45+80+45三跨预应力混凝土变截面连续箱梁计算书

合集下载

midas计算预应力连续刚构桥梁工程课程设计

midas计算预应力连续刚构桥梁工程课程设计

预应力混凝土连续刚构桥结构设计书1.结构总体布置本部分结构设计所取计算模型为三跨变截面连续箱梁桥,根据设计要求确定桥梁的分孔,主跨长度为80m,取边跨46m,边主跨之比为0.575。

设计该桥为三跨的预应力混凝土连续梁桥(46m+80m+460m),桥梁全长为172m。

大桥桥面采用双幅分离式桥面,单幅桥面净宽20m (4X3.75行车道+1m左侧路肩+3.0m右侧路肩人行道+2X0.5m防撞护栏),两幅桥面之间的距离为1m,按高速公路设计,行程速度100Km/h。

桥墩采用单墩,断面为长方形,长14米,宽3.5米,高25米。

上部结构桥面和下部结构桥墩均采用C50混凝土,预应力钢束采用Strand1860钢材。

桥梁基本数据如下:桥梁类型 : 三跨预应力箱型连续梁桥(FCM)桥梁长度 : L =46 + 80 + 46 = 172 m桥梁宽度 : B = 20 m (单向4车道)斜交角度 : 90˚(正桥)桥梁正视图桥梁轴测图2.箱梁设计主桥箱梁设计为单箱单室断面,箱梁顶板宽20m,底板宽14m,支点处梁高为h支= (1/15 ~ 1/18)L中= 4.44 ~5.33m,取h支=5.0m,高跨比为1/16,跨中梁高为h中= (1/1.5~1/2.5) h 支= 2~ 3.33m,取h中=2.30m,其间梁底下缘按二次抛物线曲线变化。

箱梁顶板厚为27.5cm。

底板厚根部为54cm,跨中为27cm,其间分段按直线变化,边跨支点处为80cm,腹板厚度为80cm 具体尺寸如下图所示:箱梁断面图连续梁由两个托架浇筑的墩顶0号梁段、在两个主墩上按“T构”用挂篮分段对称悬臂浇筑的梁端、吊架上浇筑的跨中合拢梁段及落地支架上浇筑的边跨现浇梁段组成, 0号梁段长2m ,两个“T构”的悬臂各分为9段梁段,累计悬臂总长38m 。

全桥共有一个2m 长的主跨跨中合拢梁段和两个2m 长的边跨合拢梁段。

两个边跨现浇梁段各长4m ,梁高相同。

三跨预应力混凝土变截面连续刚构桥计算书

三跨预应力混凝土变截面连续刚构桥计算书

三跨预应力混凝土变截面连续刚构桥计算书第一章主桥概述 (3)第二章主桥结构复核计算 (4)一、技术标准和规范 (4)(一)、技术标准 (4)(二)、设计规范 (4)二、主要材料及设计荷载 (5)(一)、主要材料及其参数 (5)1.混凝土 (5)2.预应力钢材 (6)(二)、设计荷载取值 (7)1.恒载 (7)2.活载 (7)3.温度力 (7)4.荷载组合 (7)5.数值符号规定 (8)三、主桥纵向复核计算 (8)(一)、总体结构分析 (8)1.计算方法概述 (8)2.结构离散图 (8)3.阶段划分 (10)(二)、主要计算结论 (12)1.主梁 (12)(1)正应力 (12)(2)主应力 (13)(3)主梁极限承载力 (14)(4)主梁抗裂 (14)(5)主梁刚度 (15)(6)支座反力 (15)2.主桥下部 (15)(1)墩身强度 (15)(2)施工最大悬臂阶段横风不对称加载墩身抗扭验算 (16)(3)承台强度 (16)(4)桩基计算 (17)(三)、计算结果 (17)1.主梁应力及挠度 (17)2.考虑施工误差的主梁的应力和挠度 (18)3.主梁正应力 (18)4.主梁主应力 (21)(1)竖向压应力计算 (21)(2)主应力计算 (21)(3)不考虑竖向预应力时的主应力 (21)(4)考虑竖向预应力对主应力的影响 (22)(5)考虑横向计算各种因素对主应力的影响 (23)(6)考虑施工误差和横向因素对主应力的影响 (24)5.主梁极限承载力 (24)6.主梁抗裂验算 (26)(1)主梁正截面抗裂验算 (26)(2)主梁斜截面抗裂验算 (27)7.主梁刚度 (29)8.支座反力 (29)9.墩身强度 (29)(1)施工最大悬臂阶段墩顶两侧产生不平衡重时桥墩内力 (29)(2)施工最大悬臂阶段墩顶施加顶推力时桥墩内力 (31)(3)运营阶段荷载组合 (32)(4)运营阶段计算采用内力 (32)(5)运营阶段墩身强度验算 (33)(6)施工最大悬臂阶段横风不对称加载墩身抗扭验算: (35)10.承台强度 (36)(1)最不利荷载组合 (36)(2)抗弯计算 (36)(3)斜截面抗剪承载力计算 (37)11.桩基计算 (38)(1)单桩顶反力 (38)(2)桩基强度 (39)(3)桩基垂直承载力 (40)四、箱梁横向分析 (40)(一)、结构分析 (40)1.计算方法 (40)2.计算荷载 (40)(1)恒载 (40)(2)活载布置 (41)(3)荷载组合 (41)3.离散图 (42)(二)、计算结论 (42)1.箱梁顶板 (42)2.箱梁腹板 (42)3.箱梁底板 (42)(三)、计算结果 (42)1. 桥面板强度计算 (43)2. 腹板强度计算 (43)3. 底板强度计算 (44)第一章主桥概述共和乌江特大桥是重庆至长沙公路彭水至武隆段高速公路上的一座重点大桥,桥位位于彭水县高谷镇共和村。

预应力混凝土变截面连续箱梁桥计算书 毕业设计

预应力混凝土变截面连续箱梁桥计算书  毕业设计

表5.1.2-1 预应力钢筋估算结果表6.1.2-1 锚具变形损失(边跨)表6.1.2-2 锚具变形损失(中跨)表6.1.3-1 上缘混凝土弹性压缩损失表6.1.4-1 上缘钢筋松弛损失表6.1.4-2 下缘钢筋松弛表6.1.5-1 净截面特性(有效)表6.1.5-2 上缘混凝土收缩徐变损失表6.1.5-3 下缘混凝土收缩徐变损失表7.2-1 预加力引起的次内力(M1预加力引起的初预矩,M2预加力引起的总预矩)(M01温度引起的初弯矩,M2温度引起的总弯矩矩,M'温度引起次内力)表)注:M1'2表8.1-1 承载能力极限状态效应组合表8.2-1 正常使用极限状态效应组合(kN/m)表9-2 换算截面特性表9.1-1 受压区高度及M的计算pd j d j表9.2.1 正截面抗裂验算st表9.2.2-1 正常使用阶段混凝土主拉应力验算-计算荷载(短期)表9.2.2-2 正常使用阶段混凝土上梗肋主拉应力验算tk表9.2.2-3 正常使用阶段混凝土下梗肋主拉应力验算tk表9.2.2-4 正常使用阶段混凝土形心处主拉应力验算tk表9.2.3-1 受压区混凝土最大压应力验算kc pt表9.2.4-1 预应力钢筋中的拉应力pe p pk表9.2.5-1 正常使用阶段混凝土主压应力验算-计算荷载(标准)表9.2.2-2 正常使用阶段混凝土上梗肋主压应力验算ck表9.2.2-3 正常使用阶段混凝土下梗肋主压应力验算ck表9.2.2-4 正常使用阶段混凝土形心处主压应力验算ck。

三跨预应力混凝土变截面连续刚构桥计算书

三跨预应力混凝土变截面连续刚构桥计算书

三跨预应⼒混凝⼟变截⾯连续刚构桥计算书⽬录1 ⽅案拟订与⽐选 (1)1.1 设计资料 (1)1.1.1 设计标准 (1)1.1.2 主要材料 (1)1.1.3 采⽤规范 (2)2 上部结构尺⼨拟定和内⼒计算 (3)2.1 主跨径的拟定 (3)2.2 主梁尺⼨拟定 (3)2.3 主要材料 (4)2.4 主桥内⼒计算 (4)2.4.1 ⼀期恒载作⽤下主梁产⽣的内⼒ (5)2.4.2 ⼆期恒载作⽤下主梁产⽣的内⼒ (8)2.4.3 ⽀座沉降引起的内⼒计算 (10)2.4.4 活载内⼒计算 (13)2.5 荷载组合 (6)2.5.1 承载能⼒极限状态计算时作⽤效应组合 (6)2.5.2 正常使⽤极限状态计算时作⽤效应组合 (7)2.5.3 内⼒组合结果 (8)3 施⼯⽅法介绍 (17)3.1 悬臂施⼯法简介 (18)3.2 悬臂浇筑法的特点 (18)3.3 各施⼯阶段模拟与计算 (19)4 预应⼒钢束的估算及布置 (20)4.1 按构件正截⾯抗裂性要求估算预应⼒钢筋数量 (20)4.2 预应⼒钢束的布置 (21)5 承载能⼒验算 (23)5.1 正截⾯承载⼒计算 (23)5.2 计算结果 (23)6 应⼒验算 (24)6.1 基本理论 (24)6.2 预加应⼒阶段的正应⼒验算 (24)6.3 持久状况下正应⼒验算 (24)6.4 持久状况下的混凝⼟主应⼒验算 (25)7 变形验算 (26)设计总结 (27)参考⽂献 .................................................................................................. 错误!未定义书签。

附表 (29)1 ⽅案拟订与⽐选1.1 设计资料1.1.1 设计标准(1)设计荷载:公路Ⅰ级(2)设计车速:80公⾥/⼩时(3)⾏车道宽度:4 净—16.2桥梁宽度:0.5m (防撞护栏)+15(⾏车道)+1.4m (分隔带)+15(⾏车道)+0.5m (防撞护栏)=32.4m(4)地震烈度:基本烈度为六级,桥梁设计按七级设防(5)设计最⼤风速:11.7m/s(6)温度:本桥区最⾼⽓温为32.5度,最低⽓温为-5.8度,年平均⽓温16.4 度,设计合拢温度10—20 度1.1.2 主要材料(1)混凝⼟:箱梁、墩⾝、⽀座垫⽯的混凝⼟采⽤C50混凝⼟,混凝⼟弹性计算模量E=3.5×104Mpa ;防撞护栏采⽤C30混凝⼟(2)预应⼒钢材:预应⼒锚具技术标准必须符合国标《预应⼒筋⽤锚具、夹具和联结器》(GB/T14370-1993),产品均须抽样检测,检验标准应符合国标及国际预应⼒协会《后张法预应⼒体系验收和应⽤建议》(FIB-1991)要求。

预应力混凝土变截面连续箱梁桥计算书

预应力混凝土变截面连续箱梁桥计算书

预应力混凝土变截面连续箱梁桥计算书
预应力混凝土变截面连续箱梁桥计算书
目录
绪论1
1.1预应力混凝土连续梁桥概述1 1.2 毕业设计的目的与意义3 第一章设计原始资料4 其次章方案比选 5
第三章桥跨总体布置及结构尺寸拟定6
2.1 尺寸拟定9 2.1.1 桥孔分跨9 2.1.2 截面形式9 2.1.3 梁高10 2.1.4 细部尺寸11
2.2 主梁分段与施工阶段的划分12
2.2.1 分段原则12 2.2.2 详细分段13
2.2.3 主梁施工方法及留意事项13
第四章荷载内力计算15 3.1 恒载内力计算16 3.2 活载内力计算23
3.2.1 横向分布系数的考虑28 3.2.2 活载因子的计算31 3.2.3 计算结果32
第五章预应力钢束的估算与布置33
4.1 力筋估算33 4.1.1 计算原理33
4.1.2 预应力钢束的估算36 4.2 预应力钢束的布置41
第六章预应力损失及有效应力的计算41
5.1 预应力损失的计算42 5.1.1摩阻损失42 5.1.2. 锚具变形损失43 5.1.3. 混凝土的弹性压缩46 5.1.4.钢束松弛损失49 5.1.5.收缩徐变损失50 5.2 有效预应力的计算54 第七章次内力的计算55。

三跨预应力混凝土变截面连续梁箱桥工程施工组织设计

三跨预应力混凝土变截面连续梁箱桥工程施工组织设计

三跨预应力混凝土变截面连续梁箱桥工程施工组织设计一、编制依据1、三跨预应力混凝土变截面连续梁箱桥工程初步设计2、〈〈公路桥涵施工技术规范〉〉JTG T F50-20113、各种材料的技术标准4、招标文件二、工程概况桥址处的地形条件和城市规划,在满足交通功能的要求下,选用三跨连续梁,具有外观简洁大方、结构性能成熟可靠、施工工艺简便、经济适中的特点。

而且桥面上的行车视野比较开阔,虽然桥型较单一,但可以通过桥面景观布置解决这一问题,如桥面栏杆、灯光布置等。

河流为Ⅳ级航道,通航净宽为45m。

由于设计桥梁与河道顺交20度,所以航道斜交宽度为48m。

在结合河两岸规划的滨河人行通道。

根据这些边界条件,以及连续梁跨径的布置合理性,因此,连续梁的设计跨径布置为45m+70m+45m,瞄跨与主跨跨径之比为0.64:1。

由于该桥为城市桥梁,机动车、非机动车和人群都须通行,根据规范要求,桥梁纵坡不宜大于2.5%,所以设计竖曲线采用2.5%的纵坡,满足最大纵坡的要求。

根据业务需要,桥上需通过通信电缆24孔和400的上水管一根。

过桥通信布置在两侧的人行道板下;在箱梁的挑臂下每隔1m设置一牛腿,作为过桥管线的架设支架。

考虑到远期的管线需要,预留了3个管线通道。

桥墩中支点采用墙柱组合式桥墩形式。

基础采用Ф100cm钻孔灌注桩,纵桥向两排桩;每个桥墩下共10根桩。

桩基持力层选为⑦1层。

上部结构主梁为三跨预应力混凝土变截面连续梁箱,跨径组合45m+70m+45m。

中支点梁高4.0m,高跨比1/7.5;跨中梁高1.9m,高跨比1/36.8。

梁底采用二次抛物线线形变化,矢高2.1m。

考虑到桥面较宽(28m),桥梁横截面采用分离式双箱布置形式,两幅单箱通过桥面板连成整体。

每幅单箱截面为单式直腹板箱型截面,底宽7m,顶宽14m。

截面尺寸:顶板厚25cm ,底板厚25cm,近支点处加厚至60cm ,腹板厚40~60cm;悬壁板长度3.5米,半根部厚40cm。

3跨连续梁结构计算书_secret

3跨连续梁结构计算书_secret

连续梁计算一、几何数据及计算参数构件编号: LL-1混凝土: C30 主筋: HRB400 箍筋: HRB335保护层厚度as(mm): 35.00 指定主筋强度:无跨中弯矩调整系数: 1.00 支座弯矩调整系数: 1.00(说明:弯矩调整系数只影响配筋)自动计算梁自重:是恒载系数: 1.20 活载系数: 1.40二、荷载数据荷载工况1 (恒载):三、内力及配筋1. 弯矩图2. 剪力图3. 截面内力及配筋0支座: 正弯矩 0.00 kN*m,负弯矩 0.00 kN*m,剪力25.11 kN,上钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2下钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm21跨中: 正弯矩 20.09 kN*m,负弯矩 0.00 kN*m,剪力-37.67 kN,挠度0.08mm(↓),位置:跨中裂缝 0.02mm上钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2下钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2箍筋: D6@130, 实际面积: 434.99 mm2/m, 计算面积: 408.57 mm2/m 1支座: 正弯矩 0.00 kN*m, 位置: 0.00m负弯矩 25.11 kN*m, 位置: 0.00m剪力左 -37.67 kN, 位置: 4.00m剪力右 31.39 kN, 位置: 0.00m上钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2下钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm22跨中: 正弯矩 6.28 kN*m, 位置: 2.00m负弯矩 0.00 kN*m, 位置: 0.00m剪力31.39 kN, 位置: 0.00m挠度0.08mm(↓),位置:跨中裂缝 0.01mm上钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2下钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2箍筋: D6@130, 实际面积: 434.99 mm2/m, 计算面积: 408.57 mm2/m 2支座: 正弯矩 0.00 kN*m,负弯矩 25.11 kN*m,剪力左 -31.39 kN,剪力右 37.67 kN,上钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2下钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm23跨中: 正弯矩 20.09 kN*m,负弯矩 0.00 kN*m,剪力37.67 kN,挠度0.08mm(↓),位置:跨中裂缝 0.02mm上钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2下钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2箍筋: D6@130, 实际面积: 434.99 mm2/m, 计算面积: 408.57 mm2/m 3支座: 正弯矩 0.00 kN*m, 位置: 4.00m负弯矩 0.00 kN*m, 位置: 4.00m剪力-25.11 kN, 位置: 4.00m上钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2下钢筋: 4f12, 实际面积: 452.39 mm2, 计算面积: 450.00 mm2。

45+80+45三跨预应力混凝土变截面连续箱梁计算书

45+80+45三跨预应力混凝土变截面连续箱梁计算书

三跨预应力箱型连续梁桥分析与设计学院专业年级班别学号学生姓名指导教师2010 年6 月2 日目录1.概要 (2)1.1 桥梁基本数据以及一般截面 (2)2.设定建模环境 (3)3.桥梁分析 (4)3.1 定义材料和截面 (4)3.2 建立结构模型 (6)3.3 建立荷载组 (9)3.4 输入荷载 (10)3.5 定义并建立施工阶段 (11)3.6 分析 (14)3.7 分析运行结果 (14)三跨预应力箱型连续梁桥分析与设计1.概要本桥为45+80+45三跨预应力混凝土变截面连续箱梁,采用悬臂法施工。

在此利用MIDAS进行分析与设计,其分析模型如图1所示:图1 分析模型(竣工后)1.1 桥梁基本数据以及一般截面1.桥梁基本数据如下:桥梁类型: 三跨预应力箱型连续梁桥桥梁长度: L =45.0 + 80.0 + 45.0 = 170.0 m桥梁宽度: B = 35.0 m斜交角度: 105˚2. 桥梁一般截面桥梁纵向剖面图与标准截面图分别如图2、3所示:图2 纵向剖面图3 标准截面2.设定建模环境文件/新建项目文件/保存(连续梁桥)工具/单位体系长度>m;力>KN图4 设定单位体系3.桥梁分析3.1 定义材料和截面模型/材料与截面特性/材料(输入结果如图5所示)1.混凝土:主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土。

2.钢材:采用JTG04(S)规范,在数据库中选Strand1860。

3.截面:箱梁截面尺寸为截面尺寸如图4所示,墩采用实腹轨道型截面,其尺寸为:H=12m、H=3.5m。

图5 定义材料及截面3.2 建立结构模型参照图6(a)建立预应力箱型梁模型。

将每个桥梁段看作一个梁单元,以零号块和桥墩的交点、桥墩和桥墩的中心距离为基准分割单元。

满堂支架法区段应考虑下部钢束的锚固位置分割单元。

1.建立结构单元模型/节点/建立(如图6(b))将每个桥梁段看作一个梁单元,以零号块和桥墩的交点、桥墩和桥墩的中心距离为基准分割单元。

预应力混凝土连续梁设计计算书

预应力混凝土连续梁设计计算书

预应力混凝土连续梁设计计算书1. 地形、地貌、气象、工程地质及水文地质、地震烈度等自然情况 (1) 气象:天津地区气候属于暖温带亚湿润大陆性季风气候区,部分地区受海洋气候影响。

四季分明,冬季寒冷干旱,春季大风频繁,夏季炎热多雨,雨量集中,秋季冷暖变化显著。

年平均气温 12.20C , 最冷月平均气温-40C ,七月平均气温 26.40C 。

(2) 工程地质:天津地铁一号线经过地区处于海河冲积平原上,地形平坦,地势低平,地下水位埋深 较浅,沿线分布了较多的粉砂、细砂、粉土,均为地震可液化层,局部地段具有地震液化现象。

沿线地层简单,第四系地层广泛发育,地层分布从上到下依次为人工堆积层、新近沉积层、上部 陆相层、第一海相层、中上部陆相层、上部及中上部地层广泛发育沉积有十几米厚的软土。

a. 人工填土层,厚度 5m ,ƒk =100KP a ; Mb. 粉质黏土,中密,厚度 15m ,ƒk =150 KP a ; Oc. 粉质黏土,密实,厚度 15m ,ƒk =180KP a ;d. 粉质黏土,密实,厚度 10m ,ƒk =190KP a 。

C第一章 方案比选G . 一、桥型方案比选桥梁的形式可考虑拱桥、梁桥、梁拱组合桥和斜拉桥。

任选三种作比较N ,从安全、功能、经济、美观、施工、占地与工期多方面比选,最终确定桥梁形式。

U LO桥梁设计原则H1. 适用性桥上应保证车辆和人群的安全畅通,并应满足将来交通量增长的需要。

桥下应满足泄洪、安全通航或Z通车等要求。

建成的桥梁应保证使用年限,并便于检查和维修。

2. 舒适与安全性W.现代桥梁设计越来越强调舒适度,要控制桥梁的竖向与横向振幅,避免车辆在桥上振动与冲击。

整个W桥跨结构及各部分构件,在制造、运输、安装和使用过程中应具有足够的强度、刚度、稳定性和耐久性。

3. 经济性W 设计的经济性一般应占首位。

经济性应综合发展远景及将来的养护和维修等费用。

4.先进性网 桥梁设计应体现现代桥梁建设的新龙技术。

变截面连续梁完整计算书

变截面连续梁完整计算书

28+36+46+36+28m变截面连续梁计算书第一章概述1.1、工程简介上部标准段结构为预应力混凝土现浇箱梁结构,跨径28+36+46+36+28m,桥宽23.5m,梁高1.8~5.9m,桥面布置为8m(人行道)+15m(车行道)+0.5m (防撞护栏),桥面铺装为10cm沥青混凝土+8cm C50混凝土。

梁体采用后张法预应力构件,结构计算考虑施工和使用阶段中预应力损失以及预应力、温度、混凝土收缩徐变等引起的次内力对结构的影响。

1.1.1、采用的主要规范及技术标准①、《工程建设标准强制性条文》建标【2000】202号②、建设部部颁标准《城市桥梁设计荷载标准》CJJ11-2011③、交通部部颁标准《公路桥涵设计通用规范》JTG D60-2015④、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63—2007⑤、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTGD62-2004⑥、建设部部颁标准《城市道路设计规范》CJJ37-90技术标准:1、道路等级:主干路2、设计车速:主线60km/h。

3、设计荷载:公路—Ⅰ级。

4、地震烈度:Ⅶ度,地震动峰值加速度0.1g。

5、横断面:8m(人行道)+15m(车行道)+0.5m(防撞护栏)=23.5m6、桥梁结构设计安全等级:一级7、路面类型:沥青混凝土路面。

1.1.2、应用的计算软件Midas CIVIL1.1.3、主要参数及荷载取值1)主梁:C55混凝土,γ=26kN/m3,强度标准值f ck=35.5MPa,f tk=2.74MPa。

强度设计值f cd=24.4MPa,f td=1.89Pa,桥梁达到设计强度的100%张拉2)二期恒载:结构部分:155KN/m;装饰部分:①侧面装饰12KN/m ②底面装饰6K N/m3)预应力钢束采用1860级φs15.20钢绞线,公称面积139.0mm2,标准强度f pk=1860MPa(270级),张拉控制应力σcon=1350MPa。

三跨变截面连续梁桥计算书(省交院)_secret

三跨变截面连续梁桥计算书(省交院)_secret

xx河大桥计算书计算:审核:xx省交通科学研究院股份有限公司2010.3目录目录............................................................ - 2 - 1 概况.......................................................... - 3 - 2采用的标准及依据.............................................. - 4 - 3 结构验算...................................................... - 6 - 3.1主桥上部结构. (6)3.1.1 计算条件.............................................. - 6 -3.1.1.1 计算模型............................................ - 6 -3.1.1.2 材料强度及计算参数.................................. - 6 -3.1.1.3 施工阶段............................................ - 6 -3.1.1.4 计算荷载............................................ - 7 -3.1.2 验算结果.............................................. - 8 - 3.2引桥预制小箱梁验算 (12)3.2.1.1 计算模型........................................... - 12 -3.2.1.2 材料强度及计算参数................................. - 12 -3.2.1.3 施工阶段........................................... - 12 -3.2.1.4 计算荷载........................................... - 13 -3.2.2 验算结果............................................. - 14 - 3.3过渡墩盖梁验算. (17)3.3.1 计算说明............................................. - 17 -3.3.2 活荷载横向布置....................................... - 18 -3.3.3 计算参数............................................. - 18 -3.3.3 施工阶段............................................. - 18 -3.3.4验算结果.............................................. - 19 -4 附录......................................................... - 23 - 4.1主桥上部结构承载能力验算表格.. (23)4.2引桥上部结构承载能力验算表格 (29)1 概况xx河大桥平面位于直线上,纵断面位于R=10000m、T=280m、E=3.92m、i1=2.8%、i2=-2.8%的凸形竖曲线上,变坡点桩号为K12+953.00,变坡点高程18.70m。

三跨连续箱梁计算书

三跨连续箱梁计算书
The second chapter calculates the substructure, including pier coping and piers. The calculation of lateral distribution coefficient of the pier coping adopts the law of lever method when loads are disposed symmetrically, the law of eccentric-compressing method when loads are disposed unsymmetrically. The calculation of the piles adopts the law of m-method. The piers are calculated as eccentric compression members.
第二章进行下部结构的计算,主要包括了盖梁和桩基础的计算。盖梁活载横向分布系数在荷载对称布置时采用杠杆法,非对称布置时采用偏心受压法进行计算。桩基础采用“m法”,墩柱采用偏心受压构件进行了计算。
然后进一步进行截面强度的验算,其中包括承载能力极限状态和正常使用极限状态。在正常使用极限状态验算中包括计算截面的混凝土法向应力验算、预应力钢筋中的拉应力验算、截面的主应力计算。
学位论文版权使用授权书
本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
本学位论文属于1、保密囗,在 年解密后适用本授权书

预应力混凝土变截面连续箱梁桥计算书

预应力混凝土变截面连续箱梁桥计算书

目录绪论 11.1预应力混凝土连续梁桥概述 11.2 毕业设计的目的与意义 3第一章设计原始资料 (4)第二章方案比选 (5)第三章桥跨总体布置及结构尺寸拟定 62.1 尺寸拟定92.1.1 桥孔分跨 92.1.2 截面形式 92.1.3 梁高102.1.4 细部尺寸 112.2 主梁分段与施工阶段的划分122.2.1 分段原则 122.2.2 具体分段 132.2.3 主梁施工方法及注意事项13第四章荷载内力计算 153.1 恒载内力计算163.2 活载内力计算233.2.1 横向分布系数的考虑283.2.2 活载因子的计算 313.2.3 计算结果 32第五章预应力钢束的估算与布置334.1 力筋估算334.1.1 计算原理 334.1.2 预应力钢束的估算344.2 预应力钢束的布置 41第六章预应力损失及有效应力的计算415.1 预应力损失的计算 425.1.1摩阻损失425.1.2. 锚具变形损失435.1.3. 混凝土的弹性压缩 465.1.4.钢束松弛损失495.1.5.收缩徐变损失505.2 有效预应力的计算 54第七章次内力的计算556.1 徐变次内力的计算 556.2 预加力引起的二次力矩556.3 温度次内力的计算 566.4 支座位移引起的次内力58第八章内力组合607.1 承载能力极限状态下的效应组合607.2 正常使用极限状态下的效应组合62第九章主梁截面验算 648.1 截面强度验算678.2 截面应力验算698.2.1 正截面和斜截面抗裂验算698.2.2 法向拉应力728.2.3 主拉应力和主压应力718.2.4 使用阶段预应力混凝土受压区混凝土最大压应力验算758.2.5 预应力钢筋中的拉应力778.3 挠度的计算与验算预拱度的设计 81第十章施工方法要点及注意事项 839.1 材料设备及施工程序839.2 支架及模板 859.3预应力束布置859.4 混凝土工程 859.5 张拉和压浆 86第十一章主要工程数量计算 8711.1 混凝土总用量计算8711.1.1 梁体混凝土(C40号)用量计算8711.1.3 防撞墙(C20号)混凝土用量计算8711.2 钢绞线及锚具总用量计算88毕业设计总结89致谢 90参考文献 91附录1:实习报告94附录2 外文文献翻译92绪论1.1预应力混凝土连续梁桥概述预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。

桥梁毕业设计-预应力混凝土连续箱梁计算书(4)

桥梁毕业设计-预应力混凝土连续箱梁计算书(4)

抗拉强度标准值1860MPa f pk =,抗拉强度设计值1260MPa f pd =,抗压强度设计值390MPaf 'pd =配预应力钢筋时,假定预应力筋的永存应力为0.5930MPa f pk =⑸有效截面的截面特性:由于剪力滞效应,截面配筋计算全部按有效截面进行计算,并等效成工字型截面。

边跨的等效截面如图:截面特性:A =45598㎝2,抗弯惯性矩I=1.95364m形心距下边缘的距离: 下Z =∑AiZi/∑Ai=100.8㎝ 形心距上边缘的距离: Z 上=175-100.6=74.2㎝ W 下=Z I =1.9383m ,W 上=Z I =2.60923m e 下=90.8cm=0.908m , e 上=64.2cm=0.642m K 下=A W =0.4588m , K 上=AW=0.425m 中跨的等效截面截面特性:面积:A = 45821㎝2抗弯惯性矩I=1.96634m , 形心轴距离截面下边缘的距离为y 下=100.7cm 形心轴距离截面下边缘的距离是y 上=74.3cm W 下=Z I =1.9533m ,W 上=ZI =2.64643me 下=90.8cm=0.907m , e 上=64.2cm=0.643m K 下=A W =0.4588m , K 上=AW =0.425m(6)配筋计算配尽量计算结果(2m m )2N1: 24.159sφ,距上缘高度为0.15m2N2: 24.159s φ,端部距上缘距离0.35m ,呈S 型布置在每跨中,曲线半径为50m 2N3: 24.159s φ,端部距上缘距离0.74m ,呈S 型布置在每跨中,曲线半径为80m2N4: 24.1527s φ,距下缘高度为0.15m 钢束总数:4预应力损失及有效预应力的计算:根据《桥规》(JTG-2004)中的规定,预应力混凝土构件在正常使用极限状态计算时,应考虑由下例引起的预应力损失:预应力钢筋与管道壁摩擦损失:1l δ锚具变形,钢筋回缩及混凝土收缩损失 2l δ 预应力钢筋与台座之间的温差损失 3l δ混凝土的弹性压缩引起的损失 4l δ 预应力钢筋的应力松弛损失 5l δ混凝土的收缩徐变引起的损失6l δ(1)摩擦预应力损失1l δ预应力钢筋与管道之间摩擦引起的预应力损失可按下式计算:()[]kx u con l e +--=θσσ11=1395()[]x e 0015.0015.01+-- con σ——张拉预应力钢筋时锚下的控制应力(=0.75pk f =1395); u ——预应力钢筋与管道壁的摩擦系数,对金属波纹管取0.2;θ ——从张拉端至计算截面曲线管道切线的夹角之和,以rad 计; K ——管道每米局部偏差对摩擦的影响系数,取0.0015; X ——从张拉端到计算截面的管道长度,以米计。

变截面连续梁完整计算书

变截面连续梁完整计算书

变截⾯连续梁完整计算书⼀、⼯程概况上部结构采⽤预应⼒混凝⼟变截⾯连续箱梁,为双幅结构。

单幅箱梁采⽤单箱单室截⾯,箱梁顶板宽11.99m,底板宽为6.99⽶,箱梁顶板设置1.5%的横坡。

边跨端部及中跨跨中梁⾼均为2.0m(以梁体中⼼线为准),箱梁根部梁⾼为4.0⽶,梁⾼从2.0m到箱梁根部按1.5次抛物线规律变化;边跨端部及中跨跨中底板厚度为0.25⽶,箱梁悬臂根部底板厚度为0.6⽶,箱梁底板厚度从2.0m到悬臂根部按1.5次抛物线规律变化。

箱梁腹板在3.5m长度内由0.45⽶直线变化⾄0.6⽶。

桥台采⽤重⼒式U型桥台,桥台与道路中⼼线正交布置。

桥台扩⼤基础应嵌⼊中风化岩⾯不少于0.5m,同时应满⾜基底持⼒层抗压承载⼒要求,桩基础应嵌⼊中风化岩层长度不⼩与2.5倍桩径,桥台台⾝采⽤C25⽚⽯混凝⼟浇筑,台帽混凝⼟采⽤C30钢筋混凝⼟。

台后的填料采⽤压实度不⼩于96%的砂卵⽯,回填时应预设隔⽔层或排⽔盲沟。

桥墩均采⽤钢筋混凝⼟⼋棱形截⾯,基础采⽤桩基接承台。

桥墩墩⾝截⾯为3.5×2.0m,截⾯四⾓对应切除70×50cm倒⾓。

墩顶设盖梁,桥墩盖梁尺⼨为6.99m(长)×2.4m(宽)×2.6m(⾼),承台尺⼨为8.4m(长)×3.4m(宽)×2.5m。

每个承台接两根直径2.0m的桩基。

所有的桩基础均采⽤嵌岩桩,⽤⼈⼯挖孔成桩。

桩基础应嵌⼊完整的中风化岩⾯不少于3倍桩径,并要求嵌岩岩⽯襟边宽度⼤于3.0m,同时应满⾜基底持⼒层岩⽯抗压强度要求。

桥型布置见图1 桥型⽴⾯布置图。

图1 桥型⽴⾯布置图⼆、主要技术标准汽车荷载:公路-I级。

⼈群荷载:3.5 KN/m2。

2.4.桥梁宽度:2.5. 纵坡、横坡:三、设计规范3.1.《城市桥梁设计准则》(CJJ11—93)。

3.2.《公路桥涵设计通⽤规范》(JTG D60—2004)。

3.3.《公路钢筋混凝⼟及预应⼒混凝⼟桥涵设计规范》(JTG D62—2004)。

预应力混凝土连续箱梁计算书

预应力混凝土连续箱梁计算书

Prestress Concrete Continuous Bridge04-08-20111 初步设计1.1 设计基本资料1.1.1 设计标准1)设计荷载:公路I 级2)桥面宽:净7m+2×0.5m 防撞墙3)设计车道:2 车道4)设计车速:80km/h5)地震烈度:基本烈度6 度,按7 度设防6)桥面横坡:1.5%7)桥面纵坡:1.0%8)竖曲线半径:桥梁范围内无竖曲线9)平曲线半径:桥梁范围内无平曲线10)温度:季节温差的计算值为-43℃和+19℃1.1.2 主要材料1、混凝土1)桥面沥青混凝土铺装2)连续梁:C503)桩基、承台、桥墩、桥台、搭板:C502、钢筋1)主筋:II 级钢筋2)辅助钢筋:II 级钢筋3)预应力筋:箱梁纵向预应力束采用φj15.24 高强度低松弛预应力钢绞线,ASTMA416-90a270 级标准,标准强度Ry =1860MPa ,Ey=1.95×10 MPa。

3、预应力管道预应力管道均采用镀锌金属波纹管。

4、伸缩缝采用S SF80A 大变位伸缩缝。

5、支座采用盆式橡胶支座。

1.1.3 相关参数1. 相对温度75%2. 管道摩擦系数u=0.253. 管道偏差系数λ=0.0025l/米4. 钢筋回缩和锚具变形为4mm1.1.4 预应力布置箱梁采用O VM 型锚具及配套的设备。

管道成孔采用波纹圆管,且要求钢波纹管的钢带厚度不小于0.35mm。

预应力张拉采用引伸量和张拉吨位双控。

并以引伸量为主。

引伸量误差不得超过-5%~10%。

1.1.5 施工方式满堂支架1.1.6 设计规范1.公路桥涵设计通用规范(JTG D60-2004)2.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62—2004)3.公路桥涵地基与基础设计规范(JTJ024—85)4.公路桥涵施工技术规范(JTJ041—2000)5.公路工程水文勘测设计规范(JTGC30-2002)1.2 横截面和纵断面尺寸拟定:1.2.1 纵截面桥梁分孔关系到桥梁的造价。

三跨预应力砼变截面连续主箱梁施工方案

三跨预应力砼变截面连续主箱梁施工方案

三跨预应力砼变截面连续主箱梁施工方案【摘要】箱型截面梁整体性好,抗扭能力强,且结构刚度大,能承受正负弯矩。

其优越性能随着桥梁建设的发展而逐步得到广泛认可及推广,本文结合山东鄄城黄河桥的施工情况,对该类型桥梁建设进行探讨。

【关键词】预应力;变截面;连续箱梁;合拢1.主桥上部设计情况鄄城黄河桥上部三跨为预应力砼变截面连续主箱梁,跨径组合50+80+50米,中支点梁高4.5米,高跨比1/17.8;跨中梁高1.8米,高跨比1/44.4。

中跨中部39米范围内为1.8米等高度,然后梁底按二次物线形变化至根部4.5米梁高,边跨与中跨梁高对称。

桥梁截面为单箱双室直腹板箱型截面,底宽11.6米,顶宽18.24米。

截面尺寸为顶板厚28cm,底板厚25cm,近支点处加厚至80cm,中腹板厚50-80cm,边腹板厚50-80cm,悬臂板长度3.32米,板根部厚60cm。

中支点墩顶设箱内横隔梁,边支点设端横梁。

箱梁中跨和边跨跨中各设一道横隔板。

全桥共设置二个锚跨和一个主跨合拢段,箱梁采用三向预应力体系,为全预应力结构。

2.施工方法主桥箱梁施工采用对称平衡悬臂法浇筑工艺。

要求箱梁悬浇施工做到均衡、对称,确保施工安全。

悬臂施工顺序严格按设计说明执行。

从0#块开始施工至中跨合拢张拉结束约130天。

1)挂篮构造挂篮是一个能沿轨道移动的活动脚手架,是实施大梁悬臂浇筑的重要施工设备,并悬挂在已经完成悬浇施工的悬臂梁段上,用以进行下一梁段施工,直至全梁段浇筑完成。

由于梁段的模板架设、钢筋绑扎、管道安装、砼浇筑、预应力及管道压浆等工序均在其上进行又系高空作业,所以挂篮设置除应保证强度安全可靠外,还应满足变形小,行走方便,锚固、装拆容易以及适应各项施工作业的操作要求,并须注意安全设施。

挂篮由底模架、悬挂系统、桁架、行走系统、平衡重及锚固系统、工作平台等组成,构造如下图。

2)0#段施工方法安排一般因桥墩宽度较小,难以满足挂篮拼制所需场地,墩柱两侧的0#墩,采用托架支撑浇筑法,然后再在其上安装脚手钢桁架,以供吊设挂篮和浇筑1#块段,待左右两侧的1#块浇好后,再延伸钢桁架,并陆续移动挂篮位置至外端以供浇筑2-10#块。

35m 45m 35m预应力混凝土连续箱梁桥毕业设计计算书(完整版)

35m 45m 35m预应力混凝土连续箱梁桥毕业设计计算书(完整版)

目录中文摘要 (4)ABSTRAC (5)结构计算书部分 (6)第1章基本资料 (6)1.1 设计资料 (6)1.1.1 设计方案 (6)1.1.2 技术标准 (6)1.1.3 材料及特性 (6)1.1.4 设计依据 (8)1.2结构尺寸 (8)1.2.1 桥型布置图 (8)1.2.2 截面尺寸 (9)1.3箱梁的横截面几何特性计算 (11)第2章荷载计算 (12)2.1电算模型 (12)2.1.1 使用软件 (12)2.1.2 模型分析 (12)2.2恒载作用计算 (13)2.2.1 一期恒载(现浇箱梁自重) (13)2.2.2 现浇层、沥青铺装层及内外侧栏杆 (13)2.3活载作用计算 (14)2.3.1荷载系数的计算 (14)2.3.2活载作用内力计算 (14)2.4附加内力的计算 (16)2.4.1 温度变化引起的附加内力的计算 (16)2.5内力组合 (19)第3章钢筋的估算和布置 (22)3.1预应力钢束的估算与确定 (22)3.1.1 估算方法及结果 (22)3.1.2 钢束的确定 (27)3.2预应力钢束的布置 (27)3.2.1 跨中预应力钢束布置 (27)3.2.2 梁端预应力钢束布置 (28)3.2.3 桥台处渐变端处预应力钢束布置 (28)3.2.4桥墩和顶板处预应力钢束布置 (28)3.3预应力加载后荷载组合 (29)3.4截面普通钢筋的估算与布置 (29)第4章持久状况承载能力极限状态计算 (32)4.1结果显示单元号的确定 (32)4.2正截面抗弯承载力 (32)4.3斜截面抗剪承载力计算 (36)4.3.1计算截面选取与箍筋配置 (36)4.3.2 斜截面抗剪承载力验算 (37)第5章预应力损失计算 (45)5.1预应力筋与孔道壁之间摩擦引起的应力损失1lσ (45)5.2锚具变形、预应力筋回缩和分块拼装构件接缝压密引起的应力损失2lσ (45)5.3混凝土加热养护时,预应力筋和台座之间温差引起的应力损失3lσ (46)5.4混凝土弹性压缩引起的应力损失4lσ (46)5.5预应力筋松弛引起的应力损失5lσ (47)5.6混凝土收缩和徐变引起的应力损失6lσ (47)第6章持久状况正常使用极限状态计算 (58)6.1电算应力结果 (58)6.2持久状况使用阶段的正应力验算 (59)6.2.1 混凝土的法向压应力验算 (60)6.3截面抗裂验算 (61)6.3.1 验算条件 (61)6.3.2 验算结果 (62)6.4正常使用阶段竖向最大位移(挠度) (62)6.4.1 使用阶段的挠度值计算 (62)6.4.2 预加力引起的反拱计算及预拱度的设置 (63)第7章持久状况和短暂状况构件的应力验算 (64)7.1混凝土的最大拉应力验算 (64)7.2预应力钢筋最大拉应力 (65)7.3混凝土的最大主拉、主压应力计算 (73)7.3.1混凝土主拉应力 (73)7.3.2混凝土主压应力 (74)第8章局部受压承载力计算 (78)8.1局部受压区尺寸要求 (78)8.2局部承压承载力验算 (79)第9章支座的设计 (80)9.1支座的支承反力计算 (80)9.2支座的选取 (81)致谢 (82)参考文献 (83)附录 (84)外文原文: (84)外文译文: (95)毕业设计任务书 (104)毕业设计开题报告 (109)设计题目:35m+45m+35m预应力混凝土连续箱梁桥中文摘要本设计上部结构采用三跨预应力混凝土变截面连续箱形梁桥,跨径为35m+45m+35m,横桥向宽度为10m,横坡为1.5%,双向两车道,荷载等级为公路-Ⅱ级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三跨预应力箱型连续梁桥分析与设计学院
专业
年级班别
学号
学生姓名
指导教师
2010 年6 月2 日
目录
1.概要 (2)
1.1 桥梁基本数据以及一般截面 (2)
2.设定建模环境 (3)
3.桥梁分析 (4)
3.1 定义材料和截面 (4)
3.2 建立结构模型 (6)
3.3 建立荷载组 (9)
3.4 输入荷载 (10)
3.5 定义并建立施工阶段 (11)
3.6 分析 (14)
3.7 分析运行结果 (14)
三跨预应力箱型连续梁桥分析与设计
1.概要
本桥为45+80+45三跨预应力混凝土变截面连续箱梁,采用悬臂法施工。

在此利用MIDAS进行分析与设计,其分析模型如图1所示:
图1 分析模型(竣工后)
1.1 桥梁基本数据以及一般截面
1.桥梁基本数据如下:
桥梁类型: 三跨预应力箱型连续梁桥
桥梁长度: L =45.0 + 80.0 + 45.0 = 170.0 m
桥梁宽度: B = 35.0 m
斜交角度: 105˚
2. 桥梁一般截面
桥梁纵向剖面图与标准截面图分别如图2、3所示:
图2 纵向剖面
图3 标准截面2.设定建模环境
文件/新建项目
文件/保存(连续梁桥)
工具/单位体系
长度>m;力>KN
图4 设定单位体系3.桥梁分析
3.1 定义材料和截面
模型/材料与截面特性/材料(输入结果如图5所示)
1.混凝土:主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土。

2.钢材:采用JTG04(S)规范,在数据库中选Strand1860。

3.截面:箱梁截面尺寸为截面尺寸如图4所示,墩采用实腹轨道型截面,其尺寸为:H=12m、H=3.5m。

图5 定义材料及截面
3.2 建立结构模型
参照图6(a)建立预应力箱型梁模型。

将每个桥梁段看作一个梁单元,以零号块和桥墩的交点、桥墩和桥墩的中心距离为基准分割单元。

满堂支架法区段应考虑下部钢束的锚固位置分割单元。

1.建立结构单元
模型/节点/建立(如图6(b))
将每个桥梁段看作一个梁单元,以零号块和桥墩的交点、桥墩和桥墩的中心距离为基准分割单元。

满堂支架法区段应考虑下部钢束的锚固位置分割单元。

其总节点数为73,总单元数为70。

对于桥墩模型的建立,采用复制预应力箱型梁的节点后使用扩展单元功能建立。

图6(a) 桥梁段的划分
图6(b) 建立结构单元2.建立结构组
模型/组/定义结构组(如图7)
图7 定义结构组
3.定义边界组及输入边界条件
模型/组/定义边界组(如图8)
图8 定义边界组
模型/边界条件/一般支撑;弹性支撑
根据墩底固结、墩顶弹性连接和支架处设滚动支座,输入边界条件。

建立的结构模型如图9所示:
图9(a)体系转换前
图9(b)体系转换后
图9(c)不变边界约束
图9(d)最终边界约束3.3 建立荷载组
1.将各荷载工况定义为施工阶段荷载类型
荷载/静力荷载工况(如图10)
图10 定义荷载条件
2. 定义各荷载工况所属的荷载组
模型/组/定义荷载组(如图11)
图11 定义荷载组
3.4 输入荷载
荷载/自重;钢束预应力荷载;节点荷载;梁单元荷载
1.恒荷载 :自重,在程序中按自重输入,由程序自动计算。

2.预应力 :钢束(φ15.2 mm×17),截面面积: Au =2380 mm 2
;钢束(φ15.2
mm×21) ,截面面积: Au =2940 mm 2 ;孔道直径: 100 mm ;钢筋松弛系数(开),选择JTG04和0.3(低松弛);超张拉(开); 预应力钢筋抗拉强度标准值:1860N/ mm 2;预应力钢筋与管道壁的摩擦系数:0.25;管道每米局部偏差对摩擦的影响系数:0.003(1/mm);锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm ,结束点:6mm ;张拉力:抗拉强度标准值的75%,张拉控制应力:3232MPa/3992MPa (如图12所示)。

3.徐变和收缩 :条件:
水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥);28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/ mm 2;长期荷载作用时混凝土的材龄:0t =5天;混凝土与大气接触时的材龄:s t =3天;相对湿度: RH 70%。

构件理论厚度:程序计算
适用规范:中国规范(JTG D62-2004)
徐变系数: 程序计算
混凝土收缩变形率: 程序计算
4.挂篮荷载
挂篮自重如下: M=P ×e=70×2.0=140.0 tonf·m (如图13所示) 图13 挂篮自重
图12 预应力钢束特性值
3.5 定义并建立施工阶段
1.定义施工阶段
施工阶段是根据施工顺序划分为12阶段,其施工顺序如图14所示: e
P M
图14 施工顺序图
荷载/施工阶段数据分析数据/定义施工阶段(输入结果如图15所示)
图15(a) 定义施工阶段
图15(b) 建立施工阶段1(CS1)图15(c) 建立施工阶段2(CS2)
图15(d) 建立施工阶段3(CS3)图15(e) 建立施工阶段4(CS4)
图15(f) 建立施工阶段5(CS5)图15(g) 建立施工阶段6(CS6)
图15(h) 建立施工阶段7(CS7)图15(i) 建立施工阶段8(CS8)
图15(j) 建立施工阶段9(CS9)图15(k) 建立施工阶段10(CS10)
图15(l) 建立施工阶段11(CS11)图15(m) 建立施工阶段12(CS12)3.6 分析
分析/施工阶段分析控制数据(分析数据分别如图16所示)
图16 施工阶段分析控制数据
分析/运行分析
3.7 分析运行结果
结果/内力/梁单元内力图
1.桥梁内力图如图17所示:
图17(a) 桥梁弯矩图(My)
图17(b) 桥梁剪力图(Fz) 2.桥梁应力图如图18所示:
图18(a) 桥梁正应力图
图18(b) 桥梁剪应力图3.桥梁在活载作用下的变形图如图19所示:
图19 桥梁变形图4.桥梁支座反力图如图20所示
图20 支座反力图结果/分析结果表格/梁单元内力
5. 查看各施工阶段应力变化如图21所示
图21各施工阶段应力表格6.查看预应力钢束坐标如图22所示
结果/分析结果表格/预应力钢束/预应力钢束坐标
图22 钢束坐标表格7.查看钢束伸长量如图23所示
结果/分析结果表格/预应力钢束/预应力钢束伸长量
图23 钢束伸长量表格8.查看预应力的损失如图24所示
施工阶段>CS12
结果/分析结果表格/预应力钢束/钢束预应力损失图表
图24 预应力图形9.查看预拱度如图25所示
结果/ 悬臂法预拱度/悬臂法预拱度控制
结果/ 悬臂法预拱度/悬臂法预拱度图形
结果/ 悬臂法预拱度/悬臂法预拱度表格
图25(a) 预拱度图形
图25(b) 预拱度管理图
.。

相关文档
最新文档