图上,我们可以推测出该化合物的结构。
苯甲酸的结构中含有C-H键、C-C键和C=O键。
根据实验结果,我们可以观察到C-H和C=O的伸缩振动峰位,以及苯环上的C-H的变形和弯曲振动峰位。
红外吸收光谱的特征峰
红外吸收光谱的特征峰红外吸收光谱是研究物质结构和化学键性质的重要手段之一、红外光谱实验通过测量物质吸收红外光的能力,可以获得物质的红外吸收光谱图。
红外吸收光谱图中的特征峰是物质分子中一些化学键振动的能级转移所产生的吸收峰,它们的位置和强度可以提供有关物质结构和成分的重要信息。
本文将对红外吸收光谱中的一些常见特征峰进行详细介绍。
1. 羟基振动:羟基振动是物质中羟基(OH)键的振动。
它在红外吸收光谱中一般表现为宽而强烈的吸收峰。
在红外区域,羟基的振动频率一般在3000-3700 cm^-1之间。
确切的位置可以用来判断羟基的类型,如醇类、酚类或羧酸类。
2. 烷基振动:烷基是由碳-碳单键和碳-氢键构成的有机物的官能团。
烷基的振动一般表现为一系列的吸收峰,频率范围在1300-3000 cm^-1之间。
不同碳数和取代基对烷基振动的影响会导致峰位置的差异,从而提供物质结构信息。
3. 羧酸振动:羧酸是含有羧基(-COOH)的化合物。
在红外吸收光谱中,羧酸的振动峰一般位于1700-1800 cm^-1之间。
羧酸的振动可以表现为羰基(C=O)和羧基结合振动,其位置和强度可以反映羧酸的结构和取代基。
4. 羧酸盐振动:羧酸盐是羧酸分子中羧基脱去质子形成的带负电荷的物种。
在红外光谱中,羧酸盐的振动峰一般出现在1400-1600 cm^-1之间,是羧酸振动峰的变化形式。
羧酸盐振动峰的位置和强度可以提供关于酸性和环境pH值的信息。
5. 羰基振动:羰基是碳氧键(C=O)的结构单元。
在红外吸收光谱中,羰基振动分为酮类和醛类两种。
醛类羰基振动峰一般位于1700-1750cm^-1之间,酮类羰基振动峰一般位于1700-1705 cm^-1之间。
羰基振动可以提供关于功能团、取代基和共轭体系的信息。
6. 氨基振动:氨基(-NH2)是含氮有机化合物中的常见官能团。
在红外吸收光谱中,氨基的振动峰一般出现在3200-3500 cm^-1之间。
红外谱图分析
由图中可以看出,在1733.61cm-1处有个最强的吸收光谱,它是羰基(C=O)的伸缩振动,1157.28 cm-1和1280 cm-1处均有吸收峰,他们分别是酯基中醚氧基(C-O-C)的对称伸缩振动与不对称伸缩振动。
由以上分析,推出此物质为聚酯。
环氧树脂中不含羰基(C=O),故而其不是环氧树脂。
1602.26 cm-1,1585 cm-1,1500 cm-1和1453.83 cm-1均有特征吸收峰,这是C=C芳环骨架的伸缩振动,表明含有苯环,700.02和759.70表明其实邻苯型。
2850 cm-1~3000cm-1处有3个强吸收峰是饱和烃的伸缩振动峰(C-H);1453.83 cm-1和1380 cm-1是C-H的弯曲振动峰,这都表明含有饱和烃(-CH2和-CH3)。
3422.13 cm-1的峰很宽,这可能是O-H伸缩振动或者N-H伸缩振动峰,但仅有一个峰,故而不含NH2;1551 cm-1处无明显三嗪环芳香族C=N的伸缩振动特征吸收峰,故而判断不含三聚氰胺。
NH2
N N
N
NH2NH2
三聚氰胺化学式
结论:此物质为聚酯材料,不含三聚氰胺。
傅里叶红外光谱吸收峰总结
傅里叶红外光谱吸收峰总结
傅里叶红外光谱是一种常用的光谱分析技术,可用于研究各种物质的结构和化学反应。
在傅里叶红外光谱中,吸收峰的位置和强度可以提供有关物质的信息。
以下是一些常见的傅立叶红外光谱吸收峰的总结:
1. 振动-弯曲峰:在约 500-1500 cm^-1 的范围内,物质的振动和弯曲产生吸收峰。
这些峰代表了分子内部的原子振动,通常被称为指纹峰。
每个化学物质都有特定的指纹峰,可以用于物质的鉴定。
2. 斜跨峰:在约900-1500 cm^-1 的范围内,吸收峰的位置通常位于振动-弯曲峰之间。
这些峰通常与羰基、羧酸和酯等化学官能团相关。
3. 动态峰:在约1500-4000 cm^-1的范围内,吸收峰的位置通常与化学键振动相关。
例如,C-H 伸缩振动峰通常在约 2850-3000 cm^-1 的范围内,而C=O 双键的振动则在约 1650-1800 cm^-1 的范围内。
4. 滑翔峰:在约3200-3600 cm^-1的范围内,有一个宽而强的吸收峰,被称为氢键伸缩峰。
这一区域通常用于检测分子中存在的氢键。
需要注意的是,吸收峰的位置和强度受到多种因素的影响,包括分子结构和化学环境。
因此,在使用傅里叶红外光谱进行分析时,需要进行比较和归类以确定特定吸收峰的位置和含义。
红外光谱分析全解
2、分子振动的形式与谱带
分子的振动形式可分成两类:
亚甲基(-CH2-)的几种基本振动形式及红外吸收谱: 1)伸缩振动:
反对称
as: 2926cm-1 (s)
对称
s: 2853cm-1(s)
2)弯曲振动
面内弯曲振动:
剪式
:1468cm-1 (m)
摇摆
:720cm-1 -C-(CH2)n,n≥4
由于检测器产生的信号很微小,因此,必须将信 号放大,才能记录成红外光谱。
三、红外分光光度计的操作性能及影响因素
1.分辨率 分辨率是仪器的重要性能之一,它表示仪器分开
相邻光谱波数(或波长)的能力。普通红外分光光度 计的分辨率至少应为2cm-1或1cm-1,更精密的仪器, 如付里叶变换光谱仪的分辨率可达到0.1cm-1,甚至 更小。
如果样品太厚或过浓,会使许多主要吸收谱带超 出标尺刻度,彼此连成一片,看不出准确的波数位置 和精细结构。图(4-17 A )中就是样品太厚的谱。为 了得到一张完整的红外光谱图往往需要采用多种厚度 的样品。
2、样品中不应含有游离水。水的存在不但干扰试样 的吸收谱面貌,而且会腐蚀吸收槽窗。同时也要注意 光路中不应有CO2,它也会干扰吸收谱的形态。 3、对于多组分的试样,在进行红外光谱测绘前应尽 可能将组分分离(可以有多种方法,如化学萃取、选 择性溶解、气相色谱、重结晶等),否则谱带重叠, 以致无法解释谱图。 4、样品表面反射的影响
光谱有关的能量变化主要是Er、Ev、Ee三者,每一种能
量也都是量子化的。
电子的能级最大,从基
态到激发态的能级间隔Ee = 1~20eV;分子振动能级间隔 Ev = 0.05~1.0eV,分子转动 能级间隔Er =0.001~0.05eV。 电子跃迁所吸收的辐射是在
红外吸收光谱特征峰点,史上最全
红外吸收光谱特征峰点,史上最全
红外吸收光谱是分析有机物和无机物化学组成的重要手段之一。
其中特征峰点的识别和解析是红外光谱分析的基础。
本文将介绍常
见物质的红外谱图以及显示其特征峰点的位置。
以下为几种有机物
和无机物的特征峰点:
有机物的特征峰点
- 烷基C--H伸缩振动(脂肪族烃):3000~2850 cm^-1
- 烯丙基C--H伸缩振动(卤代烃):3100~3000 cm^-1
- 芳香族C--H伸缩振动:3100~3000 cm^-1、1500~1450 cm^-1
- 烷基C--O拉伸振动(醇、醚):1300~1000 cm^-1
- 腈类分子C---N伸缩振动:2260、2220 cm^-1
无机物的特征峰点
- 含羟基化合物的水分子O--H伸缩振动:3400~3200 cm^-1
- 硫酸盐分子的S--O拉伸振动:1100~1000 cm^-1
- 亚硝酸盐分子的N--O伸缩振动:1550 cm^-1
- 氨基酸盐分子的N--H伸缩振动:3500~3200 cm^-1
- 硫化物离子分子的S--H伸缩振动:2550~2350 cm^-1
在进行红外光谱分析实验前,有必要将待测试物质和标准物质对比,以确定谱图中的特征峰点。
只有正确地识别了特征峰点,才能准确分析样品的组成结构和含量。
总结
本文介绍了常见物质的红外谱图以及显示其特征峰点的位置。
有机物和无机物的特征峰点各不相同,一般通过与标准物质进行比较来确定谱图中的特征峰。
对于分析组成结构和含量非常重要。
红外光谱分析法
伸缩振动
弯曲振动 面内弯曲振动
弯曲振动 面外弯曲振动
3. 分子振动形式的个数(分子振动自由度 f=3N-6(5)) 分子振动自由度 意义:估算红外吸收峰个数 估算红外吸收峰个数 实际观察到的红外吸收峰的数目,往往少于振动形式的数目, 减少的原因主要有: (1)不产生偶极矩变化的振动 不产生偶极矩变化的振动没有红外吸收,不产生红外吸收峰。 不产生偶极矩变化的振动 (红外非活性振动,CO2分子的 s 1388cm-1) 红外非活性振动, 分子的v 红外非活性振动 分子的 cm (2)有的振动形式不同 振动形式不同,但振动频率相同 振动频率相同,吸收峰在红外光谱 振动形式不同 振动频率相同 图中同一位置出现,只观察到一个吸收峰,这种现象称为简并 简并。 简并 (CO2分子δ面内, γ面外 667cm-1) 667cm CO 分子δ (3)吸收峰太弱 , 仪器不能分辨 吸收峰太弱, 吸收峰太弱 仪器不能分辨,或者超过了仪器可以测定的 波长范围。
X-H H 4000cm-1~2500cm-1 =O, X =O,N,C
☆★指纹区1500cm ☆★指纹区1500cm-1~600cm-1 指纹区
指纹区可以表示整个分子的特征 整个分子的特征,用来鉴别烯烃的取代程度 烯烃的取代程度、 指纹区 整个分子的特征 烯烃的取代程度 提供化合物的顺反构型 顺反构型信息;确定苯环的取代基类型 苯环的取代基类型等。 顺反构型 苯环的取代基类型
☆多原子分子的偶极矩与键的偶极矩和分子的
对称性有关
非对称分子
对称分子
是所有键的偶极矩的矢量和!! 是所有键的偶极矩的矢量和!!
与UV比较,IR的特点:IR频率范围小、吸收峰数目多、吸收 曲线复杂、吸收强度弱。 ★IR峰出现的频率位置由振动能级差决定 ☆★吸收峰的个数与分子振动自由度 分子振动自由度的数目有关 分子振动自由度 ☆★☆吸收峰的强度则主要取决于振动过程中偶极矩变化的 大小和能级跃迁的几率 C=O、Si-O、C-Cl、C-F 等基团极性较强,其吸收较强 C-N,C-H 等极性较弱的基团,吸收谱带的强度较弱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外光谱振动峰分析
物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。
多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。
这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。
实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和CC 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。
通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。
一、基团频率区和指纹区
(一)基团频率区
中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之
间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H 基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。
胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1
因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。
饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1,取代基对它们影响很小。
如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;- CH2基的吸收在2930 cm-1 和2850 cm-1附近;CH(不是炔烃)基的吸收基出现在2890 cm-1 附近,但强度很弱。
不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。
苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆稍弱,但谱带比较尖锐。
不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出
现在3085 cm-1附近。
叁键CH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。
(2)2500~1900 为叁键和累积双键区。
主要包括-CC、-CN等等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。
对于炔烃类化合物,可以分成R-CCH和R-C C-R两种类型,R-CCH的伸缩振动出现在2100~2140 cm-1附近,R-C C-R出现在2190~2260 cm-1附近。
如果是R-C C-R,因为分子是对称,则为非红外活性。
-C N基的缩振动在非共轭的情况下出现在2240~2260 cm-1附近。
当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。
若分子中含有C、H、N原子,-C N基吸收比较强而尖锐。
若分子中含有O原子,且O 原子离-C N基越近,-C N基的吸收越弱,甚至观察不到。
(3)1900~1200 cm-1为双键伸缩振动区
该区域重要包括三种伸缩振动:
①C=O伸缩振动出现在1900~1650 cm-1,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。
酸酐的羰基吸收带由于振动耦合而呈现双峰。
②C=C伸缩振动。
烯烃的C=C伸缩振动出现在1680~1620cm-1 ,一般很弱。
单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。
③苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。
(二)指纹区
1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。
其中1375 cm-1的谱带为甲基的C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动1300~1000 cm-1 ,是该区域最强的峰,也较易识别。
2.900~650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。
例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。
对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。
二、常见官能团的特征吸收频率
基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。
然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。
因此了解影响基团频率的因素,对解析红外光谱和推断分子结构都十分有用。
影响基团频率位移的因素大致可分为内部因素和外部因素。
内部因素:
1. 电子效应
包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。
(1)诱导效应(I 效应)
由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。
从而改变了键力常数,使基团的特征频率发生了位移。
例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频率升高,吸收峰向高波数移动。
随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。
(2)中介效应(M效应)
当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。
由于含有孤对电子的原子的共轭作用,使C=O上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。
对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。
当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。
2 . 氢键的影响
氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。
游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体,C=O键频率出现在1700 cm-1 。
分子内氢键不受浓度影响,分子间氢键受浓度影响较大。
3. 振动耦合
当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动相互作用。
其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。
振动耦合常出现在一些二羰基化合物中,如,羧酸酐。
(4)Fermi共振
当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸
收峰或发生裂分,这种现象称为Fermi共振。
外部因素
外部因素主要指测定时物质的状态以及溶剂效应等因素。
同一物质的不同状态,由于分子间相互作用力不同,所得到光谱往往不同。
分子在气态时,其相互作用力很弱,此时可以观察到伴随振动光谱的转动精细结构。
液态和固态分子间作用力较强,在有极性基团存在时,可能发生分子间的缔合或形成氢键,导致特征吸收带频率、强度和形状有较大的改变。
例如,丙酮在气态时的C-H为1742 cm-1 ,而在液态时为1718 cm-1 。
在溶液中测定光谱时,由于溶剂的种类、溶剂的浓度和测定时的温度不同,同一种物质所测得的光谱也不同。
通常在极性溶剂中,溶质分子的极性基团的伸缩振动频率随溶剂极性的增加而向低波数方向移动,并且强度增大。
因此,在红外光谱测定中,应尽量采用非极性的溶剂。