全等三角形基础练习

合集下载

完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题1.已知三角形ABC中,AD为中线,BE⊥AD,CF⊥AD,证明BE=CF。

2.已知四边形ACBD中,AC=BD,AE=CF,BE=DF,证明AE∥CF。

3.已知四边形ABCD中,AB=CD,BE=DF,AE=CF,证明AB∥CD。

4.已知四边形ABCD中,AB=CD,AD=CB,证明AB∥CD。

5.已知两个三角形中,∠BAC=∠DAE,∠1=∠2,BD=CE,证明三角形ABD≌三角形ACE。

6.已知四边形ABED中,CD∥AB,DF∥EB,DF=EB,证明AF=CE。

7.已知四边形BEFC中,BE=CF,AB=CD,∠B=∠C,证明AF=DE。

8.已知四边形ABED中,AD=CB,∠A=∠C,AE=CF,证明EB∥DF。

9.已知三角形ABC中,M为AB的中点,∠1=∠2,MC=MD,证明∠C=∠D。

10.已知四边形ABFE和CDFE中,AE=DF,BF=CE,AE∥DF,证明AB=CD。

11.已知四边形ABCD中,∠1=∠2,∠3=∠4,证明AC=AD。

12.已知四边形ABCD中,∠E=∠F,∠1=∠2,AB=CD,证明AE=DF。

13.已知四边形ABCDEF中,ED⊥AB,EF⊥BC,BD=EF,证明BM=ME。

14.已知三角形ABC中,高AD与BE相交于点H,且AD=BD,证明三角形BHD≌三角形ACD。

15.已知四边形ABCDE中,∠A=∠D,AC∥FD,AC=FD,证明AB∥DE。

16.已知三角形ABC和三角形ADE中,AC=AB,AE=AD,∠1=∠2,证明∠3=∠4.17.已知三角形ABC和三角形DEF中,EF∥BC,AF=CD,AB⊥BC,DE⊥EF,证明三角形ABC≌三角形DEF。

18.已知四边形ABED中,AD=AE,∠B=∠C,证明AC=AB。

19.已知三角形ABC中,AD⊥BC,BD=CD,证明AB=AC。

20.已知三角形ABC和三角形BAD中,∠1=∠2,BC=AD,证明三角形ABC≌三角形BAD。

(完整版)全等三角形基础练习及答案

(完整版)全等三角形基础练习及答案

全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。

陕西省宝鸡中学八年级数学上册第十二章【全等三角形】基础练习(培优)

陕西省宝鸡中学八年级数学上册第十二章【全等三角形】基础练习(培优)

一、选择题1.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°2.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或33.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .644.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD = D .CAB DAB ∠=∠5.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 6.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm7.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 8.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 9.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 10.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB = B .A D ∠=∠C .B C ∠=∠D .AB DC = 11.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC二、填空题12.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.13.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).14.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.15.如图,ABC 的三边AB 、BC 、CA 长分别是10、15、20,三条角平分线交于O 点,则::ABO BCO CAO S S S 等于__________.16.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.17.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.18.如图,AD 为∠CAF 的角平分线,BD=CD ,∠DBC=∠DCB ,∠DCA=∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE=AB+AE ;③∠DAF=∠CBD .其中正确的结论有_____.(填序号)19.如图,在Rt ABC 中,90C ∠=︒,AD AC =,DE AB ⊥,交BC 于点E .若26B ∠=︒,则AEC ∠=______︒.20.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.21.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.三、解答题22.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =.求证:(1)CBA FED ∠=∠;(2)AM DM =.23.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.24.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.25.在数学课本中,有这样一道题:如图1,AB ∥CD ,试用不同的方法证明∠B +∠C =∠BEC (1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.已知:如图1,∠B +∠C =∠BEC求证:AB ∥CD证明:如图2,过点E ,作EF ∥AB ,∴∠B =∠∵∠B +∠C =∠BEC ,∠BEF +∠FEC =∠BEC (已知)∴∠B +∠C =∠BEF +∠FEC (等量代换)∴∠ =∠ (等式性质)∴EF ∥∵EF ∥AB∴AB ∥CD (平行于同一条直线的两条直线互相平行)(2)如图3,已知AB ∥CD ,在∠BCD 的平分线上取两个点M 、N ,使得∠BMN =∠BNM ,求证:∠CBM =∠ABN .(3)如图4,已知AB ∥CD ,点E 在BC 的左侧,∠ABE ,∠DCE 的平分线相交于点F .请直接写出∠E 与∠F 之间的等量关系.一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD = D .CAB DAB ∠=∠3.下列命题的逆命题是真命题的是( ).A 3 3B 5C .1的立方根是1D .全等三角形的周长相等4.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .45.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 6.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°7.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D 10 8.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 9.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 10.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .311.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE BF =;②ACE △和CDE △面积相;③//BF CE ;④BDF CDE ≌.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题12.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.13.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.14.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .15.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____16.如图,AD 为∠CAF 的角平分线,BD=CD ,∠DBC=∠DCB ,∠DCA=∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE=AB+AE ;③∠DAF=∠CBD .其中正确的结论有_____.(填序号)17.如图,9cm AB =,3cm AC =,点P 在线段AB 上以1cm/s 的速度由点B 向点A 运动,同时点Q 在射线BD 上以x cm/s 的速度由点B 沿射线BD 的方向运动,它们运动的时间为t (s )(1)如图①,若AC AB ⊥,BD AB ⊥,当ACP BPQ △≌△,x =________;CPQ ∠=________.(2)如图②,CAB DBA ∠=∠,当ACP △与BPQ 全等,x =________; 18.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____19.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.20.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.21.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.三、解答题22.如图1是一个平分角的仪器,其中OD=OE ,FD=FE .(1)如图2,将仪器放置在△ABC 上,使点O 与顶点A 重合,D 、E 分别在边AB 、AC 上,沿AF 画一条射线AP ,交BC 于点P .则AP 就是∠BAC 的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P 作PQ ⊥AB 于点Q ,已知PQ=4,AC=7,△ABC 的面积是32,求AB 的长.23.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明.(1)____________;(2)____________.24.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.25.如图,已知:AB =AD ,BC =DE ,AC =AE ,试说明:∠1=∠2.一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .202.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠ B .AB BD =C .AC AD = D .CAB DAB ∠=∠3.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 4.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c5.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对6.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA7.如图,123,,l l l 是三条两两相交的公路,现需建一个仓库,要求仓库到三条公路距离相等,则仓库的可能地址有( )处.A .1B .2C .3D .48.到ABC 的三条边距离相等的点是ABC 的( )A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点 9.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD10.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 11.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题12.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____13.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.14.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 15.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____16.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.17.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________18.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .19.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.20.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.21.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC∆全等.与QFC三、解答题22.如图1是一个平分角的仪器,其中OD=OE,FD=FE.(1)如图2,将仪器放置在△ABC上,使点O与顶点A重合,D、E分别在边AB、AC上,沿AF画一条射线AP,交BC于点P.则AP就是∠BAC的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P作PQ⊥AB于点Q,已知PQ=4,AC=7,△ABC的面积是32,求AB的长.23.作图题:已知∠α,线段m、n,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON=∠α(2)在边OM上截取OA=m,在边ON上截取OB=n.(3)作直线AB.24.如图,在ABC中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交BA ,BC 于点M ,N ;再以点N 为圆心,MN 长为半径作弧交前面的弧于点F ,作射线BF 交AC 的延长线于点E .②以点B 为圆心,BA 长为半径作弧交BE 于点D ,连接CD .请你观察图形,解答下列问题. (1)由尺规作图可证得BMN BFN ≌△△,依据是____________;(2)求证:ABC DBC △≌△;(3)若100BAC ∠=︒,50E ∠=︒,求∠ACB 的度数.25.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.(问题2)小明发现只利用直角三角板也可以作AOB ∠的角平分线,方法如下: 步骤:①利用三角板上的刻度,在OA 、OB 上分别截取OM 、ON ,使OM ON =. ②分别过点M 、N 作OM 、ON 的垂线,交于点P .③作射线OP ,则OP 为AOB ∠的平分线.请根据小明的作法,求证OP 为AOB ∠的平分线.。

全等三角形练习(基础证明题)

全等三角形练习(基础证明题)

全等三角形的判定训练1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。

2.已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?3.已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?4.已知在四边形ABCD中,AB=CD,AD=CB,问AB∥CD吗?说明理由。

5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,问ABD≌⊿ACE.吗?为什么?6.已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

AB CDFEA C DE FDCFEA BAB CADEB C1 2AD CEFB7.已知BE=CF,AB=CD,∠B=∠C.问AF=DE吗?8.已知AD=CB,∠A=∠C,AE=CF,问EB∥DF吗?说明理由。

9.已知,M是AB的中点,∠1=∠2,MC=MD,问∠C=∠D吗?说明理由。

10.已知,AE=DF,BF=CE,AE∥DF,问AB=CD吗?说明理由。

11.已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。

12.已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

13.已知ED⊥AB,EF⊥BC,BD=EF,问BM=ME吗?说明理由。

ACDB1234A B C DE F1 2ACDB E FBA DFECMA BC D1 2DCFEA B14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。

16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。

18.已知AD =AE ,∠B =∠C ,问AC =AB 吗?说明理由。

A B C EH DACME F B D A B C E FD AB C ED F ADE AD E B C 1 23 419.已知AD⊥BC,BD=CD,问AB=AC吗?20.已知∠1=∠2,BC=AD,问⊿ABC≌⊿BAD吗?21.已知AB=AC,∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。

全等三角形基础练习题

全等三角形基础练习题

(一)三角形全等的识别方法1、如图:△ABC 与△DEF 中2、如图:△ABC 与△DEF 中∵⎪⎩⎪⎨⎧===__________________________________________________________ ∵⎪⎩⎪⎨⎧===__________________________________________________________ ∴△ABC ≌△DEF ( ) ∴△ABC ≌△DEF ( ) 3、如图:△ABC 与△DEF 中 4、如图:△ABC 与△DEF 中∵⎪⎩⎪⎨⎧===__________________________________________________________ ∵⎪⎩⎪⎨⎧===__________________________________________________________ ∴△ABC ≌△DEF ( ) ∴△ABC ≌△DEF ( ) 5、如图:Rt △ABC 与Rt △DEF 中,∠____=∠_____=90°∵⎩⎨⎧==______________________________________∴Rt △ABC≌Rt △DEF( ) (二)全等三角形的特征∵△ABC ≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边 ) ∠A= ,∠B= ,∠C= ; (全等三角形的对应角 )(三)填空题1、已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm , ∠A=25°∠B=48°;那么DE= cm ,EC= cm , ∠C= 度;∠D= 度;3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第4小题) (第5小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);5、如图,已知,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的一个条件为 ; (2)若以“ASA ”为依据,还须添加的一个条件为 ; (3)若以“AAS ”为依据,还须添加的一个条件为 ;6、如图,平行四边形ABCD 中,图中的全等三角形 是 ;7、如图,已知∠CAB=∠DB A ,要使△ABC≌△B AD, 只需增加的一个条件是 ;(只需填写一个你认为适合的条件)8、分别根据下列已知条件,再补充一个条件使得下图中的△ABD 和△ACE 全等; (1)AB AC =,A A ∠=∠, ; (2)AB AC =,B C ∠=∠, ;(3)AD AE =, ,DB CE =; 10、如图, CE=DE ,EA=EB ,CA=DB ,求证:△ABC ≌△BAD . 证明∵CE=DE , EA=EB ∴________=________在△ABC 和△BAD 中,∵()()()⎪⎩⎪⎨⎧===______________________________________________已证已知∴△ABC ≌△BAD .( )EBAE D BA OC AD B FE DC B AED CBA C BADC BA(四)解答题:1、如图,已知AC=AB ,∠1=∠2;求证:BD=CE2、点M 是等腰梯形ABCD 底边AB 的中点,△AMD 和△BMC 全等吗?为什么?3、已知:如图,AB∥CD,AB =CD ,BE∥DF; 求证:BE =DF ;4.阅读下题及证明过程:已知:如图, D 是△ABC 中BC 边上一点,E 是AD 上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE .证明:在△AEB 和△AEC 中,∵EB=EC ,∠ABE=∠ACE ,AE=AE ,∴△AEB ≌△AEC ……第一步∴∠BAE=∠CAE ……第二步 问上面证明过程是否正确?若正确,请写出每一步推理的依 据;若不正确,请指出错在哪一步,并写出你认为正确的证 明过程.(选做题)5. AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是____;中线AD 的取值范围是____.6.在△ABC 中∠BAC 是锐角,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ; (1)求证:AH=2BD ;(2)若将∠BAC 改为钝角,其余条件不变,上述的结论还成立?若成立,请证明;若不成立,请说明理由;21ABEDF O DECBA HEABC A B DE。

全等三角形基础练习题

全等三角形基础练习题

全等三角形基础练习1、下列条件中一定能判定△ABC ≌△DEF 的是( )A .∠A =∠D ,∠B =∠E ,∠C =∠F B .∠A =∠D ,AB =DE ,BC =EFC .AB =DE ,AC =DF ,BC =EFD .AB =DE ,∠A =∠E ,∠B =∠F2、如图,等腰△ABC 中,点D ,E 分别在腰AB ,AC 上,添加下列条件,不能判定ABE △≌ACD △的是( )A .AD AE =B .BE CD =C .ADC AEB ∠=∠D .DCB EBC ∠=∠3、如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是()A .SASB .AASC .SSSD .ASA4、如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是() A .∠BCA =∠DCA B .∠BAC =∠DAC C .CB =CD D .∠B =∠D =90°5、下列条件中一定能判定△ABC ≌△DEF 的是( )A .∠A =∠D ,∠B =∠E ,∠C =∠F B .∠A =∠D ,AB =DE ,B C =EFC .AB =DE ,AC =DF ,BC =EFD .AB =DE ,∠A =∠E ,∠B =∠F6、下列各组条件中,能判定△ABC ≌△DEF 的是( )A. AB=DE, BC=EF,∠A =∠DB. ∠A =∠D , ∠C =∠F , AC=EFC. AB=DE, BC=EF, △ABC 的周长=△DEF 的周长D. ∠A =∠D , ∠B =∠E , ∠C =∠F7、如图,点P 是AB 上任意一点,∠ABC=∠ABD ,还应补充一个条件,才能推出△APC ≌△APD 、从下列条件中补充一个条件,不一定能推出△APC ≌△APD 的是( )A 、BC=BDB 、AC=ADC 、∠ACB=∠ADBD 、∠CAB=∠DAB8、根据下列条件不能唯一画出△ABC 的是( )A .AB=5,BC=6,AC=7B .AB=5,BC=6,∠B=45°C .AB=5,AC=4,∠C=90°D .AB=5,AC=4,∠C=45°9、如图,小明书上的三角形图形被墨迹污染了一部分,他根据所学知识很快画出了一个与书上完全一样的三角形,那么这两个三角形全等的依据是( )A .SSSB .SASC .ASAD .AAS10、如图,将两根钢条',AA BB '的中点连接在一起,使',AA BB '可以绕着点O 自由转动,就做成了一个测量工具(卡钳),则图中AB 的长等于内槽宽''A B ,那么判定OAB OAB ≌的理由是( )A .边角边B .边边边C .角边角D .角角边11、用直尺和圆规作一个角的角平分线的示意图如图所示,其中说明COE DOE ∆≅∆的依据是( )A .SSSB .SASC .ASAD .AAS12、如图,3×3的网格中,△ABC 的三个顶点均在在格点上,这样的三角形叫格点三角形,图中可以画出与△ABC 全等的格点三角形共有( )个(不含△ABC )A .3B .4C .7D .813、如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-14、有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有( ) A .1个 B .2个 C .3个 D .4个15、如图,△ABC 在平面直角坐标系中,点A (0,1), B (4,1) C (1,3), 如果要使△ABD 与△ABC 全等,那么点D 的坐标可以是_______16、如图,点A ,E ,B ,F 在一条直线上,在△ABC 和△FED 中,AC =FD ,BC =DE ,要利用“SSS ”来判定△ABC ≌△FED 时,下面4个条件中:①AE =FB ;②AB =FE ;③AE =BE ;④BF =BE ;可利用的是( )A .①或②B .②或③C .③或①D .①或④17、如图,在△ABC 中,AB =AC .点B ,D ,E 在同一直线上,点D 在△ABC 内、点E 在△ABC 外,且AD =AE .若50BAC DAE ∠=∠=︒,则∠BEC 的度数为( )A .50°B .55°C .60°D .80°18、如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE ,求证:BD =CE19、如图,∠ACB =90°,AC =BC ,AD ⊥CE 于D ,BE ⊥CE 于E ,AD =25m ,DE =17m.求BE 的长.20、如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .21、如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.22、在三角形ABC 中,点D 是BC 上的中点,连接AD 并延长到点E ,使DE AD =,连接CE .(1)求证:ABD ECD ∆≅∆(2)若ABD ∆的面积为5,求ACE ∆的面积.23、(1)作图发现:如图1,已知△ABC ,小涵同学以AB 、AC 为边向△ABC 外作等边△ABD 和等边△ACE .连接BE ,CD .这时他发现BE 与CD 的数量关系是 .(2)拓展探究:如图2.已知△ABC ,小涵同学以AB 、AC 为边向外作正方形ABFD 和正方形ACGE ,连接BE ,CD ,试判断BE 与CD 之间的数量关系,并说明理由.24、如图,已知B ,D 在线段AC 上,且AD =CB ,BF =DE ,∠AED =∠CFB =90°求证:(1)△AED ≌△CFB ;(2)BE ∥DF .25、如图,△ABC 是等腰直角三角形,BD⊥AE,CE⊥AE,垂足为D,E,CE=3,BD=7,求DE 的长度.26、如图,△ABC 是等边三角形,BD 是中线,延长BC 至E,使CE=CD ,DH⊥BE.求证:BH=HE.27、△ABC 和△CDE 都是等腰直角三角形,其中∠ACB =∠DCE =90°,AC =BC ,DC =EC ,连接BD ,BE ,AE .(1)求证:BD =AE ;(2)若∠AEB =50°,求∠EBD 的度数;EC DBA28、如图,△ABD ,△AEC 都是等边三角形,BE ,CD 相交于点P .(1)求证CD =BE ;(2)点F 在线段CD 上,且∠DBF =∠ADC ,判断线段DF 于AP 的数量关系,并证明你的结论.29、如图1,已知CF 是△ABC 的外角∠ACE 的角平分线,D 为CF 上一点,且DA =DB .(1)求证:∠ACB =∠ADB ;(2)求证:AC +BC <2BD ;(3)如图2,若∠ECF =60°,证明:AC =BC +CD .30、如图,B 、C 、E 三点在同一条直线上,AB ∥DC ,BC =DC ,∠ACD =∠E . 求证:(1)∠ACB =∠D ;(2)AB =EC .31、如图,AD 平分∠EAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,DB=CD ,求证:BE=FC.CPF B EA D32、如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE ,求证:BD =CE .33、如图,在△ABC 中,CA=CB ,D 为AB 边的中点,∠CED=∠CFD=90°,CE=CF.求证:∠ADF=∠BDE.34、如图,E 是BC 的中点,DE 平分∠ADC .(1)如图1,若∠B =∠C =90°,求证:AE 平分∠DAB ;(2)如图2,若DE ⊥AE ,求证:AD =AB +CD .图2图1B A E CD BA EC D CB AE D。

全等三角形作业设计案例

全等三角形作业设计案例

全等三角形作业设计案例
一、基础练习
1. 判断题:如果两个三角形的两边及夹角相等,则这两个三角形全等。

答案:(√)
2. 填空题:全等三角形的________和________相等。

答案:对应边;对应角
二、进阶练习
1. 选择题:以下哪两个三角形是全等的?
(1) 边长为3、4、5的直角三角形与边长为6、8、10的直角三角形
(2) 边长为3、4、5的三角形与边长为6、8、12的三角形
(3) 边长为3、4、5的三角形与边长为6、7、8的三角形
答案:
2. 解答题:已知△ABC与△DEF中,AB=DE,BC=EF,∠A=∠D,若△ABC≌△DEF,则还需要从以下条件中选取哪一个才能进行证明?
A. ∠B=∠E
B. ∠C=∠F
C. AC=DF
D. 以上都可以
答案:D
三、拓展练习
1. 解答题:已知△ABC中,AB=AC,AD是BC边上的高,∠BAC=120°,求BD与DC的比值。

答案:BD∶DC=1∶2。

人教版2021-2022第一学期人教版八年级数学第十二章《全等三角形》基础练习【含答案】

人教版2021-2022第一学期人教版八年级数学第十二章《全等三角形》基础练习【含答案】

人教版2021-2022第一学期人教版八年级数学第十二章《全等三角形》基础练习一.选择题(本题共10个小题,每个小题4分,满分40分)1.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN.若MN=2,则OM的长为()A.3 B.4 C.5 D.62.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB3.如图,在△ABC中,∠ACB=90°,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A.1cm B.2cm C.3cm D.4cm4.两条平行线a、b被第三条直线c所截得的同旁内角的平分线的交点到直线c的距离是2cm,则a、b之间的距离是()A.3cm B.4cm C.5cm D.6cm5.如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.16.(本题满分12分)如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD、CE交于点F,点G是线段CD上一点,连接AF、GF,若AF=GF,BD=CD.(1)求∠CAF的度数;(2)判断线段FG与BC的位置关系,并说明理由.17.(本题满分12分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED =BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.交BC的延长线于点F.求证:DF=2DC.参考答案一.选择题1.选:C.2.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.3.选:B.4.解:如图,过点P作EF⊥b,∵a∥b,∴EF⊥a,∴EF就是a、b之间的距离,∵P到直线c的距离是2,即PD=2cm,点P是同旁内角的平分线的交点,∴PE=PD,PF=PD,(角平分线上的点到角的两边的距离相等),∴EF=PE+PF=2+2=4cm.故选:B.5.解:A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.故选:A.6.解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ABD和△ECD中,∵⎪⎩⎪⎨⎧=∠=∠=ADDEEDCADBCDBD,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=5,∴5-3<AE<5+3,即2<2AD<8,∴1<AD<4,故选:C.7.选:A.8.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.9.解:由平移的性质得:AD∥BE,AD=BE=2.5,∵BC=5,∴CE =2.5,∴AD =CE ,∵AD ∥BE ,∴∠DAG =∠ECG ,在△AGD 和△CGE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE AD CGE AGD ECG DAG ,∴△AGD ≌△CGE (AAS ),∴①正确;∵∠BAC =90°,BE =CE ,∴AE =21BC =CE =2.5, ∴AE =AD ,∴△ADE 为等腰三角形,∴②正确;∵AE =CE ,∴∠EAC =∠ECG ,∵∠DAG =∠ECG ,∴∠EAC =∠DAG,∴AC 平分∠EAD ,∴③正确;作AH ⊥BC 于H ,如图所示: ∵△ABC 的面积=AC AB AH BC ⋅=⋅2121, ∴AH =512=⋅BC AC AB , ∴四边形AEFD 的面积=9512)55.2(21)(21=⨯+=⨯+AH EF AD , ∴④正确;正确的个数有4个,故选:D .10.解:①∵CD 是斜边AB 上的高,∠ACB =90°, ∴∠CDB =90°,∴∠ACD +∠BCD =90°,∠BCD +∠B =90°, ∴∠ACD =∠B ,∴①正确;②∵AE 平分∠CAB ,∴∠CAE =∠BAE ,∵∠C =90°,EF ⊥AB ,∴CE =FE ,∵∠CHE =∠CAE +ACD ,∠CEA =∠BAE +∠B , ∵∠ACD =∠B ,∴∠CHE =∠CEA ,∴CH =CE ,即:CH =CE =EF ,∴②正确;③∵在Rt △ACE 和Rt △AFE 中AE =AE ,CE =EF , ∴Rt △ACE ≌Rt △AFE ,∴AC =AF ,∴③正确;④∵CH =EF ,∴CH ≠HD ,∴④错误;⑤∵在Rt △BFE 中,BE >EF ,而EF =CH ,∴⑤错误. 故选:C .二.填空题(共6小题)11.解:作DF ⊥BC 于F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC , ∴DF =DE ,∴21×AB ×DE +21×BC ×DF =70, ∴DF =DE =5.故答案为:5.12.解:∵DE ⊥AB ,∴∠C =∠BDE ,在Rt △CBE 和Rt △DBE 中⎩⎨⎧==BDBC BE BE , ∴Rt △CBE ≌Rt △DBE (HL ),∴CE =DE ,∴AE +DE =AE +CE =AC =4cm ,故答案为:4cm .13.解:∵△ABC ≌△ADE ,∴∠EAD =∠CAB ,∵∠EAB =120°,∠CAD =10°,∴∠EAD =∠CAB =55°,∴∠CFD =∠FAB +∠B =10°+55°+30°=95°, 故答案为:95.14.解:当BD =PC 时,△BPD 与△CQP 全等,∵点D 为AB 的中点,∴BD =21AB =6cm , ∵BD =PC ,∴BP =8-6=2(cm ),∵点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,∴运动时间时1s ,∵△DBP ≌△PCQ ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.三.解答题(共5小题)15.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,⎪⎩⎪⎨⎧=∠=∠=ACABEACDABAEAD,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF 又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD =CE 成立,且两线段所在直线互相垂直,即∠BFC =90°.理由如下: ∵△ABC 、△ADE 是等腰直角三角形∴AB =AC ,AD =AE ,∠BAC =∠EAD =90°,∵∠BAC +∠CAD =∠EAD +∠CAD∴∠BAD =∠CAE ,∵在△ADB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AC AB EAC DAB AE AD ,∴△ADB ≌△AEC (SAS )∴BD =CE ,∠ACE =∠DBA ,∴∠BFC =∠CAB =90°.16.解:(1)∵BD ⊥AC ,CE ⊥AB ,∴∠BEF =∠CDF =90°,∵∠EFB =∠DFC ,∴∠EBF =∠FCD ,∵BD =CD ,∠ADB =∠CDF ,∴△ABD ≌△FCD ,∴AD =DF ,∴△ADF 是等腰直角三角形,∴∠CAF =45°;(2)FG ∥BC ,理由是:∵AF =FG ,∴∠FGA =∠CAF =45°,∵BD ⊥AC ,BD =CD ,∴△BDC 是等腰直角三角形,∴∠DCB =45°,∴∠FGA =∠DCB ,∴FG ∥BC .17.(1)证明:∵AD ⊥BC ,∠ACB =45°,∴∠ADB =∠CDE =90°,△ADC 是等腰直角三角形, ∴AD =CD ,∠CAD =∠ACD =45°,在△ABD 与△CED 中,⎪⎩⎪⎨⎧=∠=∠=ED BD CDE ADB CD AD ,∴△ABD ≌△CED (SAS );(2)解:∵CE 为∠ACD 的角平分线,∴∠ECD =21∠ACD =22.5°, 由(1)得:△ABD ≌△CED ,∴∠BAD =∠ECD =22.5°,∴∠BAC =∠BAD +∠CAD =22.5°+45°=67.5°.18.解:(1)如图1,∵AD 平分∠BAC ,∴∠CAD =∠EAD ,在△CAD 和△EAD 中⎪⎩⎪⎨⎧=∠=∠∠=∠AD AD EAD CAD AED C ,∴△CAD ≌△EAD (AAS ),∴CD =DE ,AC =AE ,∵∠B =45°,∠DEB =90°,∴DE =EB ,∴DC =BE ,∴AE +BE =AC +DC =AB ;故答案为:AB =AC +CD .(2)成立.证明:如图2,在AB 上截取AE =AC ,连接DE . ∵在△ACD 和△AED 中⎪⎩⎪⎨⎧=∠=∠=AD AD BAD CAD AE AC ,∴△ACD≌△AED(SAS),∴CD=ED,∠C=∠AED,又∵∠C=2∠B,∴∠AED=2∠B,又∵∠AED=∠B+∠EDB,∴2∠B=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB∵AB=AE+EB,ED=EB=CD,AE=AC,∴AB=AC+CD.19.解:(1)∵AB=AC,∴∠C=∠B=36°,∵∠ADE=36°,∠BDA=128°,∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°,故答案为:16°;52°;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=36°,∴∠DEC+∠EDC=144°,∵∠ADE =36°,∴∠ADB +∠EDC =144°,∴∠ADB =∠DEC ,在△ABD 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DC AB CB DEC ADB , ∴△ABD ≌△DCE (AAS ).20.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴DE =DC ,在Rt △CDF 和Rt △EDB 中,⎩⎨⎧==DEDC DF BD , ∴Rt △CDF ≌Rt △EDB (HL ).∴CF =EB ;(2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴CD =DE .在Rt △ADC 与Rt △ADE 中,⎩⎨⎧==ADAD DE CD , ∴Rt △ADC ≌Rt △ADE (HL ),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .21.证明:∠∠ABC 是等边三角形,∠∠A =∠B =∠ACB =60°.∠DE ∠AB ,∠∠EDC=∠B=60°,∠DEC=∠A=60°.∠EF∠DE,∠∠DEF=90°.∠∠F=90°-∠EDC=30°.∠∠ACB=∠EDC=∠DEC=60°,∠∠EDC是等边三角形.∠DE=DC.∠∠DEF=90°,∠F=30°,∠DF=2DE=2DC.。

《常考题》初中八年级数学上册第十二章《全等三角形》基础练习(含答案解析)

《常考题》初中八年级数学上册第十二章《全等三角形》基础练习(含答案解析)

一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .64B解析:B【分析】 过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.2.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.3.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .4C解析:C【分析】 过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质得:OE =OF =OD 然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.4.如图,AB是线段CD的垂直平分线,则图中全等三角形的对数有()A.2对B.3对C.4对D.5对B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD,BC=BD,OC=OD,然后根据”HL”可判断Rt△AOC≌Rt△AOD,Rt△BOC≌Rt△BOD;根据“SSS”可判断△ABC≌△ABD.【详解】解:∵AB是线段CD的垂直平分线,∴AC=AD,BC=BD,OC=OD,∴Rt△AOC≌Rt△AOD(HL),Rt△BOC≌Rt△BOD(HL),△ABC≌△ABD(SSS).故选:B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.5.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对C解析:C【分析】 根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.6.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm C解析:C【分析】 延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C . 【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .7.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A.4:3B.16:9C.3:4D.9:16A解析:A【分析】过点D作DE垂直于AB,DF垂直于AC,由AD为角BAC的平分线,根据角平分线定理得到DE=DF,再根据三角形的面积公式表示出△ABD与△ACD的面积之比,把DE=DF以及AB:AC的比值代入即可求出面积之比.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=4:3,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=4:3.故选:A.【点睛】本题考查了角平分线的性质定理:角平分线上的点到角两边的距离相等.此类题经常过角平分线上作角两边的垂线,这样可以得到线段的相等,再结合其他的条件探寻结论解决问题.8.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG=⎧⎨=⎩ ∴ △BEG ≌△BEF ,∴BG=BF , 在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键; 9.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ C解析:C【分析】 先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.10.如图所示,已知∠A=∠C,∠AFD=∠CEB,那么给出的条件不能得到△≌△是()ADF CBEA.∠B=∠D B.EB=DF C.AD=BC D.AE=CF A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS、SAS、AAS、ASA;【详解】A∵∠A=∠C,∠AFD=∠CEB,∠B=∠D,三个角相等,不能判定三角形全等,该选项不符合题意;B∵∠A=∠C,∠AFD=∠CEB,EB=DF,符合AAS的判定,该选项符合题意;C∵∠A=∠C,∠AFD=∠CEB,AD=BC,符合AAS的判定,该选项符合题意;D∵∠A=∠C,∠AFD=∠CEB,AE=CF,∴AF=CE,符合ASA的判定,该选项符合题意;故选:A.【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;二、填空题11.如图,△ABC≌△DEF,由图中提供的信息,可得∠D=__________°.【分析】先根据三角形的内角和定理求出∠A的度数再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=∴∠A=-∠B-∠C=∵△ABC≌△DEF∴∠D=∠A=故答案为:【点睛】此题考查全等三角解析:70【分析】先根据三角形的内角和定理求出∠A的度数,再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=180︒,∴∠A=180︒-∠B-∠C=180506070︒-︒-︒=︒,∵△ABC ≌△DEF ,∴∠D=∠A=70︒,故答案为:70︒【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,对应边相等,以及三角形的内角和定理.12.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中, A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.13.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .(1)(2)(3)(4)【分析】在△ABC 中AB=ACAD 是△ABC 的平分线可知直线AD 为△ABC 的对称轴再根据图形的对称性逐一判断【详解】解:(1)∵在中是的角平分线∴∵∴∴∴平分故(1)正确;(解析:(1)(2)(3)(4)【分析】在△ABC 中,AB=AC ,AD 是△ABC 的平分线,可知直线AD 为△ABC 的对称轴,再根据图形的对称性,逐一判断.【详解】解:(1)∵在ABC 中,AB AC =,AD 是ABC 的角平分线,∴BAD CAD ∠=∠.∵DE AB ⊥,DF AC ⊥,∴ADE 90BAD ∠∠=︒-,ADF 90CAD ∠∠=︒-,∴ADE ADF ∠∠=, ∴DA 平分EDF ∠,故(1)正确;(2)由(1)可知,ADE ADF ∠∠=,在AED 和AFD 中,EAD FAD,AD AD,ADE ADF,∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AED AFD ASA ≅,∴AE AF =,DE DF =,故(2)正确;(3)在AD 上取一点M ,连结BM ,CM .在ABM 和ACM 中,AB AC BAD CAD AM AM =⎧⎪∠=∠⎨⎪=⎩∴()ABM ACM SAS ≅,∴BM CM =,故(3)正确;(4)在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴()ABD ACD SAS ≅.∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°在ADE 和ADF 中,AED=AFD BAD CAD AD AD ∠∠⎧⎪∠=∠⎨⎪=⎩∴()ADE ADF AAS ≅. ∵ABD ACD ≅∴∠ABC=∠ACB ,BD=CD ,∵DE AB ⊥,DF AC ⊥,∴∠BED=∠CFD在BED 和CFD △中,EBD FCD BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED CFD AAS ≅,∴图中共有3对全等三角形,故(4)正确.故答案为:(1)(2)(3)(4).【点睛】本题考查了等腰三角形的性质,利用三角形全等是正确解答本题的关键.14.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.4:3【分析】利用角平分线的性质可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等根据三角形的面积公式即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵AD 是△ABC 的角平分线∴设△解析:4:3【分析】利用角平分线的性质,可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等,根据三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵ AD 是△ABC 的角平分线,∴ 设△ABD 的边AB 上的高与△ACD 的边AC 的高分别为1h ,2h ,∴ 1h =2h ,∴△ABD 与△ACD 的面积之比=AB :AC=8:6=4:3,故答案为:4:3.【点睛】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键;15.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SASASAAASSSS )即可得出答案【详解】解:添加条件:AB =AC 在△ABE 和△ACD 中∴△ABE ≌△A解析:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )即可得出答案.【详解】解:添加条件:AB =AC ,在△ABE 和△ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS );添加条件:∠B =∠C ,在△ABE 和△ACD 中,B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS );添加条件:∠AEB =∠ADC ,在△ABE 和△ACD 中,AEB ADC AE ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ACD (ASA );故答案为:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一).【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB ⎧⎨⎩==, ∴Rt △ABC ≌Rt △DCB (HL );∴∠DBC=∠ACB ,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.18.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).AB=DC (答案不唯一)【分析】因为和公共边BC根据全等证明方法即可求得【详解】当AB=DC 时根据全等证明方法SAS 可证故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件掌握五种解析:AB=DC (答案不唯一)【分析】因为ABC DCB ∠=∠和公共边BC ,根据全等证明方法即可求得.【详解】当AB=DC 时根据全等证明方法SAS 可证ACB DBC ≌故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件,掌握五种全等证明方法是解题的关键.19.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.20.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.如图,点B 、E 、C 、F 在同一条直线上,A D ∠=∠,//AB DE ,BE CF =.求证://AC DF .解析:见解析.【分析】根据//AB DE 可知B DEF ∠=∠,又根据∠A=∠D ,BE=CF 可以判定ABC DEF △≌△,即可求证//AC DF ;【详解】∵//AB DE ,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△,∴ACB F ∠=∠,∴//AC DF .【点睛】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出ABC DEF △≌△,注意全等三角形的对应边相等;22.如图,已知点D ,E 分别在等边三角形ABC 的边BC ,CA 上,且BD CE =,连接AD ,BE 相交于点F ,AH BE ⊥于点H ,求FAH ∠的度数.解析:30【分析】根据条件可证明( SAS )ABD BCE ≅,得到BAD CBE ∠=∠,通过三角形的外角等于不相邻的两个内角和可知AFE ABF BAD ∠=∠+∠,最后推出60AFE ABC ︒∠=∠=,求出结果即可.【详解】解:∵ABC 是等边三角形,∴AB BC =,60ABD C ︒∠=∠=在ABD △和BCE 中,,AB BC ABD C BD CE =⎧⎪∠=∠⎨⎪=⎩∴( SAS )ABD BCE ≅.∴BAD CBE ∠=∠.∵AFE ABF BAD ∠=∠+∠.∴60AFE ABF CBE ABC ︒∠=∠+∠=∠=∵AH BE ⊥于点H ,∴90AHF ︒∠=,9030FAH AFH ∴∠=︒-∠=︒.【点睛】本题主要考查全等三角形的判定以及性质,涉及三角形的外角,属于基础题,熟练掌握全等三角形的判定以及性质是解决本题的关键.23.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,若9AD =,6DE =,求BE 的长.解析:3【分析】根据同角的余角相等可得EBC DCA ∠=∠,根据“AAS”可证CEB △≌ADC ,可得9AD CE ==,即可求BE 的长.【详解】解:∵BE CE ⊥,AD CE ⊥,∴90E ADC ∠=∠=︒,∴90EBC BCE ∠+∠=︒.∵90BCE ACD ∠+∠=︒,∴EBC DCA ∠=∠.在CEB △和ADC 中,E ADC EBC ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CEB △≌ADC (AAS ),∴BE CD =,9AD CE ==,∴963BE CD CE DE ==-=-=.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练运用全等三角形的判定是本题的关键.24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.解析:见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.25.如图,点B ,F ,C ,E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD .求证:AB=DE .解析:见详解【分析】先根据条件求出BC=EF ,根据平行线性质求出∠B=∠E ,∠ACB=∠DFE ,根据ASA 推出△ABC ≌△DEF 即可.【详解】∵FB =CE ,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FEACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.26.如图,点E ,F 在BC 上,A D ∠=∠,AF DE =,AFC DEB ∠=∠.求证:BE CF =.解析:见详解【分析】先证明∠AFB=∠DEC ,再根据ASA 证明∆AFB ≅∆DEC ,进而即可得到结论. 【详解】∵AFC DEB ∠=∠,∴∠AFB=∠DEC ,又∵A D ∠=∠,AF DE =,∴∆AFB ≅∆DEC (ASA ),∴BF=CE ,∴BF-EF= CE-EF ,∴BE CF =.【点睛】本题主要考查三角形全等的判定和性质定理,熟练掌握ASA 证明三角形全等,是解题的关键.27.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.解析:证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.28.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.解析:(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (2)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (3)连接EF ,延长AE 、BF 相交于点C ,然后与(2)同理可证.【详解】解:(1)EF =BE +DF ,证明如下: 在ABE 和ADG 中, DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF , 在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为 EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,在ABE 和ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°﹣70°)=140°,∠EOF =70°,∴∠EOF 12=∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF=2×(45+60)=210(海里).答:此时两舰艇之间的距离是210海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.。

(必考题)初中八年级数学上册第十二章《全等三角形》基础练习(答案解析)

(必考题)初中八年级数学上册第十二章《全等三角形》基础练习(答案解析)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .14.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm5.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c6.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 7.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒8.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°9.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等10.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°11.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .4012.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1213.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 14.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABCC .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC 15.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题16.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.17.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.18.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.19.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.20.如图,ABC ADE ≅,延长BC ,分别交AD ,ED 于点F ,G ,若120EAB ∠=︒,30B ∠=︒,10CAD ∠=︒,则CFD ∠=________︒.21.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .22.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.23.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).24.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.25.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 26.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.三、解答题27.将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.28.已知矩形ABCD 中,点E 是AD 中点,连接CE ,经过点A ,B ,E 三点作O ,交BC 于点F ,过点F 作FH CE ⊥于H .(1)求证:直线FH 是O 的切线;(2)若42AD =,且点H 恰好为CE 中点时,判断此时CE 与O 的位置关系?说明理由,并求出弧EF ,线段EH ,FH 围成的图形的面积.29.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B . 求证:△ABC ≌△CDE .30.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.=求证:(1)AC DF=(2)FB CE。

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案)一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA二.解答题(共6小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.全等三角形判定(孙雨欣)初中数学组卷参考答案与试题解析一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④【分析】认真分析各选项提供的已知条件,结合全等三角形判定方法对选项提供的已知条件逐一判断.【解答】解:①两边和一角对应相等不正确,应该是两边的夹角,故本选项错误,②两角和一边对应相等,符合AAS,故本选项正确,③两个直角三角形中斜边和一条直角边对应相等,符合SAS,故本选项正确,④三个角对应相等,可以相似不全等,故本选项错误,故选C.【点评】本题主要考查了对全等三角形的判定方法的理解及运用.常用的判定方法有AAS,SSS,SAS 等,难度适中.3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【分析】根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.解答题(共7小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.【分析】首先根据∠QAP=90°,AB⊥PQ可证出∠PQA=∠BAC,在加上条件BC=AP,∠C=∠QAP=90°,可利用AAS定理证明△ABC和△QPA全等.【解答】△ABC能和△QPA全等;证明:∵∠QAP=90°,∴∠PQA+∠QPA=90°,∵QP⊥AB,∴∠BAC+∠APQ=90°,∴∠PQA=∠BAC,在△ABC和△QPA中,,∴△ABC≌△QPA(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.7.如图AB,CD相交于点O,AD=CB,AB⊥DA,CD⊥CB,求证:△ABD≌△CDB.【分析】首先根据AB⊥DA,CD⊥CB,可得∠A=∠C=90°,再利用HL定理证明Rt△ABD≌Rt△CBD即可.【解答】证明:∵AB⊥DA,CD⊥CB,∴∠A=∠C=90°,在Rt△ABD和Rt△CBD中,∴Rt△ABD≌Rt△CBD(HL).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.【分析】根据全等三角形的判定定理ASA推出即可.【解答】证明:∵在△ABE和△ACD中,∴△ABE≌△ACD(ASA).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.【分析】利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可.【解答】证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).【点评】此题主要考查了全等三角形的判定,三角形内角和定理的应用,正确发现图形中等量关系∠A=∠DBE是解题关键.。

三角形全等证明基础练习试题打印

三角形全等证明基础练习试题打印

专业知识分享探索三角形全等的条件练习题1、已知AD 是△ABC 的中线,BE ⊥AD ,CF ⊥AD ,证明:BE=CF2、已知AB=CD ,AE=BF ,CE=DF ,求证:AE ∥BF 。

3、已知AB=CD ,BE=CF ,AF=DE ,求证:AB ∥CD4、已知在四边形ABCD 中,AB=CD ,AD=CB ,求证:AB ∥CD 。

5、已知CD ∥AB ,DF ∥EB ,DF=EB ,求证:AF=CE 。

D AB CCBB DB专业知识分享6、已知BE=CF ,AB=CD ,∠B=∠C ,求证:AF=DE 。

7、已知AB=CD , ∠A=∠C ,AE=CF ,求证:EB ∥DF 。

8、已知,M 是AB 的中点,∠1=∠2,MC=MD ,求证:∠C=∠D 。

9、已知∠1=∠2,∠3=∠4,求证:AC=AD 。

10、已知∠E=∠F ,∠1=∠2,AB=CD ,求证:AE=DF 。

11、已知ED ⊥AB ,EF ⊥BC ,BD=EF ,求证:BM=ME 。

ACMEFBB CEMA BA ECB A D专业知识分享12、已知AC=AB ,AE=AD , ∠EAB=∠DAC ,求证:∠B=∠C13、已知AD=AE ,∠B=∠C ,求证:AC=AB 。

14、已知∠1=∠2,BC=AD ,求证:△ABC ≌△BAD 。

15、已知AB=AC , ∠1=∠2,AD=AE ,求证:△ABD ≌△ACE 。

16、已知AD=AE ,BD=CE ,∠1=∠2,求证:△ABD ≌△ACEA D EB CA BAB CD E12 B D ADEC 1 2B专业知识分享17、已知AB=AC ,AD=AE ,∠1=∠2,求证:CE=BD18、已知CE ⊥AB ,DF ⊥AB ,AC ∥DB ,AC=BD ,求证:CE=DF 。

19、已知∠1=∠2,AC=BD ,E ,F ,A ,B 在同一直线上,求证:∠3=∠420、已知DO ⊥BC ,OC=OA ,OB=OD ,求证:CD=AB21、已知CE=DF ,AE=BF ,AE ⊥AD ,FD ⊥AD ,求证:A C ∥BD22、已知AB 与CD 相交于点E ,EA=EC ,ED=EB ,求证:△AED ≌△CEBC AE BF D A E D C B O CD AE FB 21 3 4 A CBD EC AE BF DAD BEFG 1 2 C专业知识分享23、已知AB=AC ,D ,E 分别是AB ,AC 的中点。

山东潍坊一中八年级数学上册第十二章【全等三角形】基础练习(培优专题)

山东潍坊一中八年级数学上册第十二章【全等三角形】基础练习(培优专题)

一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项成立的( )A .AOP MON ∠>∠B .AOP MON ∠=∠C .AOP MON ∠<∠D .以上情况都有可能3.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .44.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB ,OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =5.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒6.如图,123,,l l l 是三条两两相交的公路,现需建一个仓库,要求仓库到三条公路距离相等,则仓库的可能地址有( )处.A .1B .2C .3D .47.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .408.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°9.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL10.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 11.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b二、填空题12.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC的最小值为_________.13.如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当△ACP与△BPQ全等时,点Q的运动速度为__cm/s.14.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则点A到直线CD的距离是_____.15.如图,ABC的三边AB、BC、CA长分别是10、15、20,三条角平分线交于O点,S S S等于__________.则::ABO BCO CAO16.已知点A、E、F、C在同一条直线l上,点B、D在直线l的异侧,若AB=CD,AE=CF,BF=DE,则AB与CD的位置关系是_______.P m m-,当m=____时,点P在二、四象限的角平分线上.17.已知点(2,1)18.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .19.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.20.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.21.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题22.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明.(1)____________;(2)____________.23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.如图,CB 为ACE ∠的角平分线,F 是线段CB 上一点,,CA CF B E =∠=∠,延长EF 与线段AC 相交于点D .(1)求证:AB FE =;(2)若,//ED AC AB CE ⊥,求A ∠的度数.25.如图1,在平面内取一个定点O ,自O 引一条射线O x ,设M 是平面内一点,点O 与点M 的距离为m (m >0), 以射线O x 为始边,射线OM 为终边的∠x OM 的度数为x °(x≥0).那么我们规定用有序数对(m ,x °)表示点M 在平面内的位置,并记为M (m ,x °).例如,在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°).(1)如图3,如果点N 在平面内的位置记为N (6,35°),那么ON= ;xON ∠= °; (2)如图4,点A ,点B 在射线O x 上,点A ,B 在平面内的位置分别记为(a ,0°), (2a ,0°)点A,E,C在同一条直线上. 且OE=BC.用等式表示∠OEA与∠ACB之间的数量关系,并证明.一、选择题1.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°2.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对3.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 4.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 5.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N作OA,OB的垂线,交点为P.得到OP平分AOB∠的依据是()A.HL B.SSS C.SAS D.ASA6.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A.SSS B.SAS C.SSA D.AAS7.下列说法不正确的是()A.三边分别相等的两个三角形全等B.有两边及一角对应相等的两个三角形全等C.有两角及一边对应相等的两个三角形全等D.斜边和一条直角边分别相等的两个直角三角形全等8.如图,已知∠A=∠D, AM=DN,根据下列条件不能够判定△ABN≅△DCN的是()A.BM∥CN B.∠M=∠N C.BM=CN D.AB=CD9.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED=()A .134°B .124°C .114°D .104°10.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20°11.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题12.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.13.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.14.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .15.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.16.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)17.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.18.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.19.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.20.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).21.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题22.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.23.已知:如图,120AOB ∠=︒,过点O 作射线OP ,若OM 平分AOP ∠,ON 平分BOP ∠,AOP α∠=(1)如图1,补全图形,直接写出MON ∠=____________︒(2)如图2,若4BOM BON ∠=∠,求α的值.24.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B .求证:△ABC ≌△CDE .25.如图,BD //GE ,150AFG ∠=∠=︒,AQ 平分FAC ∠,交BD 的延长线于点Q ,交DE 于点H ,15Q ∠=︒,求CAQ ∠的度数.一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .13.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 4.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS5.已知如图,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD6.下列说法不正确的是()A.三边分别相等的两个三角形全等B.有两边及一角对应相等的两个三角形全等C.有两角及一边对应相等的两个三角形全等D.斜边和一条直角边分别相等的两个直角三角形全等7.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=2,△ABC的面积是()A.20 B.24 C.32 D.408.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④△≌△9.如图所示,已知∠A=∠C,∠AFD=∠CEB,那么给出的条件不能得到ADF CBE 是()A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF 10.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .411.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.13.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.14.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________15.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.16.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.17.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.18.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____19.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =5,若点Q 是射线OB 上一点,OQ =4,则△ODQ 的面积是__________.20.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.21.如图,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依此规律,第n 个图形中有全等三角形的对数是______.三、解答题22.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.23.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由; (2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 24.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.∠的角平分线,方法如下:(问题2)小明发现只利用直角三角板也可以作AOB=.步骤:①利用三角板上的刻度,在OA、OB上分别截取OM、ON,使OM ON②分别过点M、N作OM、ON的垂线,交于点P.∠的平分线.③作射线OP,则OP为AOB∠的平分线.请根据小明的作法,求证OP为AOB25.如图,点D,E分别在AB和AC上,DE//BC,点F是AD上一点,FE的延长线交BC延长线BH于点G.(1)若∠DBE=40°,∠EBC=35°,求∠BDE的度数;(2)求证:∠EGH>∠ADE;(3)若点E是AC和FG的中点,△AFE与△CEG全等吗?请说明理由.。

全等三角形基础练习题

全等三角形基础练习题

全等三角形基础练习题一、选择题(每题3分,共15分)1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠C,AB=CDB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=BCD. ∠A=∠C,AB=AC2. 根据SSS(边边边)全等条件,下列哪组三角形是全等的?A. 三角形ABC与三角形DEF,AB=DE,BC=EF,AC=DFB. 三角形ABC与三角形DEF,AB=DE,BC=DF,AC=EFC. 三角形ABC与三角形DEF,AB=DE,AC=EF,∠B=∠DD. 三角形ABC与三角形DEF,∠A=∠D,∠B=∠E,∠C=∠F3. 根据SAS(边角边)全等条件,下列哪组三角形是全等的?A. 三角形ABC与三角形DEF,AB=DE,∠B=∠D,AC=EFB. 三角形ABC与三角形DEF,AB=DE,∠A=∠D,BC=EFC. 三角形ABC与三角形DEF,∠A=∠D,∠B=∠E,AC=EFD. 三角形ABC与三角形DEF,∠A=∠D,∠B=∠E,AB=DE4. 根据AAS(角角边)全等条件,下列哪组三角形是全等的?A. 三角形ABC与三角形DEF,∠A=∠D,∠B=∠E,BC=EFB. 三角形ABC与三角形DEF,∠A=∠D,∠B=∠E,AB=DEC. 三角形ABC与三角形DEF,∠A=∠D,∠C=∠F,AC=EFD. 三角形ABC与三角形DEF,∠A=∠D,∠B=∠E,∠C=∠F5. 根据HL(直角三角形的斜边和一条直角边相等)全等条件,下列哪组三角形是全等的?A. 三角形ABC与三角形DEF,∠A=∠D,AB=DE,AC=DFB. 三角形ABC与三角形DEF,∠A=∠D,∠B=∠E,AB=DEC. 三角形ABC与三角形DEF,∠A=∠D,∠C=∠F,BC=EFD. 三角形ABC与三角形DEF,∠A=∠D,∠B=∠E,BC=DF二、填空题(每题2分,共10分)6. 如果两个三角形的对应边成比例,且对应角相等,那么这两个三角形是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形基础练习.解答题(共24小题)3.如图,点 B , F , G E 在直线l 上( F , C 之间不能直接测量),点A, D 在I AB=DE AC=DF BF=EC4.四边形 ABCD 中, AD=BC BE=DF AEl BD, CF 丄 BD,垂足分另U 为 E 、F . (1)求证:△ ADE^A CBF ;(2)若AC 与 BD 相交于点 O 求证:AO=CO5.如图,已知点 B , E , C, F 在一条直线上, AB=DF AC=DE / A=/ D. 1 如图,已知 AB 丄AC, AB=AC DE 过点A ,且CD! DE BE 丄DE 垂足分别为点 D E .求证:△ ADC^A BEA D2.如图,AB// ED,已知AC=BE 且点B 、C 、D 三点共线,若/ E=/ ACB 求证:BC=DE异侧,测得(1)求证:△ ABC^A DEF ; (2)指出图中所有平行的线段,并说明理由.(1)求证:AC// DE6.已知△ ABN^n ^ ACM 位置如图所示, AB=AC AD=AE / 仁/ 2.在^ ABC 中, AD 平分/ BAC 且 BD=CD DEI AB 于点 E , DF ! AC 于点 F . (1)求证:AB=AC (2 )若 AD=^, / DAC=30,求 AC 的长.(1) 求证:BD=CE如图, 在^ ABCm CED 中,AB// CD AB=CE AC=CD 求证:/ B=/ E.BD 丄 AC 于点 D, CE! AB 于点 E , AD=AE 求证:BE=CD(1)求证: △ ACB^A BDA(2)若/ ABC=35,则/CAO=AC=FD 求证:AE=FBE , DE=FE FC// AB 求证:AE=CE14•如图, 求证: / M=/ N.C 是AE 的中点,/ 如图: 点 A=/ ECD AB=CD 求证:/ B=/ D.7. 如图, 9. AD BC 相交于点 10.如图, O AD=BC / C=/ D=90 . 题图EC=BD AF=DF13•如图, 点 D 是AB 上一点,DF 交AC 于点11.如图,点 A , B, C, D 在同一条直线上, CE// DF,15.如图,点 A 、C D B 四点共线,且 AC=BD / A=/ B,/ ADEN BCE 求证:DE=CF16.如图,已知/ CAB / DBA / CBD / DAC求证:BC=AD 求证:AB=ACAC 与 BD 交于 O AC=BD 求证:△ ABC^^ BAD四边形 ABCD 中, E 点在 AD 上,/ BAE=/ BCE=90,且 BC=CE AB=DE21.已知:如图,△ ABC 中,/ ABC=45 , CD!AB 于 D, BE !AC 于 E, BE 与 CD 相交于点 F.20.如图,题图1717.如图,BEX AC, CD! AB,垂足分别为 E , D, BE=CDs19.如图, 已知 AC! BC BD ! AD, 求证:△ ABC^A DEC22.如图,△ ABC 中,/ C=90 , / BAC=30,点 E 是AB 的中点.以△ ABC 的边AB 向外作23.已知:如图, C 是AB 上一点,点 D, E 分别在AB 两侧,AD// BE 且AD=BC BE=AC (1)求证:CD=CE(2)连接DE 交AB 于点F ,猜想△ BEF 的形状,并给予证明.ABCm DCE 中, AC=BC DC=EC / ACB 玄 DCE=45 ,点 B 、C 、(1)在不添加辅助线和字母的情况下,请在图中找出一对全等三角形(用“也”表示)加以证明;E 三点共线,且 BC: CE=2 1,连接 AE 、BD.,并AC=DE24.发现与探究: 如图,△(2)求 tan / BDC 的值.三点共线,若/ E=/ ACB 求证:BC=DE.解答题(共24小题)如图,已知 AB 丄AC AB=AC DE 过点A,且CD丄DE BEX DE 垂足分别为点 D, E.求证:△ ADC^A BEA【分析】由AB 与AC 垂直,CD 与 DE 垂直,B 与DE 垂直,利用同角的余角相等得 出/DCAM EAB 进而得出的一对角相等,一对直角相等,以及 AB=AC 利用AAS 即可得证.【解答】 证明:••• AB 丄AC, CDI DE BEX DE •••/ BAC # D=/ E=90° ,•••/ CAD # BAE=90,/ DCA # CAD=90, •••/ DCA # EAB在^ ADCffiA BEA 中,rZD=ZE=^0'」ZDCA=ZEA£ ,AC 二 BA•••△ ADC^A BEA( AAS.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性 质是解本题的关键.2. (2017春?九龙坡区校级月考)如图, AB// ED,已知 AC=BE 且点B 、C 、D2017年04月 05日56的初中数学组卷参考答案与试题解析1.( 2017春?高密市校级月考)【分析】只要证明^ ABC^A BDE (AAS 即可解决问题. 【解答】证明:••• AB// DE •••/ ABC=/ D, 在^ ABCfy BDE 中, rZACB=ZE 」ZABC=Zr,AC=BEI•••△ ABC^A BDE(AAS, ••• BC=DE【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形 的判定和性质,属于基础题,中考常考题型.3. (2016?河北)如图,点B , F , C, E 在直线I 上(F , C 之间不能直接测量),点 A , D 在 I 异侧,测得 AB=DE AC=DF BF=EC(1)求证:△ ABC^A DEF(2)指出图中所有平行的线段,并说明理由.【分析】(1)先证明BC=EF 再根据SSS 即可证明.(2)结论AB// DE AC// DF,根据全等三角形的性质即可证明.【解答】(1)证明:••• BF=CE ••• BF+FC=FC+CEl 卩BC=EFD在^ ABCfy DEF 中,(AB 二DE f AC=DF ,I BC =EF•••△ ABC^A DEF(SSS. (2)结论:AB// DE AC// DF.理由:•: △ ABC^A DEF•••/ ABC=/ DEF / ACB2 DFE【点评】本题考查全等三角形的判定和性质、 平行线的判定等知识,解题的关键 是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考 题型.4. (2016?连云港)四边形 ABCD 中 , AD=BC BE=DF AE±BD , CF 丄BD ,垂足分求证:△ ADE^A CBF若AC 与BD 相交于点O,求证:AO=CO【分析】(1)根据已知条件得到BF=DE 由垂直的定义得到/ AED2 CFB=90 , 根据全等三角形的判定定理即可得到结论;(2)如图,连接AC 交BD 于 O,根据全等三角形的性质得到/ ADEM CBF 由平 行线的判定得到AD// BC,根据平行四边形的性质即可得到结论. 【解答】证明:(1)v BE=DF别为 E 、F.••• AB// DE AC// DF.••• BE— EF=DF EF,即 BF=DE ••• AEl BD, CF 丄 BD•••/ AED2 CFB=90 ,••• Rt △ AD 專 Rt △ CBF( HL );(2)如图,连接AC 交BD 于O,V Rt△ ADE^ Rt△ CBF •••/ ADE2 CBF ••• AD// BC,【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练 掌握全等三角形的判定和性质是解题的关键.5. (2016?曲靖)如图,已知点 B , E , C, F 在一条直线上,AB=DF AC=DE / A=/ D.(1)求证:AC// DE(2)若 BF=13 EC=5 求 BC 的长.【分析】(1)首先证明^ ABC^A DFE 可得/ ACEM DEF 进而可得AC// DE(2)根据△ ABC^ADFE 可得BC=EF 利用等式的性质可得 EB=CF 再由BF=13在 Rt △ ADE 与 Rt △ CBF 中,AD=BC DE 二BF•••四边形ABCD 是平行四边•••FEC=5进而可得EB的长,然后可得答案.rAB=DF【解答】(1)证明:在^ ABCffiA DFE中:Z嚴ZD,AC 二DE•••△ ABC^A DFE(SAS,•••/ ACE2 DEF ••• AC// DE(2)解:•••△ ABC^A DFE ••• BC=EF ••• CB- EC=EF- EC, ••• EB=CF •••BF=13 EC=5••• E呼4,CB=4+5=9【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具. 在判定三角形全等时,关键是选择恰当的判定条件.6. (2016?南充)已知△ ABNffiAACM位置如图所示,AB=AC AD=AE/ 仁/2.(1)求证:BD=CE(2)求证:/ M=/ N.由SAS 证明^ ABD^A ACE 得出对应边相等即可(2)证出/ BANM CAM 由全等三角形的性质得出/ B=/ C,由AAS 证明△ ACM ◎△ ABN 得出对应角相等即可.AB=ACZ1=Z2AD 二 AE•••△ ABD^A ACE( SAS, ••• BD=CE(2)证明:•••/ 仁/ 2, •••/ 1+/ DAEM 2+/ DAE即/ BAN / CAM由(1)得:△ ABD^A ACE •••/ B=/ C,r zc=ZB在^ABN 中,:M 二ABZCAM=ZBAK•••△ ACIWA ABN( ASA, •••/ M=/ N.【点评】本题考查了全等三角形的判定与性质; 证明三角形全等是解决问题的关键.点 C 是 AE 的中点,/ A=/ ECD AB=CD 求证:/ B=/ D.【分析】根据全等三角形的判定方法 SAS 即可证明^ ABCWA CDE 根据全等三【解答】(1)证明:在^ ABD^n ^ ACE 中, J【分析】1角形的性质:得出结论.••• AC=CEM 弍EZA=ZECDAB 二 CD•••/ B=/ D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法: SSS SAS ASA AAS 直角三角形还有HL8. (2016?重庆)如图,在^ ABC^n ^CED 中 , AB// CD AB=CE AC=CD 求证:【分析】根据两直线平行,内错角相等可得/ BACM ECD 再利用“边角边”证明^ ABCffiA CED 全等,然后根据全等三角形对应角相等证明即可.【解答】证明:••• AB// CD •••/ BACK ECD在^ ABCm CED 中 ,rAB=CE」Z BAC =Z ECD ,AC=CD•••△ ABC^A CED(SAS , •••/ B=/ E.【点评】本题考查了全等三角形的判定与性质, 平行线的性质,熟练掌握三角形 全等的判定方法并找出两边的夹角是解题的关键.9. (2016?孝感)如图,BDIAC 于点 D, CEIAB 于点 E , AD=AE 求证:BE=CD 【解答】证明:•••点 C 是AE 的中点,/ B=/ E.【分析】要证明BE=CD只要证明AB=AC即可,由条件可以求得△ AEC和^ ADB全等,从而可以证得结论.【解答】证明;••• BDIAC于点D, CEIAB于点E, •••/ ADB2 AEC=90 ,在^ ADBfy AEC中,rZAD 岀ZAK,AD=AEZ A=Z AI•••△ ADB^A AEC( ASA ••• AB=AC又••• AD=AE ••• BE=CD【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.10. (2016?镇江)如图,AD BC相交于点0, AD=BC/ C=/ D=90 .(1)求证:△ ACB^A BDA(2)若/ ABC=35,则/ CAO= 20 °5【分析】(1)根据HL证明Rt△ ABC^ Rt△ BAD(2)禾用全等三角形的性质证明即可.【解答】(1)证明:•••/ D=/ C=90 ,•••△ ABCfy BAD都是Rt△,在Rt △ ABC和Rt △ BAD中,〔AD二BC(AB二BA'••• Rt △ ABC^ Rt △ BAD( HL);(2)证明:••• Rt △ ABC^ Rt △ BAD •••/ ABC=/ BAD=35 ,V/ C=90 ,•••/ CAO/ CAB- / BAD=20 .故答案为:20.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS、“ SAS、“ ASA、“ AAS,“ HL';全等三角形的对应边相等.11.(2016?重庆)如图,点A, B,C, D在同一条直线上,CE// DF, EC=BDAC=FD求【分析】根据CE// DF,可得/ ACE/ D,再利用SAS证明^ ACE^A FDB得出对应边相等即可.【解答】证明:V CE// DF, •••/ ACE/ D,在^ ACEfy FDB中, rAC=?DZ ACE=Z D,EC=BDI•••△ ACE^A FDB(SAS, ••• AE=FB【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12. (2016?十堰)如图,AB// CD E是CD上一点,BE交AD于点F, EF=BF求证:AF=DF【分析】欲证明AF=DF只要证明△ ABF^A DEF即可解决问题.【解答】证明:••• AB// CD,•••/ B=/ FED在^ AB^y DEF中, rZB=ZFED•••△ ABF^A DEF••• AF=DF【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.13. (2016?昆明)如图,点D是AB上一点,DF交AC于点E, DE=FE FC// AB 求证:AE=CE【分析】根据平行线的性质得出/ A=/ ECF / ADEM CFE 再根据全等三角形的 判定定理AAS 得出^ ADE^A CFE 即可得出答案.【解答】证明:••• FC// AB, •••/ A=/ ECF / ADEM CFE在^ ADE^n ^ CFE 中,rZDAE=Zra■ ZADE=ZcrE,DE=?E•••△ ADE^A CFE(AAS , ••• AE=CE【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS SAS ASA AAS HL 是解题的关键.14. (2016?湖北襄阳)如图,在△ ABC 中,AD 平分M BAC 且BD=CD DEI AB求证:AB=AC若 AD=^ , / DAC=30 ,求 AC 的长.(2)先证明ADI BC,再在RTA ADC 中,禾U 用30°角性质设CD=a AC=2a 根据 勾股定理列出方程即可解决问题.【解答】(1)证明:••• AD 平分M BAC DE1AB 于点E , DFIAC 于点F ,••• DE=DF / DEBM DFC=90 ,在 RTA DEB 和 RT ^ DFC 中 , rBD=DC于点 E , DF 丄AC 于点F.(1) (2)【解答】 证明:•••AC=BD •••/ B=/ C, ••• AB=AC(2)v AB=AC BD=DC• ADI BC,在 RTA ADC 中 , •••/ ADC=90 , AD 吨,/ DAC=30 ,• AC=2CD 设 CD=a J 则 AC=2a•/ A C=A D+C D,• 4a 2=a 2+ 聞)2, ••• a > 0,【点评】本题考查全等三角形的判定和性质、直角三角形 30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直 角边等于斜边的一半,属于中考常考题型.15. (2016?衡阳)如图,点 A CD B 四点共线,且 AC=BD / A=/ B ,/ ADE= 求出AD=BC 根据ASAlt 出^ AED^A BFC 根据全等三角形的性质得出••• AC+CD=BD+CD ••• AD=BC--/ BCF 求证:DE=CF【分即在^ AEDfy BFC中, rZA=ZB f AD=BC , I ZADE=Z BC?•••△ AED^A BFC(ASA, ••• DE=CF【点评】本题考查了全等三角形的性质和判定的应用,能求出^ AED^A BFC是解此题的关键,注意:全等三角形的对应边相等.16. (2016?宜宾)如图,已知/ CAB2 DBA / CBDh DAC【分析】先根据题意得出/ DAB2 CBA再由ASA定理可得出^ ADB^A BCA由此可得出结论.【解答】解:•••/ CABM DBA / CBDM DAC •••/ DAB2 CBA在^ ADB与△ BCA中, rZCAB=ZDBA■ ,Z DAB=Z CM•••△ ADB^A BCA(ASA , ••• BC=AD【点评】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.17. (2016?恩施州)如图,BE1 AC, CDIAB,垂足分别为E, D, BE=CD求证:AB=AC【解答】证明:•••/仁/ 2,C【分析】通过全等三角形(Rt △ CB 專Rt △ BCD 的对应角相等得到/ ECB2 DBC贝U AB=AC【解答】 证明:••• BEL AC, CD! AB •••/ CEB2 BDC=90 .••• Rt △ CB 專 Rt △ BCD( HL ), •••/ ECB2 DBC ••• AB=AC【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等 三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构 造三角形.18. (2016?同安区一模)如图所示,CD=CA /仁/ 2, EC=BC 求证:△ ABC^【分析】根据三角形全等的判定,由已知先证/ ACBM DCE 再根据SAS 可证△ ABC^A DEC•••/ ACB2 DCE在^ ABCm DEC 中,•••在 Rt △ CBE 与 Rt △ BCD 中, BE=CD BC 二CBCA=CDZACB=ZrCE,,BC=EC•••△ ABC^A DEC( SAS.【点评】本题考查了三角形全等的判定方法和性质,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL注意:AAA SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.结合图形做题,由/ 仁/ 2得/ACB2 DCE是解决本题的关键.19.(2016?武汉校级四模)如图,已知ACIBC,BD丄ADAC与BD交于O,AC=BD求【分析】由垂直的定义可得到/ C=/ D,结合条件和公共边,可证得结论.【解答】证明:••• ACIBC, BDIAD •••/ C=/ D=90在Rt△ ACB和Rt△ BDA中, rAB=BA仏BBD,•••△ ACB^A BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS SAS ASA AAS和HL20. (2016?重庆校级二模)如图,四边形ABCD中,E点在AD 上,/ BAE2BCE=90 , 且BC=CE AB=DE证:△ ABC^A BADB【解答】证明:••• CDXAB,【分析】 先根据四边形的内角和定理得到/ B+# AEC=180,而/ DEC #AEC=180,则# B 二# DEC 然后根据“ SAS 可得到△ ABC^A DEC【解答】 证明:•••/ BAEW BCE=90 ,•••/ B+/ AEC=180 ,而/ DEC # AEC=180 ,在^ ABCfy DEC 中,(AB 二DE」Z B =Z DEC ,BC=ECI•••△ ABC^A DEC( SAS.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪 一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或 第三边;若已知两角对应相等,则必须再找一组对边对应相等, 且要是两角的夹 边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.21. (2016?大兴区一模)已知:如图,△ ABC 中,/ ABC=45,CDLAB 于 D, BEX AC 于 E ,BE 与CD 相交于点F .BE1 AC 求证/ ABE # ACD 再利用 AAS 判定 Rt △ DFB^ Rt △ DAC 从而得出 BF=AC•••# BDC # CDA=90 ;•••# ABC=45,【分析】由已知条件“/ ABC=45 ,CDXAB'可推知△ BCD 是等腰直角三角形, 根据等腰直角三角形的性质知:/DCB # ABC=45° DB=DC 然后由已知条件“V AB=BD 点E 是AB 的中点,•••/ DCBM ABC=45 (三角形的内角和定理), ••• DB=D(等角对等边);••• BEL AC, •••/ AEB=90 ,•••/ A+/ ABE=90 (直角三角形的两个锐角互为余角)V/ CDA=90 , •••/ A+/ ACD=90 ,•/ ABE / ACD (同角的余角相等);在^ BDFm CDA 中,r ZBDC=ZCDA」DB 二DC ,ZABE=ZACDI•••△ BDF^A CDA(ASA, ••• BF=AC(全等三角形的对应边相等).【点评】本题考查三角形全等的判定与性质.判定两个三角形全等的一般方法有: SSS SAS SSA HL 在复杂的图形中有45°的角,有垂直,往往要用到等腰直 角三角形,要注意掌握并应用此点.22. (2016?常州一模)如图,△ ABC 中,/ C=90 , / BAC=30,点 E 是 AB 的 中点.以△ ABC 的边AB 向外作等边△ ABD 连接DE 求证:AC=DE【分析】根据等边三角形的性质就可以得出/ DAB=60 , / DAC=90 .就可以得 出^ ACB^A DEB 进而可以得出结论.【解答】证明:•••△ ABC 是等边三角形, • AB=BD/ABD=6D ,• DEI AB,• / DEB=90,【解答】(1)证明:如图,连接CE V/ C=90 , •••/ DEB / C,V/ BAC=30 ,•••/ AB(=60 ,•••/ ABD / ABC在^ ACB 与△ DEB 中 ,rZABD=ZABCAB=BDI•••△ ACB^A DEB(AAS , ••• AC=DE【点评】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用, 解答时证明三角形全等是关键.23. (2016?河南模拟)已知:如图,C 是AB 上一点,点D, E 分别在AB 两侧, AD// BE 且 AD=BC BE=AC(1)求证:CD=CE(2)连接DE 交AB 于点F ,猜想△ BEF 的形状,并给予证明.连接CE 由平行线的性质,结合条件可证明△ ADC^^ BCE 可证明 CD=CE中的全等可得/ CDE / CED / ACD / BEC 可证明/ BFE=/ BEF可证明△ BEF 为等腰三角形.V AD// BE, •••/ A=/ B,(2)由(1) £【分析】1在^ ADCffiA BCE 中rAD=BCf Z A =ZBI AC =BE•••△ ADC^A BCE(SAS , ••• CD=CE(2)解:△ BEF 为等腰三角形,证明如下:由(1)可知CD=CE•••/ CDEM CED由(1)可知△ ADC^A BEC •••/ ACDM BEC •••/ CDE # ACD=/ CED # BEC即/ BFE=/ BED【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是 解题的关键,即SSS SAS ASA AAS 和HL24.(2016?山西模拟)发现与探究:如图,△ ABCffiA DCE 中, AC=BC DC=EC / ACB / DCE=45,点 B C E 三点共线,且 BC CE=2 1,连接 AE 、BD(1)在不添加辅助线和字母的情况下,请在图中找出一对全等三角形(用“也” 表示),并加以证明;(2)求 tan / BDC 的值.•••3【分析】(1)根据SAS 证明^ BCD 与△ ACE 全等即可;(2)作AF 丄BE 利用三角函数进行解答即可.【解答】 解:(〔)△ BCD^AACEV/ ACB=/ DCE• / ACB / ACD / DCE / ACD 即/ BCD / ACE"BC=AC ZBCD=ZACE ,.DC=EC•••△ BCD^A ACE( SAS ;•••设 BC=2k CE=k在 Rt △ AFC 中,AC=BC=2Jk / ACF=45 ,与珂茲 EF=FC+CE=k+k=⑴ +1) k , 厶V/ FAC=45 ,• AF V2k,由(1)得^ BCD^A ACE• / BDC / AEC•在 Rt △ AFE 中,tan / BDXar ^ 【点评】本题考查了全等三角形的性质和判定,三角函数等知识点的综合运用, 题目综合性比较强,有一定的难度,关键是根据 SAS 证明^ BCDt^ACE 全等. 在^ BCD W^ ACE 中••• FC=AC cos45° =2kx (2)作AF 丄BE 如图:V BC CE=2 1,。

相关文档
最新文档