高中数学教材——三角函数篇

合集下载

高中数学新教材必修一第五章《三角函数》(1)全套课件

高中数学新教材必修一第五章《三角函数》(1)全套课件
(新教材)第五章 三角函 数(1)
全套课件
1.1 任意角
体操是力与美的结合,也充满了角的概念.2002年11 月22日,在匈牙利德布勒森举行的第36届世界体操锦 标赛中,“李小鹏跳”——“踺子后手翻转体180度接 直体前空翻转体900度”,震惊四座,这里的转体180 度、 转体900度就是一个角的概念.
若弧是一个整圆,它的圆心角是周角,其弧
度数是 2 ,而在角度制里它是360 ,
角度制与弧度制的互换:
(1)把角度换成弧度
360o 2 rad,
180o rad,
1o rad 0.01745rad.
180
(2)把弧度换成角度
2 rad 360o ,
rad 180o ,
1 rad
180
终边落在坐标轴上的情形
900 + k360°
y
1800 + k360°
o
或3600+ k360°
x
00 + k360°
2700 + k360°
复习回顾
1、初中几何研究过角的度量,1°的角是如何定义?角度 制呢?
答 : 规定把周角的 1 作为1度的角;而把用度做单位 360
来度量角的制度叫做角度制.
1、角的范围
初中角的定义: 从一个点出发引出的两条射线构成的 几何图形(0°,360°)
“旋转”形成角
终边
B
顶点
o
A
始边
角可以看成平面内一条射线绕着端点从一
个位置旋转到另一个位置所成的图形.
1、花样游泳中,运动员旋转的周数如何 用角度计算来表示?
2、汽车在前进和倒车中,车轮转动的角度 如何表示才比较合理?
2.我们可以使线段 OP 的长为多少,能简化上述计算?

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

故 tan ������
1 sin2������
-1
=
tan
������
1-sin2������ sin2������
=
tan
������
cos������ sin������
=
sin������ cos������
·-scions������������
=
−1.
(2)证法一:sin2α+cos2α=1⇒1-cos2α=sin2α
sin������ 1 + cos������ ∴ 1-cos������ = sin������ .
题型一 题型二 题型三 题型四 题型五
题型四 已知 tan α 的值求其他代数式的值
【例4】 已知tan α=7,求下列各式的值.
(1)
sin������+cos������ 2sin������-cos������
则 sin α=−
1-cos2 ������
=

15 17
,
tan
������
=
sin������ cos������
=
185.
反思已知cos α(或sin α)求tan α时,先利用平方关系求出sin α(或 cos α),再利用商关系求出tan α.注意在求sin α(或cos α)时,往往需分 类讨论α所在的象限.
证明三角恒等式就是通过转化和消去等式两边的差异来促成统 一的过程,证明的方法在形式上显得较为灵活.常用的有以下几种:
(1)直接法——从等式的一边开始直接化为等式的另一边,常从比 较复杂的一边开始化简到另一边,其依据是相等关系的传递性.
(2)综合法——由一个已知成立的等式(如公式等)恒等变形得到 所要证明的等式,其依据是等价转化的思想.

高中数学 三角函数

高中数学 三角函数

高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。

它涉及的角度、边长、面积等,都是几何和代数的核心元素。

通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。

二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。

常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。

这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。

正切函数的周期性稍有不同,为π。

2、振幅:三角函数的振幅随着角度的变化而变化。

例如,当角度增加时,正弦函数的值也会增加。

3、相位:不同的三角函数具有不同的相位。

例如,正弦函数的相位落后余弦函数相位π/2。

4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。

5、导数:三角函数的导数与其自身函数有关。

例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。

四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。

例如,简谐振动可以用正弦或余弦函数来描述。

2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。

例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。

3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。

例如,使用正弦和余弦函数可以生成平滑的渐变效果。

4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。

例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。

人教版高中数学必修1《三角函数的概念》PPT课件

人教版高中数学必修1《三角函数的概念》PPT课件

• [方法技巧]
• 有关三角函数值符号问题的解题策略
• (1)已知角α的三角函数值(sin α,cos α,tan α)中任意两 个的符号,可分别确定出角α终边所在的可能位置,二者的 公共部分即角α的终边位置.注意终边在坐标轴上的特殊情 况.
• (2)对于多个三角函数值符号的判断问题,要进行分类讨 论.
()
• A.第一象限 二象限
B.第
• C.第三象限
D.第四象限
• (2)判断下列各式的符号:
• ①sin 2 020°cos 2 021°tan 2 022°;
• ②tan 191°-cos 191°;
• ③sin 2cos 3tan 4.
• [解析] (1)由点P(sin θ,sin θcos θ)位于第二象限,
则 sin θ+tan θ=3 1100+30;
当 θ 为第二象限角时,sin θ=31010,tan θ=-3,
则 sin θ+tan θ=3
10-30 10 .
(2)直线 3x+y=0,即 y=- 3x 经过第二、四象限. 在第二象限取直线上的点(-1, 3), 则 r= -12+ 32=2, 所以 sin α= 23,cos α=-12,tan α=- 3; 在第四象限取直线上的点(1,- 3), 则 r= 12+- 32=2, 所以 sin α=- 23,cos α=12,tan α=- 3.
• 可得sin θ<0,sin θcos θ>0,可得sin θ<0,cos θ<0,
• 所以角θ所在的象限是第三象限.
答案:C (2)①∵2 020°=1 800°+220°=5×360°+220°, 2 021°=5×360°+221°,2 022°=5×360°+222°, ∴它们都是第三象限角,∴sin 2 020°<0,cos 2 021°<0,tan 2 022°>0, ∴sin 2 020°cos 2 021°tan 2 022°>0. ②∵191°角是第三象限角,∴tan 191°>0,cos 191°<0, ∴tan 191°-cos 191°>0. ③∵π2<2<π,π2<3<π,π<4<32π, ∴2 是第二象限角,3 是第二象限角,4 是第三象限角, ∴sin 2>0,cos 3<0,tan 4>0,∴sin 2cos 3tan 4<0.

高中数学必修一-三角函数图像性质总结(精华版)

高中数学必修一-三角函数图像性质总结(精华版)

(2) /(航+如型三角函数的奇偶性(i ) g (x ) = /沏(颜+如(x€ R)(x)为偶函数匕鼠U 力(而+ 出=j4sin (-<at + 炉)(x W 氏)0 sin 曲匚*0=。

(工 W R )7Tcos 卯=。

=上7T+一1左 e Z )由此得 2 ,同理,式夫4皿皈+双相的 为奇函数 =顺@=0/3=上网海2)(ii )飙# =+劭SwR]妖N = .Aa 式题+钠为偶函数见双t");就= 式以+如为奇函数7T=中=无产+ — (k e Z)3、周期性(1)基本公式(ii) 〃皈+⑺+氏型三角函数的周期竺y =+ G + 5 =加+中出 的周期为何;(一)三角函数的性质1、定义域与值域2、奇偶性(1)基本函数的奇偶性奇函数:y = sinx y= tanx ; 偶函数:y=cosx.(i )基本三角函数的周期的周期为;丁.y=sinx , y=cosx 的周期为 之并 ;y = tanx , y = cotx4-212yy=cotxy=tanx 3-32X 03 27 3,y=cosx-5-4 .7223 2322 5 2“如血的+朗+9=心服如+沟+用的周期为何.(2)认知⑴A =1/W +创型函数的周期y = |月劭(枷+或)| j = A 匚。

5(西+励|(ii )若函数为,(收斗劭 型两位函数之和,则探求周期适于“最小公倍数法”. (iii )探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明.(3)特殊情形研究JT(i ) y = tanx — cotx 的最小正周期为27T(ii ) y=卜由H+|M 幻的最小正周期为,;7T(iii ) y = sin 4x + cos 4x 的最小正周期为,. _由此领悟“最小公倍数法”的适用类型,以防施错对象 .4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期;②写特解:在所选周期内写出函数的增区问(或减区问);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 .揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域(2) y=/(而+初 型三角函数的单调区问的周期为y = (助+切1_r= |达匚祖(姗+阖| 的周期为 7T(ii) > = 1/(耽+如+同3=0)的周期1y 二|金£血(为工卜8]妣+3)+甘¥ = |例如(而+5+上] J = |总二加侬大+的+. 的周期为祠;,7T的周期为:. 均同它们不加绝对值时的周期相同,即对 数的周期不变.注意这一点与(i )的区别.y=八加+◎+上的解析式施加绝对值后,该函此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令u =z 中,将所给函数分解为内、外两层:y = f (u) , u =®x+卯;②套用公式:根据对复合函数单调性的认知,确定出 f (u)的单调性,而后利用(1)中公 式写出关于u 的不等式;③还原、结论:将u =^+W 代入②中u 的不等式,解出x 的取值范围,并用集合或区间 形成结论.正弦、余弦、正切、余切函数的图象的性质:/y sinx y cosxy tanxy cotxy Asin x(A 、 >0)定义域 R R x | x R 且 x k 1 ,k Zx| x R 且x k ,k ZR值域 [1, 1][1, 1]R RA, A周期性 2 22奇偶性奇函数 偶函数奇函数 奇函数当 0,非奇非偶 当0,奇函数单调性[2 2k , —2k ] 2上为增函 数; [2 2k ,3——2k ] 2上为减函 数(k Z )[2k 1 , 2k ]上为增函 数[2k , 2k 1 ]上为减函数(k Z )一k ,一 k 2 2 上为增函数(k Z )k , k 1上为减函数(k Z )2k2(A),2k -2( A)上为增函数;2k 一------ 2— (A), 2k------ 2——(A)上为减函数(k Z )注意:①y sinx 与y sinx 的单调性正好相反;y cosx 与y cosx 的单调性也同样相反.一般 地,若y f(x)在[a,b ]上递增(减),则y f (x)在[a,b ]上递减(增)y忖n x 与y cosx 的周期是.-(k Z),对称中心(k ,0); y cos( x )的对称轴方); y tan( x )的对称中心(工,0).,02③ y sin( x )或 y cos( x )0)的周期T 2y tan x 的周期为2 2 (T _ T 2,如图,翻折无效)④y sin( x )的对称轴方程是x k 程是x k (k Z ),对称中心(ky cos2x 原点对称 y cos( 2x) cos2x⑤ 当 tan tan 1, k ,(k Z) ; tan tan 1, k ,(k Z).⑥y cosx 与y s in x _ 2k是同一函数,而y ( x )是偶函数,则2 1 、,、y ( x ) sin( x k ) cos( x).2⑦函数y tanx 在R 上为增函数.(耳[只能在某个单调区间单调递增 .若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域 关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x) f(x),奇函数:f( x) f(x)) 奇偶性的单调性:奇同偶反.例如:y tanx 是奇函数,y tan(x 1)是非奇非偶.(定义域不 3 关于原点对称)奇函数特有性质:若0 x 的定义域,则f(x)一定有f(0) 0. (0 x 的定义域,则无此性质)⑨y sinx 不是周期函数;y sinx 为周期函数(T ); y cosx 是周期函数(如图);y cosx 为周期函数(T );y cos2x1的周期为(如图),并非所有周期函数都有最小正周期,2y f (x) 5 f (x k),k R . ⑩ y a cos bsinVa 2 b 2sin( ) cos b 有 Va 2 b 2 y .、形如y Asin( x )的函数:11、几个物理量:A 一振幅;f 1—频率(周期的倒数);x 一相包; 一初相;2、函数y Asin( x )表达式的确定:A 由最值确定; 由周期确定; 由图象上的特殊点确定,如 f(x) Asin( x )(A 0,0, | 3.函数 y Asin( x ) B (其中 A 0,0)最大值是A B,最小值是B A,周期是T —,最小正周期T 六频率是f「相位是x,初相是;其图象的对称轴是直线x k 7k Z),凡| "^0的图象如图所小,则f (x)(答:f(x)152sin(-2x -));y=| cos2x+1/2|图象是该图象与直线y B 的交点都是该图象的对称中心4、研究函数y Asin( x )性质的方法:类比于研究y sin x 的性质,只需将y Asin( x ) 中的x 看成y sinx 中的x,但在求y Asin( x )的单调区间时,要特别注意 A 和 的 符号,通过诱导公式先将 化正。

高中数学必修四 第1章 三角函数课件 1.1.2 弧度制

高中数学必修四 第1章 三角函数课件 1.1.2 弧度制
高中数学 必修四
第一章 三角函数
1.1.2 弧度制
【教学目标】 1.了解角的另外一种度量方法——弧度制. 2.能进行弧度与角度的互化. 3.掌握弧度制中扇形的弧长公式和面积公式. 【重难点】 1.对弧度制概念的理解.(难点) 2.弧度制与角度制的互化.(重点、易错点)
新知导学
1.度量角的单位制 (1)角度制 用度作为单位来度量角的单位制叫做角度制,规定 1 度的角等 1 于周角的 360 . (2)弧度制 ①弧度制的定义
[思路探索] 本题主要考查角度与弧度的换算,直接套用角度与 弧度的换算公式,即度数×1π80=弧度数,弧度数×1π80°=度 数.
解 (1)20°=2108π0=π9. (2)-15°=-11850π=-1π2. (3)71π2=172×180°=105°. (4)-115π=-151×180°=-396°.

α2kπ+π2<α<2kπ+π,k∈Z


α2kπ+π<α<2kπ+32π,k∈2π<α<2kπ+2π,k∈Z

类型一 角度制与弧度制的换算 【例 1】 将下列角度与弧度进行互化.
(1)20°;(2)-15°;(3)71π2;(4)-115π.
解 (1)-1 500°=-1 500×1π80=-253π=-10π+53π. ∵53π是第四象限角,∴-1 500°是第四角限角. (2)∵25π=25×180°=72°,∴终边与角25π相同的角为 θ=72°+ k·360°(k∈Z),当 k=0 时,θ=72°;当 k=1 时,θ=432°, ∴在 0°~720°范围内,与25π角终边相同的角为 72°,432°. [规律方法] 用弧度制表示终边相同的角 2kπ+α(k∈Z)时,其 中 2kπ 是 π 的偶数倍,而不是整数倍,还要注意角度制与弧度 制不能混用.

人教版高中数学必修四教材用书第一章 三角函数 1.3 三角函数的诱导公式 第一课时 三角函数的诱导公式(一

人教版高中数学必修四教材用书第一章 三角函数 1.3 三角函数的诱导公式 第一课时 三角函数的诱导公式(一

.三角函数的诱导公式第一课时三角函数的诱导公式(一)[提出问题]问题:锐角α的终边与π+α角的终边位置关系如何?它们与单位圆的交点的位置关系如何?任意角α与π+α呢?提示:无论α是锐角还是任意角,π+α与α的终边互为反向延长线,它们与单位圆的交点关于原点对称.问题:任意角α与-α的终边有怎样的位置关系?它们与单位圆的交点有怎样的位置关系?试用三角函数的定义验证-α与α的三角函数值的关系.提示:α与-α的终边关于轴对称,它们与单位圆的交点与关于轴对称,设的坐标为(,),则的坐标为(,-).(-α)=-=-α,(-α)==α,(-α)=-=-α.问题:任意角α与π-α的终边有何位置关系?它们与单位圆的交点的位置关系怎样?试用三角函数定义验证α与π-α的各三角函数值的关系.提示:α与π-α的终边关于轴对称,如图所示,设(,)是α的终边与单位圆的交点,则π-α与单位圆的交点为′(-,),,′关于轴对称,由三角函数定义知,(π-α)==α,(π-α)=-=-α,(π-α)==-α.[导入新知].诱导公式二+π角()α与角原点的终边关于α对称.如图所示.+(π公式:()α)α-=.+(π.)αα-=+π(αα).=.诱导公式三()角-α与角α的终边关于轴对称.如图所示.-(公式:.α())-α=-(α=).α)(-α.=α-.诱导公式四()角π-α与角α的终边关于轴对称.如图所示.(π公式:()-αα=.)α(π-)=α.-α-)(π.=α-[化解疑难]对诱导公式一~四的理解()公式两边的三角函数名称应一致.()符号由将α看成锐角时α所在象限的三角函数值的符号决定.但应注意,将α看成锐角只是为了公式记忆的方便,事实上α可以是任意角.[例]()(-°);() °;().[解]()(-°)=-°=-(×°+°)=-°=-(°-°)=-°=-;。

高中数学《三角函数的概念》教学课件

高中数学《三角函数的概念》教学课件

由此可判断角 α
终边在第三象限.] (2)[解] ①∵156°是第二象限角,
∴sin 156°>0. ②∵156π 为第三象限角,
∴cos 156π<0.
5.2.1 三角函数的概念
1
2
3
4
5
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 数学阅读·拓视野 课后素养落实
③∵-450°=-720°+270°是终边落在 y 轴的非正半轴上的角,
1
2
3
4
5
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 数学阅读·拓视野 课后素养落实
NO.2
合作探究·释疑难
类型1 三角函数的定义及应用 类型2 三角函数值符号的运用 类型3 诱导公式一的应用
5.2.1 三角函数的概念
1
2
3
4
5
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 数学阅读·拓视野 课后素养落实
判断三角函数值在各象限符号的攻略 (1)基础:准确确定三角函数值中各角所在象限. (2)关键:准确记忆三角函数在各象限的符号. (3)注意:用弧度制给出的角常常不写单位,不要误认为角度导致 象限判断错误. 提醒:注意巧用口诀记忆三角函数值在各象限符号.
5.2.1 三角函数的概念
1
2
3
4
5
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 数学阅读·拓视野 课后素养落实
- α= t
3t=-
3.
5.2.1 三角函数的概念
1
2
3
4
5
情境导学·探新知 合作探究·释疑难 当堂达标·夯基础 数学阅读·拓视野 课后素养落实
利用三角函数的定义求一个角的三角函数值有以下几种情况 (1)若已知角,则只需确定出该角的终边与单位圆的交点坐标,即 可求出各三角函数值. (2)若已知角 α 终边上一点 P(x,y)(x≠0)是单位圆上一点,则 sin α =y,cos α=x,tan α=yx.

人教版(新教材)高中数学第一册(必修1)精品课件1:5.2.1 三角函数的概念(一)

人教版(新教材)高中数学第一册(必修1)精品课件1:5.2.1  三角函数的概念(一)

答案
(1)34或-34
(2) -1123
5 13
-152
[方法总结] 求任意角的三角函数值的两种方法 方法一:根据定义,寻求角的终边与单位圆的交点 P 的坐标,然后利用定义得出 该角的正弦、余弦、正切值. 方法二:第一步,取点:在角 α 的终边上任取一点 P(x,y),(点 P 与原点不重合); 第二步,计算 r:r=|OP|= x2+y2; 第三步,求值:由 sin α=yr,cos α=xr,tan α=xy(x≠0)求值. 在运用上述方法解题时,要注意分类讨论思想的运用.
第五章 三角函数
5.2 三角函数的概念
5.2.1 三角函数的概念(一)
课程标准
核心素养
通过对三角函数概念的学
借助单位圆理解三角函数(正 习,提升“直观想象”、
弦、余弦、正切)的定义.
“逻辑推理”、“数学运
算”的核心素养.
Байду номын сангаас目索引
课前自主预习 课堂互动探究 随堂本课小结
课前自主预习
知识点 三角函数的定义
3 3
课堂互动探究
探究一 已知角的终边上一点求三角函数值
例 1 (1)在平面直角坐标系中,角 α 的终边与单位圆交于点 A,点 A 的纵坐标为35,则 tan α=________. (2)若角 α 的终边经过点 P(5,-12),则 sin α=________,cos α= ________,tan α=________.
[跟踪训练 1] 如果 α 的终边过点 P(2sin 30°,-2cos 30°),那么
sin α 的值等于( )
A.12
B.-12
C.-
3 2
D.-
3 3

新教材高中数学第五章三角函数:诱导公式第1课时诱导公式二三四ppt课件新人教A版必修第一册

新教材高中数学第五章三角函数:诱导公式第1课时诱导公式二三四ppt课件新人教A版必修第一册

答案:D
)
探索点三
利用诱导公式化简
【例 3】化简:
【解题模型示范】
.
【跟踪训练】
6.化简下列各式:
(1)
;
(2)
-

解:(1)原式=
=
=1.
-(+)(+)
(°+°)[-(°+°)]
(2)原式=
=
(-°+°)[-(°+°)]
的角、函数名称及有关运算之间的差异及联系.
(2)可以将已知式进行变形,向所求式转化,或将所求式
进行变形,向已知式转化.
【跟踪训练】
3.变式练例 2 中若条件不变,如何求 sin2( π+α)-cos(α- )
的值?
解:因为 cos( π+α)=cos[π-( -α)]=-cos( -α)=所以 sin2( π+α)=1-cos2( π+α)=1-(-
锐角.
(4)“锐求值”:得到锐角的三角函数后求值.
【跟踪训练】
1.sin

750°= ;cos(-2

040°)=


.


解析:sin 750°=sin(2×360°+30°)=sin 30°= .cos(-2 040°)=
cos 2 040°=cos(5×360°+240°)=cos 240°=cos(180°+60°)=
-cos

60°=- .



2.计算:sin(- )-cos(- )=




解析:原式=-sin


sin +cos = + =1.

高中数学说课稿:《三角函数》5篇

高中数学说课稿:《三角函数》5篇

高中数学说课稿:《三角函数》高中数学说课稿:《三角函数》精选5篇(一)尊敬的各位老师,大家好!我今天将为大家带来一堂关于高中数学的说课,主题是《三角函数》。

首先,我将介绍本节课的教学目标。

本节课的目标主要分为两个方面。

一方面,通过学习三角函数的定义和性质,学生能够掌握三角函数的概念,能够正确计算各种三角函数的值。

另一方面,通过解决实际问题,培养学生运用三角函数解决实际问题的能力。

接下来,我将介绍教学内容和教学方法。

本节课主要包括以下几个方面的内容:三角函数的定义,正弦、余弦、正切等三角函数的计算、特殊角的三角函数值、利用三角函数解决实际问题等。

在教学过程中,我将采用多种教学方法,如讲解、示例演示和练习等。

通过讲解,我将向学生详细解释三角函数的定义和性质,帮助学生理解概念。

通过示例演示,我将给学生展示一些具体的计算过程,帮助学生掌握计算方法。

通过练习,我将让学生运用所学知识解决一些实际问题,提高他们的实际运用能力。

在教学过程中,我将注重培养学生的思维能力和合作能力。

我将通过一些启发式的问题,引导学生思考,提高他们的问题解决能力和创新能力。

同时,我会鼓励学生之间互相合作,通过小组讨论和合作解决问题,培养他们的团队合作精神。

最后,我将介绍评价方式和教学反思。

在评价方面,我将采用多种方式,如课堂练习、小组合作和个人表现等,综合评价学生的学习情况和能力。

在教学反思方面,我将根据学生的反馈和自己的观察,总结优点和不足,进一步改进教学方法,提高教学效果。

通过本节课的学习,学生能够掌握三角函数的概念和计算方法,能够灵活运用三角函数解决实际问题。

同时,通过课堂互动和合作,学生也能够培养自己的思维能力和合作能力。

谢谢大家!高中数学说课稿:《三角函数》精选5篇(二)敬爱的各位领导、同事们,亲爱的同学们:大家好!我是数学老师张老师,今天我将给大家讲解高中数学中的一个重要概念——函数的单调性。

希望通过本节课的学习,大家能够理解函数的单调性,掌握相关的解题方法和技巧。

部编版高中数学必修一第五章三角函数带答案笔记重点大全

部编版高中数学必修一第五章三角函数带答案笔记重点大全

(名师选题)部编版高中数学必修一第五章三角函数带答案笔记重点大全单选题1、已知函数f(x)=2sin (ωx −π6)(ω>12,x ∈R ),若f(x)的图像的任何一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是( ) A .(12,23]∪[89,76]B .(12,1724]∪[1718,2924]C .[59,23]∪[89,1112]D .[1118,1724]∪[1718,2324]2、《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间(如图).现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为π4m ,肩宽约为π8m ,“弓”所在圆的半径约为54m ,则掷铁饼者双手之间的距离约为(参考数据:√2≈1.414,√3≈1.732)( )A .1.012mB .1.768mC .2.043mD .2.945m3、已知sin (α−π3)+√3cosα=13,则sin (2α+π6)的值为( )A .13B .−13C .79D .−79 4、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( ) A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112]5、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( )A .1B .−1C .√32D .−√326、若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( ) A .√1515B .√55C .√53D .√153 7、已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2B .–1C .1D .28、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( )A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度 多选题9、给出下列四个关系式,其中不正确的是( ). A .sinαsinβ=12[cos(α+β)−cos(α−β)]B .sinαcosβ=12[sin(α+β)+sin(α−β)] C .cosαcosβ=−12[cos(α+β)−cos(α−β)] D .cosαsinβ=12[sin(α+β)−sin(α−β)] 10、下列与412°角的终边相同的角是( ) A .52°B .778°C .−308°D .1132°11、已知x ∈R ,则下列等式恒成立的是( ) A .sin (3π−x )=sinx B .sinπ−x 2=cos x2C .cos (5π2+3x)=sin3x D .cos (3π2+2x)=−sin2x 填空题12、若角α的终边落在直线y =-x 上,则√1−sin 2α+√1−cos 2αcosα的值等于________.13、已知α为锐角,且sinα=34,则cos (π−α)的值为_________.部编版高中数学必修一第五章三角函数带答案(四十六)参考答案1、答案:C 分析:由已知得12×2πω≥4π−3π,kπ+π2≤3ωπ−π6,且kπ+π+π2≥4ωπ−π6,解之讨论k ,可得选项.因为f(x)的图像的任何一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),所以12×2πω≥4π−3π,所以12<ω≤1,故排除A ,B ;又kπ+π2≤3ωπ−π6,且kπ+π+π2≥4ωπ−π6,解得3k +29≤ω≤3k +512,k ∈Z ,当k =0时,29≤ω≤512,不满足12<ω≤1, 当k =1时,59≤ω≤23,符合题意,当k =2时,89≤ω≤1112,符合题意, 当k =3时,119≤ω≤149,不满足12<ω≤1,故C 正确,D 不正确, 故选:C.小提示:关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于ω的不等式组,解之讨论可得选项. 2、答案:B分析:由题意分析得到这段弓形所在的弧长,结合弧长公式求出其所对的圆心角,双手之间的距离,求得其弦长,即可求解.如图所示,由题意知“弓”所在的弧ACB⌢ 的长l =π4+π4+π8=5π8,其所对圆心角α=5π854=π2,则两手之间的距离|AB |=2|AD |=2×54×sin π4≈1.768(m ). 故选:B .3、答案:D解析:利用两角和与差的正弦公式,诱导公式化简已知等式可得cos(α−π6)=13,进而利用诱导公式,二倍角公式化简所求即可求解.因为sin (α−π3)+√3cosα=12sinα−√32cosα+√3cosα=12sinα+√32cosα =sin (α+π3)=sin (π2+α−π6)=cos (α−π6)=13,所以sin (2α+π6)=sin (π2+2α−π3)=cos (2α−π3)=2cos 2(α−π6)−1=2×(13)2−1=−79, 故选:D 4、答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π ,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π , 解得0<ω⩽512或56⩽ω⩽1112,则ω的取值范围是(0,512]∪[56,1112].故选:C . 5、答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A . 6、答案:A分析:由二倍角公式可得tan2α=sin2αcos2α=2sinαcosα1−2sin 2α,再结合已知可求得sinα=14,利用同角三角函数的基本关系即可求解.∵tan2α=cosα2−sinα∴tan2α=sin2αcos2α=2sinαcosα1−2sin 2α=cosα2−sinα,∵α∈(0,π2),∴cosα≠0,∴2sinα1−2sin 2α=12−sinα,解得sinα=14, ∴cosα=√1−sin 2α=√154,∴tanα=sinαcosα=√1515. 故选:A.小提示:关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sinα. 7、答案:D分析:利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. ∵2tanθ−tan(θ+π4)=7,∴2tanθ−tanθ+11−tanθ=7,令t =tanθ,t ≠1,则2t −1+t1−t =7,整理得t 2−4t +4=0,解得t =2,即tanθ=2. 故选:D.小提示:本题主要考查了利用两角和的正切公式化简求值,属于中档题. 8、答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3), 而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A. 9、答案:AC分析:根据sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβ,进行化简可得结果. 由sin(α+β)=sinαcosβ+cosαsinβ,sin(α−β)=sinαcosβ−cosαsinβ 两式相加可得sinαcosβ=12[sin(α+β)+sin(α−β)],故B 正确两式相减可得cosαsinβ=12[sin(α+β)−sin(α−β)],故D 正确由cos(α+β)=cosαcosβ−sinαsinβ,cos(α−β)=cosαcosβ+sinαsinβ 两式相减可得sinαsinβ=−12[cos(α+β)−cos(α−β)],故A,C 错 故选:AC小提示:本题考核从两角和与差的正弦公式与余弦公式,重在对公式的考查与计算,属基础题. 10、答案:ACD解析:首先求出与412°角的终边相同角的表达式,然后判断选项是否与412°角是终边相同角. 因为412°=360°+52°,所以与412°角的终边相同角为β=k ×360°+52°,k ∈Z , 当k =−1时,β=−308°, 当k =0时,β=52°, 当k =2时,β=772°, 当k =3时,β=1132°, 当k =4时,β=1492°, 综上,选项A 、C 、D 正确. 故选:ACD.小提示:本题主要考查了终边相同角,属于基础题.11、答案:AB分析:利用诱导公式可判断各选项的正误.sin(3π−x)=sin(π−x)=sinx,sinπ−x2=sin(π2−x2)=cos x2,cos(5π2+3x)=cos(π2+3x)=−sin3x,cos(3π2+2x)=sin2x,故选:AB. 12、答案:0解析:先求出α=2kπ+34π或2kπ+74π,k∈Z,再分类讨论得解.因为角α的终边落在直线y=-x上,所以α=2kπ+34π或2kπ+74π,k∈Z,当α=2kπ+34π,k∈Z,即角α的终边在第二象限时,sinα>0,cosα<0;所以√1−sin2α+√1−cos2αcosα=sinα|cosα|+|sinα|cosα=sinα−cosα+sinαcosα=0当α=2kπ+74π,k∈Z,即角α的终边在第四象限时,sinα<0,cosα>0.所以√1−sin2α+√1−cos2αcosα=sinα|cosα|+|sinα|cosα=sinαcosα+−sinαcosα=0综合得√1−sin2α√1−cos2αcosα的值等于0.所以答案是:013、答案:−√74分析:利用同角三角函数的基本关系结合诱导公式可求得结果.因为α为锐角,且sinα=34,则cosα=√1−sin2α=√74,因此,cos(π−α)=−cosα=−√74.所以答案是:−√74.。

人教版高中数学课件-三角函数

人教版高中数学课件-三角函数

π x=__2_k_π__-__2__(k_∈__Z__) _时,ymin=-1
x=_2_k_π_+__π____时, ymin=-1
上一页
返回首页
下一页
判断(正确的打“√”,错误的打“×”)
(1)若 sin2π 3 +π6 =sinπ6 ,则2π 3 是函数 y=sin x 的一个周期.(
)
(2)函数 y=sin x 在第一象限内是增函数.( )
上一页
返回首页
下一页
1.判断函数奇偶性应把握好的两个方面: 一看函数的定义域是否关于原点对称; 二看 f(x)与 f(-x)的关系. 2.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再 判断.
上一页
返回首页
下一页
[再练一题] 2.(1)函数 f(x)= 2sin 2x 的奇偶性为 ( ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 (2)判断函数 f(x)=sin34x+3π 2 的奇偶性.
最小正数就叫做 f(x)的最小正周期.
上一页
返回首页
下一页
2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z 且 k≠0)都是它的周期,最小正周期是 _2_π___. (2)余弦函数是周期函数,2kπ(k∈Z 且 k≠0)都是它的周期,最小正周期是 _2_π___.
上一页
返回首页
下一页
(2)因为 cos 2(x+π)=cos(2x+2π)=cos 2x,由周期函数的定义知,y=cos 2x 的周期为π.
(3)因为 sin13(x+6π)-π4 =sin13x+2π-π4 =sin13x-π4 ,由周期函数 的定义知,y=sin13x-π4 的周期为 6π.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-xx 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎪⎨⎪⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限. [课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12>0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A. 3 B .- 5 C. 5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________.解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案: 39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4<α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α. 2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( ) A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧sin α-cos α>0,tan α>0,即⎩⎪⎨⎪⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0), 所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15;当a <0时,r =-5a ,sin θ+cos θ=-35+45=15.(2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负; 当a <0时,cos(sin θ)·sin(cos θ)的符号为正.第二节 同角三角函数的基本关系与诱导公式一、基础知识1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α. 平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.二、常用结论同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例] (1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α) =-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α,所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2. 答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例] (1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1, 将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0,所以cos α-sin α=-12.[答案] (1)A (2)D[题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________.解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α), 即sin α=2cos α,所以tan α=sin αcos α=2,从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425. 因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin 11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15, 得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin (π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3co s(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ. 答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________.解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α=sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α 9.sin4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C. 3D .- 3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74,所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2,因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3; 当sin θ=12,cos θ=32时,θ=π6.第三节 三角函数的图象与性质一、基础知识1.用五点法作正弦函数和余弦函数的简图 (1)“五点法”作图原理:在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).函数y =sin x ,x ∈[0,2π],y =cos x ,x ∈[0,2π]的五个关键点的横坐标是零点和极值点(最值点).(2)五点法作图的三步骤:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质R ,且x ≠k π+π2三角函数性质的注意点(1)正、余弦函数一个完整的单调区间的长度是半个周期;y =tan x 无单调递减区间;y =tan x 在整个定义域内不单调.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.二、常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z );若为奇函数,则有φ=k π (k∈Z ).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z );若为奇函数,则有φ=k π+π2 (k∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ).第一课时 三角函数的单调性 考点一 求三角函数的单调区间[典例] (2017·浙江高考)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ). (1)求f ⎝⎛⎭⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间. [解] (1)由题意,f (x )=-cos 2x -3sin 2x =-2⎝⎛⎭⎫32sin 2x +12cos 2x =-2sin ⎝⎛⎭⎫2x +π6,故f ⎝⎛⎭⎫2π3=-2sin ⎝⎛⎭⎫4π3+π6=-2sin 3π2=2. (2)由(1)知f (x )=-2sin ⎝⎛⎭⎫2x +π6. 则f (x )的最小正周期是π. 由正弦函数的性质,令π2+2k π≤2x +π6≤3π2+2k π(k ∈Z), 解得π6+k π≤x ≤2π3+k π(k ∈Z),所以f (x )的单调递增区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z).[题组训练]1.函数y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调递减区间为________. 解析:作出y =|tan x |的示意图如图,观察图象可知,y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调递减区间为⎝⎛⎦⎤-π2,0和⎝⎛⎦⎤π2,π. 答案:⎝⎛⎦⎤-π2,0,⎝⎛⎦⎤π2,π 2.函数g (x )=-cos ⎝⎛⎭⎫-2x +π3⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2的单调递增区间为________. 解析:g (x )=-cos ⎝⎛⎭⎫-2x +π3=-cos ⎝⎛⎭⎫2x -π3, 欲求函数g (x )的单调递增区间,只需求函数y =cos ⎝⎛⎭⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π(k ∈Z),得k π+π6≤x ≤k π+2π3(k ∈Z).故函数g (x )的单调递增区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z). 因为x ∈⎣⎡⎦⎤-π2,π2, 所以函数g (x )的单调递增区间为⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2. 答案:⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2 3.(2019·金华适应性考试)已知函数f (x )=3cos 2x -2sin 2(x -α),其中0<α<π2,且f ⎝⎛⎭⎫π2=-3-1.(1)求α的值;(2)求f (x )的最小正周期和单调递减区间.解:(1)由已知得f ⎝⎛⎭⎫π2=-3-2sin 2⎝⎛⎭⎫π2-α=-3-2cos 2α=-3-1,整理得cos 2α=12. 因为0<α<π2,所以cos α=22,α=π4.(2)由(1)知,f (x )=3cos 2x -2sin 2⎝⎛⎭⎫x -π4 =3cos 2x -1+cos ⎝⎛⎭⎫2x -π2 =3cos 2x +sin 2x -1 =2sin ⎝⎛⎭⎫2x +π3-1. 易知函数f (x )的最小正周期T =π. 令t =2x +π3,则函数f (x )可转化为y =2sin t -1.显然函数y =2sin t -1与y =sin t 的单调性相同, 当函数y =sin t 单调递减时, 2k π+π2≤t ≤2k π+3π2(k ∈Z),即2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),解得k π+π12≤x ≤k π+7π12(k ∈Z).所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+π12,k π+7π12(k ∈Z).考点二 求三角函数的值域(最值)[典例] (1)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332D.⎣⎡⎦⎤-332,3(2)(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. [解析] (1)当x ∈⎣⎡⎦⎤0,π2时, 2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 所以函数f (x )的值域为⎣⎡⎦⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1], 因此当cos x =32时,f (x )max =1. [答案] (1)B (2)1[变透练清]1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝⎛⎭⎫2x -π6,则f (x )在区间⎣⎡⎦⎤0,π2上的值域为________.解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, cos ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,1, 故f (x )=3cos ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-332,3.答案:⎣⎡⎦⎤-332,3 2.(变条件)若本例(2)中函数f (x )的解析式变为:函数f (x )=sin x +cos x +sin x cos x ,则f (x )的最大值为________.解析:设t =sin x +cos x (-2≤t ≤2), 则sin x cos x =t 2-12,y =t +12t 2-12=12(t +1)2-1,当t =2时,y =t +12t 2-12取最大值为2+12.故f (x )的最大值为22+12.答案:22+123.已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是________.解析:由x ∈⎣⎡⎦⎤-π3,a ,知x +π6∈⎣⎡⎦⎤-π6,a +π6. ∵x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域是⎣⎡⎦⎤-12,1, ∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π. 答案:⎣⎡⎦⎤π3,π考点三 根据三角函数单调性确定参数[典例] (1)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4 B.π2C.3π4D .π(2)若f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π2,2π3上是增函数,则ω的取值范围是________.[解析] (1)f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, 当x ∈⎣⎡⎦⎤-π4,3π4,即x -π4∈⎣⎡⎦⎤-π2,π2时, y =sin ⎝⎛⎭⎫x -π4单调递增, 则f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减. ∵函数f (x )在[-a ,a ]是减函数, ∴[-a ,a ]⊆⎣⎡⎦⎤-π4,3π4,∴0<a ≤π4, ∴a 的最大值是π4.(2)法一:因为x ∈⎣⎡⎦⎤-π2,2π3(ω>0), 所以ωx ∈⎣⎡⎦⎤-πω2,2πω3,因为f (x )=2sin ωx 在⎣⎡⎦⎤-π2,2π3上是增函数, 所以⎩⎪⎨⎪⎧-πω2≥-π2,2πω3≤π2,ω>0,故0<ω≤34.法二:画出函数f (x )=2sin ωx (ω>0)的图象如图所示.要使f (x )在⎣⎡⎦⎤-π2,2π3上是增函数, 需⎩⎨⎧-π2ω≤-π2,2π3≤π2ω,ω>0,即0<ω≤34.[答案] (1)A (2)⎝⎛⎦⎤0,34[解题技法]已知三角函数的单调区间求参数范围的3种方法(1)求出原函数的相应单调区间,由所给区间是所求某区间的子集,列不等式(组)求解. (2)由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.[题组训练]1.若函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上是单调递减函数,且函数值从1减少到-1,则f ⎝⎛⎭⎫π4=________.解析:由题意知T 2=2π3-π6=π2,故T =π,所以ω=2πT=2,又因为f ⎝⎛⎭⎫π6=1,所以sin ⎝⎛⎭⎫π3+φ=1. 因为|φ|<π2,所以φ=π6,即f (x )=sin ⎝⎛⎭⎫2x +π6. 故f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32. 答案:322.(2019·贵阳检测)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________.解析:由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆⎣⎡⎦⎤π2,3π2, 所以⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,解得12≤ω≤54.答案:⎣⎡⎦⎤12,54[课时跟踪检测]A 级1.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z),得k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z). 2.y =|cos x |的一个单调递增区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[0,π] C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π解析:选D 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的部分不变,即得y =|cos x |的图象(如图).故选D.3.已知函数y =2cos x 的定义域为⎣⎡⎦⎤π3,π,值域为[a ,b ],则b -a 的值是( ) A .2 B .3 C.3+2D .2- 3解析:选B 因为x ∈⎣⎡⎦⎤π3,π,所以cos x ∈⎣⎡⎦⎤-1,12,故y =2cos x 的值域为[-2,1],所以b -a =3.4.(2019·西安八校联考)已知函数f (x )=cos(x +θ)(0<θ<π)在x =π3时取得最小值,则f (x )在[0,π]上的单调递增区间是( )A.⎣⎡⎦⎤π3,πB.⎣⎡⎦⎤π3,2π3 C.⎣⎡⎦⎤0,2π3 D.⎣⎡⎦⎤2π3,π解析:选A 因为0<θ<π,所以π3<π3+θ<4π3,又因为f (x )=cos(x +θ)在x =π3时取得最小值,所以π3+θ=π,θ=2π3,所以f (x )=cos ⎝⎛⎭⎫x +2π3.由0≤x ≤π,得2π3≤x +2π3≤5π3.由π≤x +2π3≤5π3,得π3≤x ≤π,所以f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤π3,π. 5.(2018·北京东城质检)函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最小值为( ) A .1 B.1-32C.32D .1- 3解析:选A 函数f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12. ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6. 当2x -π6=5π6时,函数f (x )取得最小值为1.6.(2019·广西五市联考)若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,则ω=( )A.14 B.13C.12D.32解析:选C 因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎡⎦⎤0,π3上单调递增,则f (x )max =f ⎝⎛⎭⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12. 7.函数y =sin x -cos x 的定义域为________.解析:要使函数有意义,需sin x -cos x ≥0,即sin x ≥cos x , 由函数的图象得2k π+π4≤x ≤2k π+5π4(k ∈Z),故原函数的定义域为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). 答案:⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 8.函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为________.解析:因为f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x =1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112,而sin x∈[-1,1],所以当sin x =1时,f (x )取最大值5.答案:59.函数f (x )=2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为________. 解析:因为0≤x ≤9,所以0≤π6x ≤3π2,即-π3≤π6x -π3≤7π6,所以-32≤sin ⎝⎛⎭⎫π6x -π3≤1, 故f (x )的最大值为2,最小值为-3,它们之和为2- 3. 答案:2- 310.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.解析:法一:由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数 的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二:由题意,得f (x )max =f ⎝⎛⎭⎫π3=sin π3ω=1. 由已知并结合正弦函数图象可知,π3ω=π2,解得ω=32.答案:3211.已知函数f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )的单调递增区间;(2)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值. 解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z.故函数f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z. (2)因为当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22,所以-2≤f (x )≤1, 所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.12.已知函数f (x )=12sin 2x -32cos 2x -32.(1)求函数f (x )的最小正周期和最大值; (2)讨论函数f (x )在⎣⎡⎦⎤π6,2π3上的单调性.解:(1)因为函数f (x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 所以函数f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π, 从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增;当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增,在⎣⎡⎦⎤5π12,2π3上单调递减.B 级1.已知函数f (x )=2sin ⎝⎛⎭⎫x +7π3,设a =f ⎝⎛⎭⎫π7,b =f ⎝⎛⎭⎫π6,c =f ⎝⎛⎭⎫π3,则a ,b ,c 的大小关系是________(用“<”表示).解析:函数f (x )=2sin ⎝⎛⎭⎫x +π3+2π=2sin ⎝⎛⎭⎫x +π3, a =f ⎝⎛⎭⎫π7=2sin 10π21, b =f ⎝⎛⎭⎫π6=2sin π2, c =f ⎝⎛⎭⎫π3=2sin 2π3=2sin π3, 因为y =sin x 在⎣⎡⎦⎤0,π2上单调递增,且π3<10π21<π2, 所以sin π3<sin 10π21<sin π2,即c <a <b . 答案:c <a <b2.(2018·四川双流中学模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在⎝⎛⎭⎫π2,π上单调递减,则ω=________.解析:由f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,可知函数f (x ) 的图象关于直线x =π4对称, ∴π4ω+π4=π2+k π,k ∈Z , ∴ω=1+4k ,k ∈Z ,又∵f (x )在⎝⎛⎭⎫π2,π上单调递减, ∴T 2≥π-π2=π2,T ≥π, ∴2πω≥π,∴ω≤2, 又∵ω=1+4k ,k ∈Z ,∴当k =0时,ω=1. 答案:13.已知函数f (x )=2a sin ⎝⎛⎭⎫x +π4+a +b . (1)若a =-1,求函数f (x )的单调递增区间;(2)若x ∈[0,π],函数f (x )的值域是[5,8],求a ,b 的值. 解:(1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z),得2k π+π4≤x ≤2k π+5π4(k ∈Z),所以f (x )的单调递增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). (2)因为0≤x ≤π,所以π4≤x +π4≤5π4,所以-22≤sin ⎝⎛⎭⎫x +π4≤1,依题意知a ≠0. ①当a >0时,有{ 2a +a +b =8,b =5,所以a =32-3,b =5. ②当a <0时,有{ b =8,2a +a +b =5,所以a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.第二课时 三角函数的周期性、奇偶性及对称性考点一 三角函数的周期性[典例] (1)(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则正整数k 的值为________. [解析] (1)由已知得f (x )=tan x 1+tan 2x =sin x cos x 1+⎝⎛⎭⎫sin x cos x 2=sin xcos x cos 2x +sin 2x cos 2x =sin x cos x =12sin 2x ,所以f (x )的最小正周期为T =2π2=π.(2)由题意知1<πk <2,即π2<k <π.又因为k ∈N *,所以k =2或k =3. [答案] (1)C (2)2或3[解题技法]1.三角函数最小正周期的求解方法 (1)定义法;(2)公式法:函数y =A sin(ωx +φ)(y =A cos(ωx +φ))的最小正周期T =2π|ω|,函数y =A tan(ωx+φ)的最小正周期T =π|ω|;(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y =|A sin(ωx +φ)|,y =|A cos(ωx +φ)|,y =|A tan(ωx +φ)|的周期均为T =π|ω|.(2)函数y =|A sin(ωx +φ)+b |(b ≠0),y =|A cos(ωx +φ)+b |(b ≠0)的周期均为T =2π|ω|.[题组训练]1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析:选A 因为y =cos|2x |=cos 2x , 所以该函数的周期为2π2=π;由函数y =|cos x |的图象易知其周期为π; 函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π; 函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③. 2.若x =π8是函数f (x )=2sin ⎝⎛⎭⎫ωx -π4,x ∈R 的一个零点,且0<ω<10,则函数f (x )的最小正周期为________.解析:依题意知,f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z ,整理得ω=8k +2,k ∈Z. 又因为0<ω<10,所以0<8k +2<10,得-14<k <1,而k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π. 答案:π考点二 三角函数的奇偶性[典例] 函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3C.5π6D.2π3[解析] 因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ是偶函数, 所以-π3+φ=k π+π2,k ∈Z ,所以φ=k π+5π6,k ∈Z ,又因为φ∈(0,π),所以φ=5π6.[答案] C[解题技法] 判断三角函数奇偶性的方法三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.[题组训练]1.(2018·日照一中模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上单调递增的奇函数是( ) A .y =sin ⎝⎛⎭⎫2x +3π2 B .y =cos ⎝⎛⎭⎫2x -π2 C .y =cos ⎝⎛⎭⎫2x +π2 D .y =sin ⎝⎛⎭⎫π2-x解析:选C y =sin ⎝⎛⎭⎫2x +3π2=-cos 2x 为偶函数,排除A ;y =cos ⎝⎛⎭⎫2x -π2=sin 2x 在⎣⎡⎦⎤π4,π2上为减函数,排除B ;y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 为奇函数,在⎣⎡⎦⎤π4,π2上单调递增,且周期为π,符合题意;y =sin ⎝⎛⎭⎫π2-x =cos x 为偶函数,排除D.故选C.2.若函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________. 解析:f (x )=3cos(3x -θ)-sin(3x -θ) =2sin ⎝⎛⎭⎫π3-3x +θ =-2sin ⎝⎛⎭⎫3x -π3-θ, 因为函数f (x )为奇函数, 所以-π3-θ=k π,k ∈Z ,即θ=-k π-π3,k ∈Z ,故tan θ=tan ⎝⎛⎭⎫-k π-π3=- 3. 答案:- 3。

相关文档
最新文档