流水行船问题
流水行船问题及答案
流水行船问题顺水速度=船速+水速逆水速度=船速-水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式( 1 )表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式( 1 )可得:水速=顺水速度- 船速(3)船速=顺水速度- 水速(4)由公式(2)可得:水速=船速- 逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度- 逆水速度)÷ 2 (8)*例1 一只渔船顺水行25 千米,用了5小时,水流的速度是每小时 1 千米。
此船在静水中的速度是多少(适于高年级程度)解:此船的顺水速度是:25÷ 5=5(千米/小时)5-1=4(千米/小时)综合算式:25÷ 5-1=4(千米/小时)答:此船在静水中每小时行 4 千米。
* 例 2 一只渔船在静水中每小时航行 4 千米,逆水4 小时航行12 千米。
水流的速度是每小时多少千米(适于高年级程度)解:此船在逆水中的速度是:12÷ 4=3(千米/小时)因为逆水速度=船速- 水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。
小升初数学专题 流水行船问题
1.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行.已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A 地到B地所用时间的1.5倍,求水流速度.解:设水流速度是每小时x千米(20+x)×6=(20-x)×6×1.5120+6x=180-9x15x=60x=4答:水流速度是每小时4千米.2.水流速度是每小时15千米.现在有船顺水而行,8小时行480千米.若逆水行360千米需几小时?解:顺水船速:480÷8=60(千米)静水中的速度:60-15=45(千米)逆水船速:45-15=30(千米)逆水时间:360÷30=12(小时)答:逆水行360千米需12小时3.有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。
解:逆流速:120÷10=12(千米/时)顺流速:120÷6=12(千米/时)船速:(20+12)÷2=16(千米/时)水速:(20—12)÷2=4(千米/时)答:船速是每小时行16千米,水速是每小时行4千米。
4.一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时.已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?解:(15+3×2)×18=21×18=378(千米)答:甲乙两港相距378千米.5.一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?解:逆水速度:16×3÷4=12(千米/时)则船速:(12+16)÷2=14(千米/时)水速:(16-12)÷2=2(千米/时)答:船速为14千米/时;水速为2千米/时.6.一海轮在海中航行.顺风每小时行45千米,逆风每小时行31千米.求这艘海轮每小时的划速和风速各是多少?解:(45+31)÷2=76÷2=38(千米/小时)45-38=7(千米/小时)答:这艘海轮每小时的划速是38千米,风速是每小时7千米.7.轮船以同一速度往返于两码头之间.它顺流而下,行了8小时;逆流而上,行了10小时.如果水流速度是每小时3千米,求两码头之间的距离.解:(3×2)÷(18-110)=6÷1 40=240(千米)答:两码头之间的距离是240千米.8.有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。
小学奥数-流水行船问题的要点及解题技巧
小学奥数-流水行船问题的要点及解题技巧1、什么叫流水行船问题船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。
2、流水行船问题中有哪三个基本量?流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用.3、流水行船问题中的三个基本量之间有何关系?流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
船在水中的相遇及追及问题都与水速没有关系:相遇:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。
追及:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速。
或:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速。
小学奥数流水行船问题的要点及解题技巧例题精讲:例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。
流水行船问题的公式和例题含答案
流水行船问题的公式和例题含答案LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
流水行船问题公式
流水行船问题公式
流水行船问题公式:
顺水
(船速+水速)×顺水时间=顺水行程
船速+水速=顺水速度
逆水
(船速-水速)×逆水时间=逆水行程
船速-水速=逆水速度
静水
(顺水速度+逆水速度)÷2=静水速度(船速)
水速
(顺水速度-逆水速度)÷2=水速
流水行船问题:
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
船本身有动力,即使水不流动,船也有自己的速度,但在流动的水中,或者受到流水的推动,或者受到流水的顶逆,使船在流水中的速度发生变化,而竹筏等没有速度,它的速度就是水的速度。
流水行船问题应用题
流水行船问题应用题以下是一些涉及流水行船问题的应用题,每个问题都附有答案:1.一艘船顺流而行,每小时可以行驶20公里。
如果船顺流行驶4小时,船行了多远?答案:船顺流行驶80公里。
2.另一艘船逆流而行,每小时可以行驶15公里。
如果船逆流行驶3小时,船行了多远?答案:船逆流行驶了45公里。
3.一艘船顺流行驶8小时,总共行驶了160公里。
每小时船的速度是多少?答案:船的速度是20公里/小时。
4.一艘船逆流行驶5小时,总共行驶了75公里。
每小时船的速度是多少?答案:船的速度是15公里/小时。
5.两艘船同时出发,一艘顺流每小时行驶25公里,另一艘逆流每小时行驶20公里。
如果它们同时出发后2小时相遇,两艘船之间的距离是多少?答案:两艘船之间的距离是90公里。
6.一艘船在静水中的速度是18公里/小时,如果船逆流行驶6小时,总共行驶了72公里。
逆流的速度是多少?答案:逆流的速度是12公里/小时。
7.一艘船逆流行驶9小时,总共行驶了135公里。
逆流的速度是15公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是24公里/小时。
8.一艘船逆流行驶4小时,总共行驶了60公里。
逆流的速度是15公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是20公里/小时。
9.一艘船逆流行驶7小时,总共行驶了98公里。
逆流的速度是14公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是21公里/小时。
10.两艘船同时出发,一艘逆流每小时行驶18公里,另一艘顺流每小时行驶24公里。
如果它们同时出发后3小时相遇,两艘船之间的距离是多少?答案:两艘船之间的距离是90公里。
这些问题旨在帮助学生应用流水行船的概念,并计算船在不同条件下的行驶距离和速度。
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
流水行船问题公式大全16个
流水行船问题公式大全16个流水行船问题的本质是一种旅行商问题,即从一个源点出发,经过一系列指定的点,然后回到源点,路程最短、所需要耗费的距离最少。
流水行船问题主要用于求解运输问题,比如石油、采矿物质、农副产品或其他物资的运输。
为了流水行船问题能实现最优解,目前已有许多计算机程序可以解决这一问题。
其中最常用的就是经典的16个流水行船问题公式,这些公式通过应用优化算法解决了流水行船问题的最优解。
这16个公式的结构如下:1.小费用流量问题(MCFP):它是流水行船问题最常用的公式之一,它解决的问题是有一系列费用限制,要求求出价格最低的流量规划方案。
2.大流量问题(MFP):它是流水行船问题的第二常用公式,它解决的问题是有一系列限制条件,要求求出最大的流量规划方案。
3.小总费用问题(TCCP):它是流水行船问题的第三种公式,它解决的问题是有一系列条件,要求求出最小的总费用方案。
4.小费用环问题(MCIRP):它是流水行船问题的第四种公式,它解决的问题是有一系列费用限制,要求求出最低费用的环路规划方案。
5.小费用最大流量问题(MCMFP):它是流水行船问题的第五种公式,它解决的问题是有一系列费用限制,要求求出费用最低的最大流量规划方案。
6.少旅行商问题(MTP):它是流水行船问题的第六种公式,它解决的问题是有一系列旅行约束条件,要求求出最短的旅行规划方案。
7.小费用最短旅行商问题(MCTSP):它是流水行船问题的第七种公式,它解决的问题是有一系列费用限制,要求求出费用最低的最短旅行规划方案。
8.最小路径问题(SPP):它是流水行船问题的第八种公式,它解决的问题是求出最短路径规划方案,有一系列费用限制。
9.含模糊参数的最小费用流量问题(FMCFP):它是流水行船问题的第九种公式,它解决的问题是有一系列模糊参数的费用限制,要求求出最低的流量规划方案。
10.小费用流量约束条件下的最小路径问题(MCSPP):它是流水行船问题的第十种公式,它解决的问题是有一系列流量约束条件下的费用限制,要求求出最短路径规划方案。
流水行船问题的公式和例题
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?*例3一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?*例4某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。
流水行船问题面试题及答案
流水行船问题面试题及答案一、单选题1. 在静水中,船的速度是每小时5公里,水流速度是每小时2公里。
当船顺流而下时,船的实际速度是多少公里每小时?A. 3公里B. 7公里C. 5公里D. 2公里答案:B2. 一艘船在静水中的速度是每小时10公里,水流速度是每小时3公里。
当船逆流而上时,船的实际速度是多少公里每小时?A. 7公里B. 10公里C. 13公里D. 3公里答案:A二、多选题1. 以下哪些因素会影响船在河流中的实际速度?A. 船在静水中的速度B. 水流的速度C. 船的载重量D. 船的发动机功率答案:A、B三、判断题1. 船在静水中的速度和水流速度相加,就是船顺流而下时的实际速度。
答案:正确2. 船在静水中的速度和水流速度相减,就是船逆流而上时的实际速度。
答案:正确四、计算题1. 一艘船在静水中的速度是每小时8公里,水流速度是每小时4公里。
船顺流而下行驶了2小时,逆流而上行驶了3小时。
求船总共行驶了多少公里?答案:船顺流而下时的速度是8+4=12公里/小时,行驶了2小时,所以顺流行驶了12*2=24公里。
逆流而上时的速度是8-4=4公里/小时,行驶了3小时,所以逆流行驶了4*3=12公里。
总共行驶了24+12=36公里。
2. 一艘船在静水中的速度是每小时6公里,水流速度是每小时2公里。
船顺流而下行驶了3小时,逆流而上行驶了4小时。
求船总共行驶了多少公里?答案:船顺流而下时的速度是6+2=8公里/小时,行驶了3小时,所以顺流行驶了8*3=24公里。
逆流而上时的速度是6-2=4公里/小时,行驶了4小时,所以逆流行驶了4*4=16公里。
总共行驶了24+16=40公里。
五、简答题1. 请解释为什么船在逆流而上时的速度会比在静水中的速度慢?答案:当船逆流而上时,水流的方向与船行驶的方向相反,因此水流会对船产生阻力,减缓船的速度。
船的实际速度是船在静水中的速度减去水流速度。
2. 在计算船在河流中行驶的总距离时,为什么需要考虑顺流和逆流的速度?答案:因为顺流和逆流时船的速度不同,所以行驶相同时间的距离也会不同。
流水行船问题
流水行船问题【知识点睛】1基本公式:相遇问题:路程和=速度和×相遇时间追及问题:路程差=速度差×追及时间2行船问题:船的静水速度:船在静止水中行驶的速度,简称船速水流速度:水在河流中流淌的速度,简称水速顺水速度:船顺流而行时的总速度,即顺水速度=静水速度+水速逆水速度:船逆流而行时的总速度,即逆水速度=静水速度-水速3推导公式静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2【例题精讲】例1:四个速度游轮以每小时30千米的速度,在水速每小时5千米的水中顺流航行5小时,共行了多少千米?【练习1】1.一艘船每小时行25千米,在大河中顺水航行140千米。
已知水速是每小时3千米,这艘船行完全程需要航行几小时?2.一条河的水速为2千米/小时,一艘船顺水航行6小时走了60千米,若它逆水航行66千米需要多少小时?3.一条河的水速为4千米/小时,一艘船顺水航行11小时走了121千米,若它逆水航行39千米需要多少小时?例2:甲乙两港相距100千米,一只船从甲港往乙港顺流出发,4小时到达,从乙港返回甲港,10小时到达,求船在静水中的速度是多少?【练习2】1.甲乙两港相距180千米,一只船从甲港往乙港顺流出发,6小时到达,从乙港返回甲港,9小时到达,求水流的速度是多少?2.甲乙两港之间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度各是多少?3.一艘飞艇,顺风6小时行驶了900公里,在同样的风速下,逆风行驶600公里,也用了6小时,那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例3:一艘轮船在河流的两个码头之间航行,顺流需要6小时,逆流需要8小时,水流速度为2.5千米/小时。
求轮船在静水中的速度。
1.一艘轮船在河流的两个码头间航行,顺流需要4小时,逆流需要5小时,水流速度为1.5千米/时。
行程问题流水行船问题
---流水行船
流水行船问题基本关系式:
顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
牛刀小试: 船在静水中的速度为每小时15千米,水流速度是 每小时3千米,船从上游乙港到下游甲港航行了12小时, 甲、乙两港间距离多少千米?
例1: 游轮从A城市到B城市顺流而下需要48小时,游轮 在静水中的速度是每小时30千米,水流速度是每小时 6千米,游轮从B城市返回A城市需要多少小时?
练习: 某轮船在相距216千米的两个港口间往返运送货物, 已知轮船在静水中每小时21千米,两个港口间的水流 速度是每小时3千米,那么,这只轮船往返一次需要多 长时间?
例2 : 甲、乙两港间的航线长360千米,一只船从甲港求船在静水中的速度和水流速度?
练习: 某架飞机顺风飞行每小时飞1320千米,逆风飞 行每小时飞1080千米,这架飞机的速度和风速分别是 多少?
例3: A、B两码头间河流长为90千米,甲、乙两船分别 从A、B码头同时起航,如果相向而行3小时相遇;如 果同向而行15小时甲船追上乙船,求两船在静水中的 速度?
练习: 两个港口相距342千米,甲、乙两支轮船同时从 两个港口相对开出,甲船顺流而下,乙船逆流而上, 9小时后正好相遇,已知甲船每小时比乙船慢4千米。 甲、乙两船的速度分别是多少?
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
例5: 静水中,甲乙两船的速度分别为每小时20千米 和每小时16千米,两船先后自同一港口顺水开出, 乙船比甲船早出发2小时,若水速是每小时4千米, 甲船开出几小时后追上乙船?
(完整版)流水行船问题及答案
流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
五年级奥数流水行船问题试题【三篇】
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是⽆忧考为⼤家整理的《五年级奥数流⽔⾏船问题试题及答案【三篇】》供您查阅。
【第⼀篇】1、⼀只船从甲港开往相距713千⽶的⼄港,去时顺⽔23⼩时到达,返回时逆⽔则需要31个⼩时到达,请问船在静⽔中的速度和⽔流的速度各是多少?2、⼀条河上有甲、⼄两个码头,甲在⼄的上游50千⽶处。
客船和货船分别从甲、⼄两码头同时出发向上*驶,两船的静⽔速度相同且始终保持不变,客船出发时有⼀物品从船上落⼊⽔中,10分钟后此物品距客船5千⽶,客船在⾏驶20千⽶后折向下游追赶此物,追上时恰好和货船相遇,求⽔流的速度。
1、解:(713÷23+713÷31)÷2=27(千⽶/时) 31-27=4(千⽶/时) 所以船在静⽔中的速度为每⼩时27千⽶,⽔流速度为每⼩时4千⽶。
2、分析:船在静⽔中的速度为每分钟5÷10=0.5(千⽶)。
客船、货船与物品从出发到共同相遇所需的时间为50÷0.5=100(分钟)。
客船掉头时,它与货船相距50千⽶。
随后两船作相向运动,速度之和为船速的2倍,因此从调头到相遇所⽤的时间为50÷(0.5+0.5)=50(分钟)。
于是客船逆⽔⾏驶20千⽶所⽤的时间为100-50=50分钟,从⽽船的逆⽔速度是每分钟20÷50=0.4(千⽶),⽔流速度为每分钟0.5-0.4=0.1(千⽶)【第⼆篇】已知⼀艘轮船顺⽔⾏48千⽶需4⼩时,逆⽔⾏48千⽶需6⼩时.现在轮船从上游A港到下游B港.已知两港间的⽔路长为72千⽶,开船时⼀旅客从窗⼝扔到⽔⾥⼀块⽊板,问船到B港时,⽊块离B港还有多远? 分析:顺⽔⾏速度为:48÷4=12(千⽶),逆⽔⾏速度为:48÷6=8(千⽶). 因为顺⽔速度是⽐船的速度多了⽔的速度,⽽逆⽔速度是船的速度再减去⽔的速度,因此顺⽔速度和逆⽔速度之间相差的是“两个⽔的速度”,因此可求出⽔的速度为:(12-8)÷2=2(千⽶). 现条件为到下游,因此是顺⽔⾏驶,从A到B所⽤时间为:72÷12=6(⼩时). ⽊板从开始到结束所⽤时间与船相同,⽊板随⽔⽽飘,所以⾏驶的速度就是⽔的速度,可求出6⼩时⽊板的路程为: 6×2=12(千⽶);与船所到达的B地距离还差:72-12=60(千⽶). 解:顺⽔⾏速度为:48÷4=12(千⽶), 逆⽔⾏速度为:48÷6=8(千⽶), ⽔的速度为:(12-8)÷2=2(千⽶), 从A到B所⽤时间为:72÷12=6(⼩时), 6⼩时⽊板的路程为:6×2=12(千⽶), 与船所到达的B地距离还差:72-12=60(千⽶). 答:船到B港时,⽊块离B港还有60⽶. 点评:此题运⽤了关系式:(顺⽔速度-逆⽔速度)÷2=⽔速.【第三篇】例1:⼀艘船,在⼀条⽔流速度为每⼩时3千⽶的河⽔中航⾏,船逆⽔航⾏12⼩时,共⾏300千⽶,问这条船在静⽔中的速度是每⼩时⾏多少千⽶? 1、⼀艘船在静⽔中每⼩时⾏25千⽶,顺⽔航⾏3⼩时共⾏90千⽶,求⽔流速度? 2、⼀艘客船每⼩时⾏驶27千⽶,在⼤河中顺⽔航⾏160千⽶,每⼩时⽔速是5千⽶,需要航⾏多少⼩时? 3、⼀艘军舰的静⽔速度为每⼩时⾏54千⽶,海⽔的速度是每⼩时⾏16千⽶,逆⽔航⾏798千⽶,需要⽤多少⼩时? 例2:甲、⼄两港间的⽔路长416千⽶,⼀只船从甲港开往⼄港,顺⽔16⼩时到达,逆⽔返回时26⼩时到达,求船在静⽔中速度和⽔流速度? 1、船在河中航⾏,顺⽔每⼩时28千⽶,逆⽔每⼩时⾏22千⽶,求船速和⽔速? 2、甲、⼄两地相距280千⽶,⼀艘客轮在两港间航⾏,顺流⽤去7⼩时,逆流⽤去10⼩时,则轮船的船速和⽔速各是多少? 例3:甲、⼄两船的静⽔速度是每⼩时24千⽶和每⼩时20千⽶,两船先后从某港⼝顺⽔开出,⼄⽐甲早出发3⼩时,若⽔速是每⼩时4千⽶,问甲开出后⼏⼩时可追上⼄? 1、甲、⼄两船在静⽔中的速度分别为每⼩时24千⽶和18千⽶,两船先后⾃同⼀港中逆⽔⽽上,⼄船⽐甲船早出发2⼩时,若⽔速是每⼩时3千⽶,问甲船开出⼏⼩时可追上⼄船? 2、两码头相距231千⽶,轮船顺⽔⾏驶这段路程需要11⼩时,逆⽔⽐顺⽔每⼩时少⾏10千⽶,问⾏驶这段路程逆⽔⽐顺⽔需要多⽤⼏⼩时? 例4:⼀只⼩船在⼀条180千⽶长的河上航⾏,它顺⽔航⾏需⽤6⼩时,逆⽔航⾏需⽤9⼩时,如果有⼀只⽊箱只靠⽔的流动⽽漂移,若⾛完同样长距离需要⼏⼩时? 1、⼀只汽船在⼀条可上航⾏从A地到B地,如果它顺⽔航⾏需⽤3⼩时,返回逆⽔航⾏需要4⼩时,请问:如果⼀只⽊桶仅靠⽔的流动⽽漂移,⾛完同样长的距离需要多少⼩时? 2、甲、⼄两地相距96千⽶,⼀船顺流由甲地去⼄地需3⼩时,返回时因⾬后涨⽔,所以⽤了8⼩时才回到甲地,平时⽔速为每⼩时8千⽶,求涨⽔后⽔速增加了多少千⽶? 例5:⼀只⼩船第⼀次顺⽔航⾏56千⽶,逆⽔航⾏20千⽶,共⽤12⼩时,第⼆次⽤同样的时间顺流航⾏40千⽶,逆流航⾏28千⽶,求这只⼩船的静⽔速度和⽔流速度? 1、⼀只⼩船顺⽔航⾏30千⽶再逆⽔航⾏6千⽶,共⽤8⼩时,如果在同⼀条河流中这条⼩船顺流航⾏18千⽶再逆流航⾏10千⽶也⽤8⼩时,求这只⼩船的静⽔速度和⽔流速度? 2、⼀只⼩船顺⽔航⾏36千⽶,逆⽔航⾏24千⽶,共⽤7⼩时,⽤同样的时间顺流航⾏48千⽶,逆流航⾏18千⽶。
(完整版)奥数专题_流水行船问题(带答案完美排版)
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
流水行船问题的公式
流水行船问题的公式
流水行船问题是一个经典的动态规划问题,它涉及到一艘船在一条河流上行驶,船上有一个推进器,可以推动船在河流上行驶。
河流上有若干个渡口,每个渡口有一个渡口费用,船只可以在渡口之间穿行,但是每次穿行都要支付渡口费用。
流水行船问题的公式是:
F(i,j)=min{F(i-1,k)+C(k,j)},其中i和j分别表示船只从起点i到终点j
的渡口数,C(k,j)表示从渡口k到渡口j的费用,F(i,j)表示从起点i到终点j的最小费用。
流水行船问题的解决方法是:首先,建立一个二维数组F[i][j],用来存储从
起点i到终点j的最小费用;其次,从起点开始,依次计算每个渡口的最小费用,并将其存储在F[i][j]中;最后,从终点开始,依次计算每个渡口的最小费用,并
将其存储在F[i][j]中,最终得到从起点到终点的最小费用。
流水行船问题是一个经典的动态规划问题,它涉及到一艘船在一条河流上行驶,船上有一个推进器,可以推动船在河流上行驶。
河流上有若干个渡口,每个渡口有一个渡口费用,船只可以在渡口之间穿行,但是每次穿行都要支付渡口费用。
通过建立二维数组F[i][j],从起点开始,依次计算每个渡口的最小费用,并将其存储
在F[i][j]中,从终点开始,依次计算每个渡口的最小费用,并将其存储在F[i][j]中,最终得到从起点到终点的最小费用,这就是流水行船问题的公式。
五升六数学行程问题—流水行船
1、水流速度是每小时15千米.现在有船顺水而行,8小时行480千米.若逆水行360千米需几小时?解:顺水船速:480÷8=60(千米)静水中的速度:60-15=45(千米)逆水船速:45-15=30(千米)逆水时间:360÷30=12(小时)答:逆水行360千米需12小时.2、一只轮船在静水中的速度是每小时21千米,船从甲城开出逆水航行了8小时,到达相距144千米的乙城.这只轮船从乙城返回甲城需多少小时?解:根据题意可得,船逆水航行的速度是:144÷8=18(千米/时)那么水的速度是:21-18=3(千米/时)则船顺水航行的速度是:21+3=24(千米/时)返回的时间是:144÷24=6(小时)答:这只轮船从乙城返回甲城需6小时.3、两码头相距231千米,轮船顺水行驶这段路需要11小时,逆水比顺水每小时少行10千米.那么行驶这段路程逆水要比顺水需要多用多少小时?解:231÷11-10=11(小时/千米)231÷11-11=10(小时)答:行驶这段路程逆水要比顺水需要多用10小时.4、甲、乙两港间的水路长270千米,一只船从甲港开往乙港,顺水9小时到达,从乙港返回甲港,逆水15小时到达,求船在静水中的速度和水流的速度。
顺水速度:270÷9=30(千米/小时)逆水速度:270÷15=18(千米/小时)水流速度:(30-18)÷2=6(千米/小时)静水速是:30-6=24(千米/小时)答:船在静水中的速度是24千米/小时,水流的速度是6千米/小时。
5、一条河水流速度为每小时4千米,船在静水中每小时行16千米,这条船从甲地顺流而下,6小时到达10小时乙地,问这条船从乙地返回甲地需要几个小时?解:6×(16+4)=120(千米)120÷(16-4)=10(小时)答:这条船从乙地返回甲地需要10小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例4】 甲、乙两港相距 360千米,一艘轮船从甲港 到乙港,顺水航行 15小时到达,从乙港返回甲港, 逆水航行20小时到达。现在有一艘机帆船,船速是每 小时12千米,它往返两港需要多少小时?
分析:有路程和顺水时间、逆水时间能求水速。
360÷15=24(千米/时)…顺水速度 360÷20=18(千米/时)…逆水速度 (24-18)÷2=3(千米/时)…水速 360÷(12+3)=24(小时)…顺水时间 360÷(12-3)=40(小时)…逆水时间 24+40=64(小时) 答:往返两港需要64小时。
谢谢
【例3】 一只轮船在静水中的速度是每小时21千米,船从甲 城开出逆水航行了8小时,到达相距144千米的乙城。这只轮 船从乙城返回甲城需多少小时? 分析:已知路程和逆水时间能求逆水速度,有逆水速 和船速能求水速。 逆水速度:144÷8=18(千米/时) 水速:21-18=3(千米/时) 顺水速度:21+3=24(千米/时) 顺水时间:144÷24=6(小时) 答:这只轮船从乙城返回甲城需要6小时
例3、甲、乙两船的静水船速分别是每小 时24千米和每小时32千米。两船从相距 336千米的两港同时出发,相向而行,几 小时相遇?如同向而行,甲船在前,乙船 在后,几小时后乙船可追上甲船?
例4、甲、乙两船从同一条河的相距98千 米的上、下两港同时出发,若相向而行, 则2小时相遇;若同向而行,则14小时后 乙追上甲。求甲乙两船在静水中的速度各 是多少?
【例6】 一只小船,第一次顺流航行56千 米,逆流航行20千米,共用12小时;第二 次用同样的时间,顺流航行40千米,逆流 航行28千米。求这只小船在静水中的速度。
(三)
1、甲、乙之间的水路是234千米,一只船从甲港到乙港需9 小时,从乙港返回甲港需13小时,问船速和水速各为每小时 多少千米? 解:从甲到乙顺水速度:234÷9=26(千米/小时)。 从乙到甲逆水速度:234÷13=18(千米/小时)。 船速是:(26+18)÷2=22(千米/小时)。 水速是:(26-18)÷2=4(千米/小时)。 答:船速每小时22千米,水速每小时4千米。
静水船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
例1、某船在静水中的速度为每小时15千米, 它从上游甲地开到下游乙地共用了8小时, 水速为每小时3千米,该船从乙地返回甲地 需要多少小时?
例2、某船从甲地顺流到乙地,航行速度为 32千米/时,水流速度4千米/时,2.5天到达, 此船从乙地返回甲地需多长时间?
例3、一架飞机往返于A、B两市之间,两 市相距3600千米,从A市到B市顺风,用时 3小时,从B市返回A市逆风,用时5小时, 求飞机的速度和风速?
例4 、某船往返于两码头之间,它顺流而 下需行5小时,逆流而上需行10小时,如 果水流的速度为3千米/时,求两码头之间 的距离?
例5 、一架飞机带油料最多可以用9个小 时,飞机去时顺风,每小时可以飞1500千 米,返回时逆风,每小时可以飞1200千米。 问这架飞机最多可以飞出多少千米就需要 返回?
流水行船问题的基本数量关系式
顺水速度=静水船速+水速
水速=顺水速度-静水船速
静水船速=顺水速度-水速
逆水速度=静水船速—水速
水速=静水船速-逆水速度
静水船速=逆水速度+水速
船在河中航行时千米,水速每小时( ) 千米。
顺水速度 逆水速度 (12+6)÷2=9(千米/时)…船 速 (12-6)÷2=3(千米/时)…水速 静水船速+水速 静水船速-水速
(一)
流水问题知多少?
静水行船
顺水行船
逆水行船
流水行船中的速度
静水船速:船在静水中航行的速度,即 船本身划行的速度。 顺水速度:当船航行方向与水流方向一致 时的速度,即顺水行船的速度。 逆水速度:当船航行方向与水流方向相反 时的速度,即逆水行船的速度。 水速:水流动的速度,即没有外力的作 用水中漂浮的速度。
(二)
例1、小张租一条小船向上游划去,途中 不慎将草帽掉入水中,当他发现并掉过船 头,草帽与船已相距2千米,已知小船的 速度是每小时4千米,水流速度是每小时1 千米。那么他追上草帽需多少时间?
例2、甲、乙两船的静水速度分别为22千 米每小时、18千米每小时,两船先后自港 口顺水开出,乙比甲早出发2小时,若水 流速度是每小时4千米,问甲开出后几小 时可追上乙?
4、一只船在河里航行,顺流而下每小时行18千米.已知这只船 下行2小时恰好与上行3小时所行的路程相等.求船速和水速。
5、两个码头相距352千米,一船顺流而下,行完全程需要11小 时.逆流而上,行完全程需要16小时,求这条河水流速度。
6、A、B两码头间河流长为90千米,甲、乙两船分别从A、B码 头同时启航.如果相向而行3小时相遇,如果同向而行15小时甲 船追上乙船,求两船在静水中的速度。
【例5】 一只船在静水中每小时航行20千米, 在水流速度为每小时4千米的江中,往返甲、乙 两码头共用了12.5小时,求甲、乙两码头间距 离。
20+4=24(千米/时)……顺水速度 20-4=16(千米/时) ……逆水速度 解:设顺水用x小时,则逆水需要(12.5-x)小时 24x=16×(12.5-x) 24x=200-16x 40x=200 x=5 24×5=120(千米)答:甲、乙两码头 相距120米。