华师大版七年级数学上册第二章 有理数单元测试题.docx
华师大版七年级上册《第2章有理数》单元综合测试含答案.doc

“有理数”综合测试题(一)基础巩固(满分100分)一. 选择题(每题4分,满分24分)若火箭发射点火前10秒记为-10秒,那么火箭发射点火后5秒应记为(3. 如图,在数轴上点A 表示的数可能是(-4 -3J-2 -10 124. 据统计,某市2018年共有约25000名初中毕业生参加了毕业生参加统一的学业考试,将 25000用科学记数法可表示为(5•若a 与2互为相反数,贝ij|a+2|等于6•计算的结果是(二、 填空题(每题4分,满分24分)7. 化简:-(■ 5) = _________ .8. 写出一个比- 1大的负有理数是 __________________ .9. 计算:I - 8 - 3 = ___________ .10. 圆周率兀=3. 1415926…,取近似值3.142,是精确到 ______________ 位.11. 如果一个数的倒数等于它本身,则这个数是 ___________ .12. 计算:(一-—)X (-6)= . 3 2------------ 三、 解答题(5个小题,共52分)A. B. -10 秒 C. +5 秒 D. +10 秒2. -2018的相反数是( A. 12014B ,_2014 C. -2014 D. 2014 1.A. 1. 5B. - 1.5C. - 2.4D. 2.4A. 25X10B. 2.5X10'C. 2.5X10'D. 0.25X106A. 0B. 4C.D.A.9B.—9C. 6D.-613.计算:(1)| - 1| -2一( - 2)2;(2) 17-23-? ( -2) X3. 14.已知数轴上两点A、B对应的数分别为・1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值,若不存在,说明理由.A O p B--------- 1 ---------- 1---- 1----------- 1_4_I ------------ 1 ------------ >-2-1 0315.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东酋向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15, - 4, +13, - 10, - 12, +3, - 13, - 17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?16.若a、b互为相反数,c、d互为倒数,m的绝对值是3,求空尹3m-cd的值.17.问题:你能比较201严和2015沖的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n田和(n+1)”的大小(n为正整数),我们从n = l, n = 2, n=3…这些简单的情况入手,从中发现规律, 经过归纳,猜出结论.(1)通过计算,比较下列各组数字大小:①_____ 〃___________ 21,②2’_______ 32,③3" 43,④羊____ 51,⑤5“ _______ 6% ⑥6’ _____ 76,(2)把第(1)题的结果经过归纳,你能得出什么结论?(3)根据上面的归纳猜想得到的结论,试比较两个数的大小:2O142015_________ 2015纳° (填、“V” 或“=”)1分别计算这三个数的结果(直接写答案)拓展创新(满分50分)一.选择题(每题6分,满分12分)1.如图,数轴上的A、B、C三点所表示的数分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点0的位置应该在()A Ca b CA. 点A的左边B.点A与点BZ间C. 点B与点C之间D.点B与点C之间或点C的右边2. 已知a为实数,则下列四个数中一定为非负实数的是()A. a B・- -a C. | - a| D. - | - s|二、填空题(每题6分,满分12分)3-已知儲则诗墙的值为----------------------------4.为了求1+2+21 2+23+-+2100的值,可令S = l+2+2'+2'+・・・+2吧则2S=2+22+23+24+-+2101, 因此2S - S = 2101 - 1,所以S = 2101 - 1,即1+2+22+23+-+2100=2101 - 1,仿照以上推理计算1+3+32+33+-+32015的值是______________ .三、解答题(3个小题,共26分)5.计算:{1 - [-77 - (-0. 25) Fx (・2) "} [3X (■弓)+ ( - 5)十(-2)订•16 86.下面是按一定规律排列的一列数:—1第1个数:1- (1+—才);第2个数:2 - (1+罟)(心」—)(11—);, 3 4第3 个数:3 -(1+—丁)(-1)2 ( - I)3(-1)°( - 1)5(1+ I J )(1八)(1+、工一)(H ■- ;--■»);3 4 5 62写出第2015个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.7.(1) 一般地,数轴上表示数m和数n的两点Z间的距离等于如果表示数3和・1的两点之间的距离是3,那么a= ___________________ ;-5 -4 -3 -2 -1 0 1 2 3 4 5>(2)若数轴上表示数a的点位于- 3与4之间,求|a+3| + |a-4|的值;(3)当a取何值时,|a+5| + |3・1 | + |a-3|的值最小,最小值是多少?请说明理由.参考答案基础巩固一、1.C 2. D 3.C 4.B 5. A 6. B二、7.5 8.・0.4(答案不唯一) 9. 11 10.千分11. ±1 12. 1三、13.解:(1)| - 1| -2二 + ( -2) 2□=1 - 2X3+4=1 ・6 + 4 =・1;(2) 17 - 2:i H- ( - 2) X3 = 17-8-? ( -2) X3=17 - ( -4) X3 = 17+12 = 29.14.解:(1)观察数轴,得当点P对应的数是1时,PA=PB=2,・••点P对应的数是1.(2)观察数轴,得当点P对应的数为-2时,PA=1, PB=5, PA+PB=6;当点P对应的数为4时,PA=5, PB=1, PA+PB=6.・••点P对应的数为・2或4.15.解:(1)根据题意,得(+15) + ( -4) + (+13) + ( - 10) + ( - 12) + (+3) + ( - 13) + ( - 17) = - 25 千米,答:小王在出车地点的西方,距离是25千米;(2)这天下午汽车走的路程为:|+15| + | - 41 + |+131 + | - 10| + | - 12| + |+31 + | ・ 131 + | - 171=87 千米,汽车共耗油量为:87X0.4=34. 8升,答:这天下午汽车共耗油34. 8升.16.解:根据题意,得a+b = 0, cd=l, m= ±3, 当m=3 时,原式=¥+3X3 ・1 =0+9 ・1=8;5当m= - 3 时,原式=2+3X (・3) - 1=0 - 9 - 1= - 10.5所以芈+3叩- cd的值为8或-10.517.解:(1)通过计算得出:12<2\ 24<32, 35>43, 45>5\ 54>65, 67>76;(2)把第(1)题的结果经过归纳得出:当nW2 时,n n+,< (n+1) n,当n>2 时,n n41> (n+1) n;(3)根据以上结论得出:20 1 42O15>20152014,拓展创新一、l.D 2.C4 1 q只三、5.解:原式“-京才“]"寅)6. 解:(1)第1个数:寺 第2个数:I ;第3个数:|;14 3 6^ = 2015--X-X-X-X-X...X =20154 402927. 解:(1)若表示数a 和・1的两点之间的距离是3,贝ij|a+l|=3,解得&=2或3=・4.(2) V3<a<4,/. | a+31 +1a - 41 =a+3+4 - a = 7;(3) ①当 oW - 5 时,原式=- o - 5+1 - a+3 - a= - 2 - 3oW13,② 当-5<aVl 吋,原式= a+5+l - a+3 - a=9 - a, 5<9 - a<8,③ 当 lWaW3 时,原式= a+5+a ・ 1+3 ・ a=7+a, 8W7+aW10,④ 当 a>3 时,原式=a+5+a - 1+a ・ 3 = l+3a>10,・••当a=l 时,| a+5 | + |a - l| + |a-3|的值最小,最小值是8. 2016二、3. 0 4. -1=(1 ・ 2) 一 ((2)第 2015 个数:2015 - (1# (亠1?2)…(“土) 4029(-1 严 \ 4030 40304029 4029X ------- 4030。
(华师大版)最新七年级数学上册第2章 有理数单元测试卷(二)含答案与解析

华师大版七年级数学上册第二章单元测试卷(二)有理数班级___________ 姓名___________ 学号____________ 分数____________(考试时间:60分钟试卷满分:100分)一.选择题(共12小题)1.如果+20%表示增加20%,那么﹣6%表示()A.增加14% B.增加6% C.减少6% D.减少26% 2.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是()A.﹣24 B.﹣20 C.6 D.363.如图,数轴上点A表示的数减去点B表示的数,结果是()A.8 B.﹣8 C.3 D.﹣24.一个数加上﹣12等于﹣5,则这个数是()A.17 B.7 C.﹣17 D.﹣75.下列说法中,正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正的,就是负的;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1个B.2个C.3个D.4个6.有理数a、b在数轴上的对应的位置如图所示,则()A .a +b <0B .a +b >0C .a ﹣b =0D .a ﹣b >07.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为( ) A .6.011×109B .60.11×109C .6.011×1010D .0.6011×10118.在﹣5,﹣101,﹣3.5,﹣0.01,﹣2,﹣212各数中,最大的数是( ) A .﹣12B .﹣101 C .﹣0.01 D .﹣59.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a ﹣b +c =( ) A .﹣1B .0C .1D .210.如果有理数a ,b 满足a +b >0,ab <0,则下列式子正确的是( ) A .当a >0,b <0时,|a |>|b | B .当a <0,b >0时,|a |>|b |C .a >0,b >0D .a <0,b <011.若a 、b 互为倒数,x 、y 互为相反数,则2(x +y )﹣ab 的值为( ) A .0B .1C .﹣1D .不能确定12.小灵做了以下4道计算题:①﹣6﹣6=0;②﹣3﹣|﹣3|=﹣6;③3÷21×2=12;④0﹣(﹣1)2016=﹣1. 则她做对的道数是( ) A .1B .2C .3D .4二.填空题(共6小题)13.在数轴上,大于﹣2.5且小于3.2的整数有 . 14.若x 的相反数是3,|y |=5,则x +y 的值为 . 15.计算(﹣0.25)2011×(﹣4)2012= .16.太阳半径大约是696 000千米,用科学记数法表示为 米. 17.已知|m |=3,n =2,且|m ﹣n |=n ﹣m ,则n ﹣m = .18.若|m ﹣n |+(m +2)2=0,则m n 的值 ;若|a +2|+(b ﹣3)2=0,则a b= .三.解答题(共8小题) 19.计算:(1)﹣12﹣(﹣9)﹣(+7)+|﹣3.62|;(2)﹣161﹣232+454﹣531+161﹣3.8;(3)(127﹣32+45﹣87)×(﹣24);(4)﹣24÷(232)2+521×(﹣61)﹣(﹣0.5)2.20.已知(a﹣4)2+|a+b|=0,求(﹣a)2+(﹣b)3的值.21.若a、b、c三数在数轴上对应位置如图所示,化简|a|﹣|a+b|+|c﹣b|+|a+c|.22.小明家买了一辆轿车,小明记录了连续7天中每天轿车行驶的路程,如下表所示,以50km为基准,超过50km的记为“+”,不足50km的记为“﹣”.时间第一天第二天第三天第四天第五天第六天第七天路程/km﹣8 ﹣10 ﹣12 0 ﹣16 +41 +26 (1)求小明家的轿车这7天中平均每天行驶的路程;(2)若该轿车每行驶100km耗汽油8L,汽油每升7.43元,请估计小明家一个月(按30天计算)的汽油费用是多少元?(精确到0.1)23.小明是“环保小卫士”,课后他经常关心环境天气的变化,他了解到本周白天的平均气温,如表(“+”表示比前一天上升了,“﹣”表示比前一天下降了.单位:℃)星期一二三四五六日气温变化+1.1 ﹣0.3 +0.2 +0.4 +1 +1.4 ﹣0.3 已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的平均气温最高,最高是多少?(2)计算这一周每天的平均气温.24.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?25.下表是我国长江某段在汛期一周的水位变化情况(单位:m ).星 期 一 二 三四五 六 日 水位记录+2.40+0.60﹣4.00 ﹣1.60+3.50+2.00﹣1.50注:长江此段的警戒水位为35.50米,“+”表示比警戒水位高,“﹣”表示比警戒水位低.问长江该河段本周水位最高的一天是哪天?最低的一天是哪天?为什么?26.(1)已知a 是非零有理数,试求aa的值; (2)已知a ,b 是非零有理数,试求bba a 的值;(3)已知a ,b ,c 是非零有理数,请直接写出ccb b a a ++的值.参考答案与解析一.选择题(共12小题)1.如果+20%表示增加20%,那么﹣6%表示( ) A .增加14%B .增加6%C .减少6%D .减少26%【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%. 【解答】解:根据正数和负数的定义可知,﹣6%表示减少6%. 故选:C .2.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A .﹣24B .﹣20C .6D .36【分析】根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果. 【解答】解:原式=12+28﹣4=36. 故选:D .3.如图,数轴上点A 表示的数减去点B 表示的数,结果是( )A .8B .﹣8C .3D .﹣2【分析】根据数轴判断出A、B所表示的数,再相减并利用减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:由数轴可知点A表示的数是﹣3,点B表示的数是5,所以﹣3﹣5=﹣8.故选:B.4.一个数加上﹣12等于﹣5,则这个数是()A.17B.7C.﹣17D.﹣7【分析】本题是有理数的运算与方程的结合试题,根据题意列出算式,然后根据算法计算即可.【解答】解:设这个数为x,由题意可知x+(﹣12)=﹣5,解得x=7.所以这个数是7.故选:B.5.下列说法中,正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正的,就是负的;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1个B.2个C.3个D.4个【分析】先根据概念判断出正确的个数,再进行计数就可以了.【解答】解:整数和分数统称有理数,①正确;0也是有理数,②错误;0既不是正数也不是负数,③错误;分数只有正、负两种情况,④正确.正确的个数是2个.故选B.6.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>0【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.7.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为()A.6.011×109B.60.11×109C.6.011×1010D.0.6011×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:60 110 000 000=6.011×1010,故选:C.8.在﹣5,﹣101,﹣3.5,﹣0.01,﹣2,﹣212各数中,最大的数是( ) A .﹣12B .﹣101 C .﹣0.01 D .﹣5【分析】利用有理数大小比较的方法:1、在数轴上表示的两个数,右边的总比左边的数大.2、正数都大于零,负数都小于零,正数大于负数.3、两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.按照从小到大的顺序排列,找出答案即可.【解答】解:﹣212<﹣5<﹣3.5<﹣2<﹣101<﹣0.01. 故选:C .9.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a ﹣b +c =( ) A .﹣1B .0C .1D .2【分析】最小的自然数为0,最大的负整数为﹣1,绝对值最小的有理数为0,由此可得出答案.【解答】解:由题意得:a =0,b =﹣1,c =0, ∴a ﹣b +c =1. 故选:C .10.如果有理数a ,b 满足a +b >0,ab <0,则下列式子正确的是( ) A .当a >0,b <0时,|a |>|b | B .当a <0,b >0时,|a |>|b |C .a >0,b >0D .a <0,b <0【分析】根据有理数的加法法则(同号两数相加,取原来的复合式,并把绝对值相加,异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小的绝对值小)和有理数的乘法法则进行判断即可. 【解答】A 、∵a +b >0,∴当a >0,b <0时,|a |>|b |,故本选项正确;B 、∵a +b >0,∴当a <0,b >0时,|a |<|b |,故本选项错误;C 、∵ab <0,∴ab 一正一负,故本选项错误;D 、∵a +b >0,∴不能ab 都是负数,当ab 都是负数时a |b <0,故本选项错误. 故选:A .11.若a 、b 互为倒数,x 、y 互为相反数,则2(x +y )﹣ab 的值为( ) A .0B .1C .﹣1D .不能确定【分析】利用倒数,以及相反数的定义求出x +y ,ab 的值,代入原式计算即可得到结果. 【解答】解:根据题意得:ab =1,x +y =0, 则原式=0﹣1=﹣1. 故选:C .12.小灵做了以下4道计算题:①﹣6﹣6=0;②﹣3﹣|﹣3|=﹣6;③3÷21×2=12;④0﹣(﹣1)2016=﹣1. 则她做对的道数是( ) A .1B .2C .3D .4【分析】根据绝对值、有理数的加减法、乘除进行计算即可. 【解答】解:①﹣6﹣6=﹣12,故错误; ②﹣3﹣|﹣3|=﹣6,故正确;③3÷21×2=12,故正确;④0﹣(﹣1)2016=﹣1,故正确;故选:C.二.填空题(共6小题)13.在数轴上,大于﹣2.5且小于3.2的整数有﹣2,﹣1,0,1,2,3 .【分析】可借助数轴来确定符合要求的数.【解答】解:在数轴上,大于﹣2.5且小于3.2的整数有:﹣2,﹣1,0,1,2,3.故答案为:﹣2,﹣1,0,1,2,3.14.若x的相反数是3,|y|=5,则x+y的值为2或﹣8 .【分析】根据相反数的定义,绝对值的定义求出可知x、y的值,代入求得x+y的值.【解答】解:若x的相反数是3,则x=﹣3;|y|=5,则y=±5.x+y的值为2或﹣8.15.计算(﹣0.25)2011×(﹣4)2012=﹣4 .【分析】先确定符号得到原式=﹣0.252011×42012,再根据乘方的定义得原式=﹣(0.252011×42011)×4,然后利用积的乘方进行计算.【解答】解:原式=﹣0.252011×42012=﹣(0.252011×42011)×4=﹣(0.25×4)2011×4=﹣12011×4=﹣4.故答案为﹣4.16.太阳半径大约是696 000千米,用科学记数法表示为 6.96×108米.【分析】先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【解答】解:696 000千米=696 000 000米=6.96×108米. 17.已知|m |=3,n =2,且|m ﹣n |=n ﹣m ,则n ﹣m = 5 .【分析】根据已知条件确定m 的值,然后即可确定两个未知数的差. 【解答】解:∵|m |=3, ∴m =±3, ∵|m ﹣n |=n ﹣m , ∴m ﹣n <0, ∵n =2, ∴m =﹣3,∴n ﹣m =2﹣(﹣3)=2+3=5. 故答案为:5.18.若|m ﹣n |+(m +2)2=0,则m n的值41 ;若|a +2|+(b ﹣3)2=0,则a b= ﹣8 . 【分析】根据非负数的性质列式求出m 、n ,然后代入代数式进行计算即可得解; 根据非负数的性质列式求出a 、b ,然后代入代数式进行计算即可得解. 【解答】解:根据题意得,m ﹣n =0,m +2=0, 解得m =﹣2,n =﹣2,∴m n=(﹣2)﹣2=41;a +2=0,b ﹣3=0,解得a =﹣2,b =3, ∴a b=(﹣2)3=﹣8.故答案为:41;﹣8. 三.解答题(共8小题) 19.计算:(1)﹣12﹣(﹣9)﹣(+7)+|﹣3.62|;(2)﹣161﹣232+454﹣531+161﹣3.8; (3)(127﹣32+45﹣87)×(﹣24); (4)﹣24÷(232)2+521×(﹣61)﹣(﹣0.5)2 【分析】(1)原式利用减法法则及绝对值的代数意义化简,计算即可得到结果; (2)原式结合后,相加即可得到结果; (3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣12+9﹣7+3.62=﹣6.38;(2)原式=(﹣161+161)+(﹣232﹣531)+(454﹣3.8)=﹣8+1=﹣7; (3)原式=﹣14+16﹣30+21=﹣7;(4)原式=﹣16÷964﹣1211﹣41=﹣1241. 20.已知(a ﹣4)2+|a +b |=0,求(﹣a )2+(﹣b )3的值.【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 【解答】解:由题意得,a ﹣4=0,a +b =0, 解得a =4,b =﹣4,所以,(﹣a )2+(﹣b )3=(﹣4)2+[﹣(﹣4)]3=16+64=80.21.若a 、b 、c 三数在数轴上对应位置如图所示,化简|a |﹣|a +b |+|c ﹣b |+|a +c |.【分析】根据a 、b 、c 在数轴上的位置,进行绝对值的化简,然后合并同类项即可. 【解答】解:由图可得:a <b <0<c ,|a |﹣|a +b |+|c ﹣b |+|a +c |=﹣a ﹣(﹣a ﹣b )+c ﹣b ﹣a ﹣c =﹣a +a +b +c ﹣b ﹣a ﹣c =﹣a . 22.小明家买了一辆轿车,小明记录了连续7天中每天轿车行驶的路程,如下表所示,以50km 为基准,超过50km 的记为“+”,不足50km 的记为“﹣”. 时间 第一天 第二天 第三天 第四天 第五天 第六天 第七天 路程/km﹣8﹣10﹣12﹣16+41+26(1)求小明家的轿车这7天中平均每天行驶的路程;(2)若该轿车每行驶100km 耗汽油8L ,汽油每升7.43元,请估计小明家一个月(按30天计算)的汽油费用是多少元?(精确到0.1)【分析】(1)求出表格中数字之和,与50与7的积相加,除以7即可求出结果; (2)求出一千米的耗油,乘以单价,再乘以平均每天行驶的千米数,即可得到结果.【解答】解:(1)71[50×7+(﹣8﹣10﹣12+0﹣16+41+26)]=53(km ). 答:小明家的轿车这7天中平均每天行驶的路程为53 km .(2)由(1)中的结论可估计小明家的轿车一个月(按30天计算)行驶的路程为53×30=1 590(km ),所以估计小明家一个月(按30天计算)的汽油费用是1 590÷100×8×7.43≈945.1(元).23.小明是“环保小卫士”,课后他经常关心环境天气的变化,他了解到本周白天的平均气温,如表(“+”表示比前一天上升了,“﹣”表示比前一天下降了.单位:℃)星期一二三四五六日气温变化+1.1﹣0.3+0.2+0.4+1+1.4﹣0.3已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的平均气温最高,最高是多少?(2)计算这一周每天的平均气温.【分析】(1)根据正负数的意义可知,周六的平均气温最高;(2)只需依次相加即可分别求出这一周每天的平均气温.【解答】解:(1)周六的平均气温最高,最高是16.9+1.1﹣0.3+0.2+0.4+1+1.4=20.7(℃);(2)周一:16.9+1.1=18(℃);周二:18﹣0.3=17.7(℃);周三:17.7+0.2=17.9(℃);周四:17.9+0.4=18.3(℃);周五:18.3+1=19.3(℃);周六:19.3+1.4=20.7(℃);周日:20.7﹣0.3=20.4(℃).24.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?【分析】(1)根据题意可以求得这8名男生共做了多少个俯卧撑; (2)根据题目中的数据可以计算出这8名男生的达标率. 【解答】解:(1)7×8+[2+(﹣1)+0+3+(﹣2)+(﹣3)+1+0] =56+0 =56(个)即这8名男生共做了56个俯卧撑;(2)达标率是:85×100%=62.5%, 即这8名男生的达标率是62.5%.25.下表是我国长江某段在汛期一周的水位变化情况(单位:m ).星 期 一 二 三 四 五 六 日 水位记录+2.40+0.60﹣4.00﹣1.60+3.50+2.00﹣1.50注:长江此段的警戒水位为35.50米,“+”表示比警戒水位高,“﹣”表示比警戒水位低.问长江该河段本周水位最高的一天是哪天?最低的一天是哪天?为什么? 【分析】根据正数及负数的含义即可得出答案.【解答】解:本周水位最高是星期五,水位最低是星期三, ∵35.50+3.50=39米,35.50+(﹣4.00)=31.50米, ∴本周水位最高是星期五,水位最低是星期三.26.(1)已知a 是非零有理数,试求aa的值; (2)已知a ,b 是非零有理数,试求bba a 的值;(3)已知a ,b ,c 是非零有理数,请直接写出ccb b a a ++的值. 【解答】解:(1)当a 为正数时,a a =1;当a 为负数时,aa=﹣1 (2)当a ,b 同为正数时b b a a +=2;当a ,b 同为负数时,bba a +=﹣2;当a ,b 异号时,bba a +=0 (3)±1,±3.。
【单元测试】2022-2023学年华东师大版数学七年级上册第二章 有理数(测基础)

第二章 有理数【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,不是负数的是( )A.-2B.3C.58-D.-0.102.若海平面以上1045m ,记作+1045m ,则海平面以下155m ,记作( )A.-1200mB.-155mC.155mD.1200m3.-2022的相反数是( )A.2022B.12022-C.-2022D.120224.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -等于( )A.-2B.-4C.-6D.-85.在21,0,,23--中,最大的数是( ) A.1 B.0 C.23- D.-26.计算43(77)27(43)+-++-的结果是( )A.50B.-104C.-50D.1047.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A.-3B.-2C.-1D.18.计算11(5)555⎛⎫⨯-÷-⨯ ⎪⎝⎭的值为( ) A.1 B.25 C.-1 D.59.已知0a >,0b <,且a b <,则下列关系正确的是( )A.b a a b <-<<-B.a b a b -<<<-C.a b b a -<<-<D.b a b a <<-<- 10.下列各式计算正确的是( )A.216(21)6--⨯=--⨯B.33242444⎛⎫÷⨯=÷⨯ ⎪⎝⎭C.9899(1)(1)11-+-=-D.2243(43)-⨯=-⨯二、填空题(每小题4分,共20分)11.目前,我国基本医疗保险覆盖已超过13.5亿人,数据13.5亿用科学记数法表示为____________.12.图是一“数值转换机”,若输入的x 为-5,则输出的结果为_____________.13.现规定一种新的运算“*”:a a b b *=,如33228*==,则132⎛⎫*-= ⎪⎝⎭__________. 14.计算:21|2|3(6)2⎛⎫-+--⨯-= ⎪⎝⎭______. 15.若5x =-,则x =___________;若5x -=-,则x =___________;若5x =,且0x <,则x =____________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)把下列各数填入相应的括号内:1,34-,0,0.89,-9,-1.98,415,+102,-70,15%. 自然数:{ …};负整数:{ …};正分数:{ …};负有理数:{ …}.17.(8分)已知下列各有理数:5,-3.5,0,12,2,32-. (1)画出数轴,在数轴上标出这些数对应的点;(2)用“>”把这些数连接起来.18.(10分)利用运算律有时能进行简便计算.例19812(1002)121200241176⨯=-⨯=-=;例21623317233(1617)233233-⨯+⨯=-+⨯=.请你参考例题中的解法,用运算律简便计算:(1)999(15)⨯-;(2)413999118999()99918555⨯+⨯--⨯. 19.(10分)某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:10+,2-,3+,1-,9+,3-,2-,11+,3+,4-,6+.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?20.(12分)计算:(1)541()()( 1.5)112154-⨯-⨯-⨯;(2)13()(2)(4)24--⨯-⨯⨯-.21.(12分)计算:(1)411|35|16(2)2-+--÷-⨯;(2)21163(12)32⎛⎫⨯--÷- ⎪⎝⎭.答案以及解析1.答案:B解析:-2、58-、-0.10均是负数,3是正数. 2.答案:B解析:若海平面以上1045m ,记作+1045m ,则海平面以下155m ,记作-155m.3.答案:A解析:-2022的相反数是2022.故正确答案为A.4.答案:C解析:2(1)(1)2(1)51256f -=-+⨯--=--=-,故选C.5.答案:A 解析:3201,2-<-<<∴最大的数是1. 6.答案:C解析:43(77)27(43)(4343)(7727)50+-++-=-++-+=-.故选C.7.答案:A解析:由题意可知,点A 表示数a ,点B 表示数2,点C 表示数1a +,且0a <. ,|1|2CO BO a =∴+=,解得1a =(舍去)或3a =-.8.答案:B解析:11(5)555⎛⎫⨯-÷-⨯ ⎪⎝⎭1(5)(5)5255=⨯-⨯-⨯=.故选B. 9.答案:A 解析:因为0a >,0b <,a b <,所以0a -<,0b ->,a b ->,所以b a a b <-<<-.故选A.10.答案:C解析:A 选项,216268--⨯=--=-,而(21)618--⨯=-,故本选项错误;B 选项,31332424448÷⨯=⨯⨯=,而32242343⎛⎫÷⨯=÷= ⎪⎝⎭,故本选项错误;C 选项,9899(1)(1)11-+-=-,正确;D 选项,()2434936-⨯=-⨯=-,而22(43)(12)144-⨯=-=,故本选项错误.故选C.11.答案:91.3510⨯解析:13.5亿91350000000 1.3510==⨯.12.答案:21解析:由已知得,若输入x ,则输出的代数式为3(2)x --,当5x =-时,输出的结果为3(52)3(7)21-⨯--=-⨯-=.13.答案:18- 解析:31113228⎛⎫⎛⎫*-=-=- ⎪ ⎪⎝⎭⎝⎭. 14.答案:8解析:原式2938=+-=.15.答案:5±,5±,-5 解析:因为55x =-=,所以5x =±.因为55x x =-=-=,所以5x =±.因为5x =,且0x <,所以5x =-.16.答案:自然数:{1,0,+102,…};负整数:{-9,-70,…};正分数:{0.89,415,15%,…}; 负有理数:{34-,-9,-1.98,-70,…}. 17.答案:(1)如图所示.(2)由图可知,13520 3.522>>>>->-. 18.答案:解:(1)原式(10001)(15)=-⨯-1500015=-+14985=-;(2)原式413999[118()18]555=⨯+-- 999100=⨯99900=.19.答案:(1)收工时,检修小组距出发地有30千米,在东侧;(2)共耗油151.2升.解析:(1)由题意1023193211346+-+-+--++-+(10391136)(21324)=++++++-----4212=-30=(千米)答:收工时,检修小组距出发地有30千米,在出发地东侧;(2)由题意得1023193211346++-+++-+++-+-+++++-++ 1023193211346=++++++++++54=(千米),2.854151.2⨯=(升),答:若检修车每千米耗油2.8升,则从出发到收工共耗油151.2升.20.答案:解:(1)原式5435()()()121524=-⨯-⨯-⨯ 5435512152424=-⨯⨯⨯=-; (2)原式12332=-⨯⨯=-. 21.答案:(1)411|35|16(2)2-+--÷-⨯ 111216124522⎛⎫=-+-⨯-⨯=-++= ⎪⎝⎭. (2)原式1113166923321244⎛⎫=⨯-⨯-⨯-=-+=- ⎪⎝⎭.。
华东师大版七年级数学上册第二章 有理数 单元测试题(含答案)

华东师大版七年级数学上册第二章有理数单元测试题一、选择题1.如果“盈利5%”记作+5%,那么-3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%2.下列说法正确的是()A.一个有理数不是整数就是分数B.正整数和负整数统称为整数C.正整数、负整数、正分数、负分数统称为有理数D.0不是有理数3.12 020的倒数是()A.2 020 B.-2 020 C.-12 020D.12 0204.据不完全统计,截至2月12日,河南省已有7家外商投资企业为抗击“新冠肺炎”疫情捐赠总价值约2.61亿元的物资和现金.数据“2.61亿”用科学记数法表示为() A.2.61×107B.2.61×108 C.0.261×1010D.261×106 5.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则式子a2 019+2 020b+c2 019的值为()A.0 B.2 C.2 019 D.2 0206.如图,数轴上的A,B两点所表示的数分别是a,b,且|a|>|b|,那么下列结论中不正确的是()A.ab<0 B.a+b<0 C.a-b<0 D.a2b<0二、填空题7.如图所示,数轴上点A所表示的数的相反数是______48.因为互为相反数的两个数到原点的距离相等,所以到原点距离为2 019的点有______个,分别是______,即绝对值等于2 019的数是______.9.中国的陆地面积和领水面积共约9 970 000 km2,9 970 000这个数用科学记数法可表示为______.10.(1)近似数2.780精确到______;(2)用四舍五入法,把130 542精确到千位是______.(结果用科学记数法表示)11.某市冬季里的一天,早上6时气温是-12 ℃,中午11时上升了5 ℃,晚上8时又上升了-8 ℃,则晚上8时的气温是______℃.12.计算:(-15)÷5=______.13.定义a※b=a2-b,则(2※3)※1=______.14.通过你的观察并总结规律,第四个图形中y的值是______.15.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为______元.三、解答题16.在数轴上画出表示下列各数的点:-1.8,0,-3.5,103,612.再将这些数重新排成一行,并用“<”号把它们连接起来.17.计算:(1)-4+2×|-3|-(-5);(2)(-5)÷(-127)×0.8×(-2.25)÷7;(3)(79-56+218)×18-1.45×6+3.95×6;(4)(-1)3-[2-(-3)2]÷(-12).18.计算:(1)(-6)2×(12-13);(2)-22-(-1-0.5)×13×[2-(-4)2];(3)(-34-59+712)÷136.19.今抽查10袋盐,每袋盐的标准质量是500克,超出部分记为正,统计成下表:问:这10袋盐一共有多重?20.已知x ,y 为有理数,如果规定一种运算“*”,即x*y =xy +1,试根据这种运算完成下列各题.(1)求2*4的值;(2)求(2*5)*(-3)的值;(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?参考答案一、选择题1.如果“盈利5%”记作+5%,那么-3%表示(A)A.亏损3% B.亏损8% C.盈利2% D.少赚3%2.下列说法正确的是(A)A.一个有理数不是整数就是分数B.正整数和负整数统称为整数C.正整数、负整数、正分数、负分数统称为有理数D.0不是有理数3.12 020的倒数是(A)A.2 020 B.-2 020 C.-12 020D.12 0204.据不完全统计,截至2月12日,河南省已有7家外商投资企业为抗击“新冠肺炎”疫情捐赠总价值约2.61亿元的物资和现金.数据“2.61亿”用科学记数法表示为(B) A.2.61×107B.2.61×108 C.0.261×1010D.261×106 5.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则式子a2 019+2 020b+c2 019的值为(C)A.0 B.2 C.2 019 D.2 0206.如图,数轴上的A,B两点所表示的数分别是a,b,且|a|>|b|,那么下列结论中不正确的是(D)A.ab<0 B.a+b<0 C.a-b<0 D.a2b<0二、填空题7.如图所示,数轴上点A所表示的数的相反数是2.48.因为互为相反数的两个数到原点的距离相等,所以到原点距离为2 019的点有2个,分别是2_019和-2_019,即绝对值等于2 019的数是±2_019.9.中国的陆地面积和领水面积共约9 970 000 km2,9 970 000这个数用科学记数法可表示为9.97×106.10.(1)近似数2.780精确到0.001;(2)用四舍五入法,把130 542精确到千位是1.31×105.(结果用科学记数法表示)11.某市冬季里的一天,早上6时气温是-12 ℃,中午11时上升了5 ℃,晚上8时又上升了-8 ℃,则晚上8时的气温是-15℃.12.计算:(-15)÷5=-3.13.定义a※b=a2-b,则(2※3)※1=0.14.通过你的观察并总结规律,第四个图形中y的值是12.15.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.三、解答题16.在数轴上画出表示下列各数的点:-1.8,0,-3.5,103,612.再将这些数重新排成一行,并用“<”号把它们连接起来.解:如图.-3.5<-1.8<0<103<612.17.计算:(1)-4+2×|-3|-(-5);解:原式=-4+2×3+5 =-4+6+5 =7.(2)(-5)÷(-127)×0.8×(-2.25)÷7;解:原式=(-5)×(-79)×45×(-94)×17=-5×79×45×94×17=-1.(3)(79-56+218)×18-1.45×6+3.95×6;解:原式=79×18-56×18+218×18+6×(-1.45+3.95)=14-15+2+6×2.5 =1+15 =16.(4)(-1)3-[2-(-3)2]÷(-12).解:原式=(-1)-(2-9)×(-2) =(-1)-(-7)×(-2) =(-1)-14=-15. 18.计算:(1)(湖州中考)(-6)2×(12-13);解:原式=36×(12-13)=18-12 =6.(2)(南阳期末)-22-(-1-0.5)×13×[2-(-4)2];解:原式=-4-(-32)×13×(2-16)=-4-7 =-11.(3)(-34-59+712)÷136.解:原式=(-34-59+712)×36=-27-20+21 =-26.19.今抽查10袋盐,每袋盐的标准质量是500克,超出部分记为正,统计成下表:问:这10袋盐一共有多重?解:这10袋超出标准的克数为2×1+3×(-0.5)+3×0+1×1.5+1×(-2)=2-1.5+0+1.5-2=0(克).所以50×100=5 000(克).答:这10袋盐一共重5 000克.20.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4的值;(2)求(2*5)*(-3)的值;(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?解:(1)根据题意,得2*4=8+1=9.(2)根据题意,得(2*5)*(-3)=11*(-3)=-33+1=-32.(3)根据题意,得x*y=xy+1,y*x=yx+1,比较两个结果,可得x*y=y*x.11。
华师大版七年级上册第二章有理数复习单元测试题

有理数单元检测试卷学校 班级 姓名 成绩 一、选择题(每小题3分,共30分)1.如果+20%表示增加20%,那么%8-表示( )A.增加%12B.增加 %8-C.减少%8D.减少%28 2.下列各组数:①31,31-;②)6(+-,6;③π-,π;④21-,()21-.其中互为相反数的是( )A. 1组B. 2组C. 3 组D. 4组3.如图,数轴上点A 表示的数加上点B 表示的数,结果是( ) A.2 B. -2 C.82 D. -84.一个数减去12-等于5-,则这个数是( )A.17B.7C.17-D.7-5.下列说法正确的个数是( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A.1B. 2C. 3D. 46.有理数a 、b 在数轴上对应的位置如图所示,则正确的是( )A.0<abB.a+b>0C.a-b=0D.a-b>07.把算式9)7()3(2-++--写成省略正、负号的代数和的形式,正确的是( )A.9732-++B.9732---C.9732-++D.9732++- 8.如图,数轴上的点A 所表示的是有理数a ,则点A 到原点的距离是( ) A.a B.-a B C.a ± D.-|a| 9.将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109 C.6.011×1010 D .0.601 1×1011 10.在-5,-101,-3.5,-0.001,-2,-212各数中,最大的数是( )A. -0.001B.-101C. -12D.-5二、填空题(每小题3分,共24分)11.在数轴上,大于-2.5且小于3.6的整数有___ ___. 12.若x 的相反数是4,|y|=5,则x+y 的值为_________.13.甲、乙两同学进行数字猜谜游戏.甲说:一个数a 的相反数等于它本身;乙说:一个数b 的倒数也等于它本身.请你猜一猜:|b+a|=_______. 14.-0.4的倒数的绝对值是________. 15.计算()()20162015425.0-⨯-=___ ___. 16.31002.2⨯精确到 位.17.在数轴上,点A 表示数1,点B 与点A 相距3个单位长度,点B 表示数_______.18.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,…,你能从中发现底数为3的幂的个位数字有什么规律吗?根据你发现的规律回答:20163的个位数字是________. 三、解答题(共46分)19.(4分)把下列各数填在相应的大括号内:6,12.2-,32-,0,14159.3- 正数:{ ,…}; 非负整数:{ ,…}; 整数:{ ,…}; 负分数:{ , …}. 20.(10分)计算下列各题:(1)+4.3--4+-2.3-+4; (2)-4-2×32+-2×32;(3)-48÷-23--25×-4+-22 . (4)⎪⎭⎫⎝⎛+-⨯--21413112221.(4分)在数轴上标出下列各数:5.0,3-,0,313,并把它们用“>”连接起来.22.(8分)比较下列各对数的大小.(1)54-与43-; (2)54+-与54+-;(3)232⨯与2)32(⨯; (4)31-与%33-23.(6分)10袋小麦以每袋150 kg 为标准,超过的千克数记为正数,不足的千克数记为负数, 分别记为:-6,-3,-1,-2,+7,+3,+4,-3,-2,+1,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?24.(6分)出租车司机老张某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,-10,-3,+6,-5,-2,-7,+4,+6,-9,-11.(1)将第几名乘客送到目的地时,老张刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老张距上午出发点多远?(3)若汽车耗油量为0.4 L/ km,这天上午老张耗油多少升?25.(8分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):(1)本周四生产了多少辆摩托车?(2)本周实际生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?(3)产量最多的一天比产量最少的一天多生产了多少辆?有理数单元检测参考答案 12345678910CDACBACBCA 11.-2,-1,0,1,2,3 12. 1或9- 13. 1 14.25 15. -416.十位 17. -2或4 18.119.解:正数:{ 6 ,…};非负整数:{ 6 、 0 ,…}; 整数:{ 6 、 0 ,…};负分数:{ 12.2- 、 32-、 14159.3- , …}.20.解:(1)2 (2)132- (3)90- (4)9- 21.略 22.略23.解:因为 -6+-3+-1+-2+7+3+4+-3+-2+1=-2, 所以与标准质量相比较,这10袋小麦总计少了2 kg. 10袋小麦的总质量是1 500-2=1 498kg. 每袋小麦的平均质量是1 498÷10=149.8kg. 24.解:(1)因为+8++4+-10+-3++6+-5=0,所以将第6名乘客送到目的地时,老张刚好回到上午出发点. (2)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)+(-2)+(-7)+(+4)+(+6)+(-9)+(-11)=-19,所以将最后一名乘客送到目的地时,老张距上午出发点19 km.(3)因为|+8|+|+4|+|-10|+|-3|+|+6|+|-5|+|-2|+|-7|+|+4|+|+6|+|-9|+|-11| =75(km),75×0.4=30(L),所以这天上午老张耗油30 L.25.解:(1)本周四生产了摩托车304+(辆).4300=(2)本周实际生产量为(300-5)+(300+7)+(300-3)+(300+4)+(300+10)+(300-9)+(300-25)=2 079(辆),计划生产量为300×7=2 100辆,2 100-2 079=21辆,所以本周实际生产量与计划生产量相比减少了,减少了21辆. (3)产量最多的一天比产量最少的一天多生产了300+10-300-25=35 辆。
2021-2023学年华东师大版七年级数学上册第2章有理数单元测试卷含答案

1第2章一、选择题(每题3分,共24分)1.-10的相反数为( )A.110 B .-110 C .10 D .-102.规定:(→2)表示向右移动2,记作+2,则(←3)表示向左移动3,记作( )A .+3B .-3C .-13D .+133.注射器中的药品含量约为0.5 mL ,则关于近似数0.5的精确度说法正确的是( )A .精确到个位B .精确到十分位C .精确到百分位D .精确到千分位 4.在0,2,-1,-2这四个数中,最小的数是( )A .0B .2C .-1D .-25.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均 约为8×106 t .用科学记数法表示铝、锰元素总量的和,接近值是( )A .8×106 tB .16×106 tC .1.6×107 tD .16×1012 t6.下列说法中,正确的有( )①零除以任何数都得零;②任何数的偶次幂都是正数;③-1乘任何数仍得这个数;④互为倒数的两个数的积为1.A .1个B .2个C .3个D .4个7.马小虎在学习有理数的运算时,做了如下5道题:①(-5)+5=0;②-5-(3)=-8;③(-3)×(-4)=12;④⎝ ⎛⎭⎪⎫-78×⎝ ⎛⎭⎪⎫-87=1;⑤⎝ ⎛⎭⎪⎫-12÷⎝ ⎛⎭⎪⎫-23=13.他做对了( )A .5道B .4道C .3道D .2道8.有理数a ,b ,c 在数轴上对应的点的位置如图所示,那么下列式子中成立的是()(第8题)A.a-b+c<0 B.c-a-b>0 C.b-a-c>0 D.a+b+c<0 二、填空题(每题3分,共18分)9.-312的倒数是________.10.在数轴上到原点的距离小于4的整数可以为________.(任意写出一个即可) 11.绝对值小于6的所有整数的和是________.12.一座楼房每上一层要走21级台阶,从1楼到6楼共需走________级台阶.13.若(a+3)2+|b-2|=0,则(a+b)2 023=________.14.按规律填数:0,-3,8,-15,24,-35,48,________.三、解答题(15~18题每题6分,19~21题每题8分,22,23题每题9分,24题12分,共78分)15.把下列各数分别填在相应的数集内:-11,5%,-2.3,16,0,-34,2 023,-9.整数集:{…};分数集:{…};负数集:{…}.16.把下列各数在如图所示的数轴上表示出来,并用“<”号连接起来.-5,|-1.5|,-52,0,312,(-2)2.(第16题)317.计算:(1)(-32)-(-27)-(-72)-68;(2)-23÷⎝ ⎛⎭⎪⎫-43-24×⎝ ⎛⎭⎪⎫23-34+112;(3)-14-(1-0.5)×13×[2-(-3)2].18.已知︱a ︱=5,︱b ︱=3,且ab <0,求a -b 的值.19.一辆出租车在一条南北方向的道路上来回运送乘客,某一天早晨该车从A 地出发,晚上到达B 地,规定向北为正方向,当天行驶记录如下(单位:km): +18,-9,+7,-14,-6,+13,-6,-8.请回答下列问题:(1)B 地在A 地的什么方向?相距多少千米?(2)该出租车这一天共行驶多少千米?(3)若该出租车每千米耗油0.5 L ,这一天共耗油多少升?20.数学老师布置了一道思考题“计算:⎝ ⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫13-56”.小明仔细思考了一番,用了一种不同的方法解决了这个问题:原式的倒数为⎝ ⎛⎭⎪⎫13-56÷⎝ ⎛⎭⎪⎫-112=⎝ ⎛⎭⎪⎫13-56×(-12)=-4+10=6,所以⎝ ⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫13-56=16. 请你利用上述方法计算:⎝ ⎛⎭⎪⎫-124÷⎝ ⎛⎭⎪⎫13-16+38.21.对于有理数a,b,n,d,若|a-n|+|b-n|=d,则称a和b关于n的“相对关系值”为d,例如|2-1|+|3-1|=3,则2和3关于1的“相对关系值”为3.(1)-3和5关于1的“相对关系值”为________;(2)若a和2关于1的“相对关系值”为4,求a的值.22.对于有理数a,b,定义运算a⊕b=a×b+|a|-b.(1)计算(-2)⊕(-2)的值;(2)填空:3⊕(-2)________(-2)⊕3(填“>”“<”或“=”);5(3)计算[(-5)⊕4]⊕(-2)的值.23.有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,若a1=-12,从第二个数起,每个数都等于1与它前面那个数的差的倒数.(1)试计算a2,a3,a4的值;(2)根据以上计算结果,你能猜出a2 022和a2 023的值吗?并说明理由.24.已知点M,N在数轴上,点M对应的数是-3,点N在点M的右边,且距点M 4个单位长度,点P,Q是数轴上两个动点.(1)直接写出点N所对应的数;(2)当点P到点M,N的距离之和是5个单位长度时,点P所对应的数是多少?(3)如果P,Q分别从点M,N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5 s,点Q每秒走3个单位长度,当P,Q两点相距2个单位长度时,点P,Q对应的数各是多少7答案 一、1.C 2.B 3.B 4.D 5.C 6.A7.C 8.B二、9.-27 10.3(答案不唯一)11.0 12.105 13.-1 14.-63三、15.解:整数集:{-11,0,2 023,-9,…};分数集:⎩⎨⎧⎭⎬⎫5%,-2.3,16,-34,…; 负数集:⎩⎨⎧⎭⎬⎫-11,-2.3,-34,-9,… .16.解:在数轴上表示如图.(第16题)-5<-52<0<|-1.5|<312<(-2)2.17.解:(1)原式=-32+27+72-68=(-32-68)+(27+72)=-100+99=-1.(2)原式=23×34-⎝ ⎛⎭⎪⎫24×23-24×34+24×112 =12-()16-18+2=12-0=12.(3)原式=-1-12×13×(2-9) =-1-12×13×(-7) =-1+76=16.18.解:因为|a |=5,|b |=3,所以a =±5,b =±3.因为ab <0,所以a ,b 异号.9所以当a =5时,b =-3,此时a -b =5-(-3)=8;当a =-5时,b =3,此时a -b =-5-3=-8.所以a -b 的值为8或-8.19.解:(1)(+18)+(-9)+(+7)+(-14)+(-6)+(+13)+(-6)+(-8)=-5 (km).答:B 地在A 地的正南方向,相距5 km.(2)|+18|+|-9|+|+7|+|-14|+|-6|+|+13|+|-6|+|-8|=81 (km). 答:该出租车这一天共行驶81 km.(3)81×0.5=40.5 (L).答:该出租车这一天共耗油40.5 L.20.解:因为⎝ ⎛⎭⎪⎫13-16+38÷⎝ ⎛⎭⎪⎫-124 =⎝ ⎛⎭⎪⎫13-16+38×(-24) =-8+4-9=-13,所以⎝ ⎛⎭⎪⎫-124÷⎝ ⎛⎭⎪⎫13-16+38=-113. 21.解:(1)8(2)由题意得|a -1|+|2-1|=4,所以|a -1|=3,所以a -1=3或a -1=-3,解得a =4或a =-2.22.解:(1)(-2)⊕(-2)=(-2)×(-2)+|-2|-(-2)=4+2+2=8.(2)>(3)因为(-5)⊕4=(-5)×4+|-5|-4=-20+5-4=-19,所以[(-5)⊕4]⊕(-2)=(-19)⊕(-2)=(-19)×(-2)+|-19|-(-2)=59.23.解:(1)由题意,得a 2=11-⎝ ⎛⎭⎪⎫-12=23,a 3=11-23=3,a 4=11-3=-12. (2)a 2 022=3,a 2 023=-12.理由如下:由(1)可知,这若干个数是按3个一组循环的,因为2 022÷3=674,2 023÷3=674……1,所以a 2 022=a 3=3,a 2 023=a 1=-12.24.解:(1)点N 所对应的数是1.(2)设点P 所对应的数为m ,因为MN =4<5,所以分两种情况:①当点P 在点M 左边时,PM =-3-m ,PN =1-m ,因为PM +PN =5,所以-3-m +1-m =5,解得m =-3.5,即点P 对应的数是-3.5;②当点P 在点N 右边时,PM =m -(-3)=m +3,PN =m -1,因为PM +PN =5,所以m +3+m -1=5,解得m =1.5,即点P 对应的数是1.5. 综上所述,点P 对应的数是-3.5或1.5.(3)设点Q 运动的时间为t s ,则点P 对应的数是-3-2(t +5),点Q 对应的数是1-3t ,根据题意,得|-3-2(t +5)-(1-3t )|=2.当-3-2(t +5)-(1-3t )=2时,解得t =16.此时点P 对应的数是-45,点Q 对应的数是-47;当-3-2(t +5)-(1-3t )=-2时,解得t =12.此时点P 对应的数是-37,点Q 对应的数是-35.综上所述,当P ,Q 两点相距2个单位长度时,点P 对应的数是-45、点Q对应的数是-47或点P对应的数是-37、点Q对应的数是-35.11。
义务教育华师大版七年级数学上学期第二章有理数检测题含答案初中数学试卷.doc

第1,2章检测题(时间:100分钟 满分:120分)0401620090C 一、选择题(每小题3分,共30分)1・(2016-天津)计算(-2)-5的结果等于(A )A • —7 B. -3 C. 3 D. 7 2・(2015-眉山)一2的倒数是(C )A.yB. 2C. -*D. ~23 •若()一(一3)=2,则括号内的数是(B )A • 1 B. -1 C. 5 D. -54 •下列计算止确的是(D )A ・3—(一5)=一2 B. (-1)"+(-1)100=-2c - D. (-2015)X0^(-2016)=0根据此规律确定x 的值为(C )A • 135 B. 170 C. 209 D. 25214 2 9 2 6 3 20 3 8 4 35 4 105 54• ••10 •已知a 是小于1的正数/则一a ” —a 2 一、一+的大小关系为(B) cl cl r 1_茁>_孑11 • (2015•南通)如果水位升高6 m 时水位变化记作+6 m »那么水位下降6 m 时水位变化记作 -6m •— —-3的相反数是一 3 •(2015•资阳)太阳的半径约为696000千米、用科学记数法表示为0.96X疋 千米.若a 的倒数为一1,则la —11= 2・已知板一2|与(b+3)2互为相反数,则ab-b a 的值为_-75.观察下列各小题中依次排列的一些数,请按你发现的规律,接着写出后面的3个数.2 3 4 5 6 7 8 9« 9 , | « « , 1y y « • • • • 5 7 9 11 13 —15— ——77— —19— ,3 4 5 6 7 8 9 108 15 24 35 48 -63— ~~80- —99-18 •下列说法:①0的绝对值是0,0的倒数也是0;②若a ,b 互为相反数,则a+b=0;③ 若a<0,则|a| = —a ;④若|a| = a ,则a>0;⑤若a 2=b 2 »则a=b ;⑥若|m|=|n|,则m = n.其中正确的 有—②(填序号)三、解答题(共66分)19 • (6分)把下列各数填在相应的大括号里:一3 ‘ 0.2,0 ‘ -|+审,-5%,-y ,|-9|,一(一 1),~23,+3*.(1) 正整数集合:{ \~9\,-(-/)•••);(2) 负分数集合:{ -| +肖’ _5%‘ -y …};(3) 负数集合:{ 一3, -1 +肖,一5%,-乡,一2九・・};(4) 整数集合:{ 一3,0,|-9|,一(一 Z), 4 22 1(5) 分数集合:{ 0.2 > T+J ,_5%,一下、+%・・・};(6) 非负数集合:{ 0.2,0, \-9\,-(-/) » +# …}・20・(12分)计算:I 2 1 5(1) |—2|m (—艮+ (—5)X(—2); (2)(§—㊁+&)X(—24);解:原式=6解:凍式=一24(3)15-(-|+|); (4)(—2尸一|—7|—3-(—£)+(—3尸 X (―妒. 解:履式=一22.5解:原式=621 • (6分)如图‘图中数轴的单位长度为1.二、填空题(每小题3分,共24分)11^ 12) ✓fv 根据如图所示的程序计算—若输入「的值为T ,则输出y 的值为$ .Q P R S T(1)如果点P,T表示的数互为和反数,那么点S表示的数是多少?(2)如果点R,T表示的数相互为相反数,那么点S表示的数是正数,还是负数?此时图中表示的5个点中,哪一点表示的数的绝对值最大?为什么?解;(7)A S亥斥的赵务0(2)支S家示的赦卷一是负超,此时点Q眾斥的毅的他衣值眾女,因笛此讨支Q南总点的22• (10分)冇20筐白菜,以每筐25畑为标准,超过和不足的千克数分别用正、负数來表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐重畑;(2)与标准质量比较,20筐口菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?解;(2)( - 3) XI + ( - 2) X4 + ( - L5) X2 + 0 X3 + 1X2 + 2.5X8= - 3 - 8 - 3 + 2 + 20=8 (kg)» 所“鸟标帝质娄比较» 20 K白莱总针^8 kg(3)(25X20 + 8) X2.6=1320.8(免),所“出售这20 雀可彙1320.8免23• (10分)a,匕为冇理数,若规定一种新的运算“㊉”,定义a®b = a2-h2-ab+l,请根据“㊉”的定义计算:(1)-3 ㊉4;(2)( - 1 ㊉1)㊉(一2).解:(1)-3^4=(-3)2-42-(-3)X4+l = 6(2)( -1 ei) 0(-2) = [(-7)2一尸一(一QXZ + Z] 2) = 2 ^-2)=22-(-2)2-2X(-2) +1 = 524• (12分)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是一2,已知点A,B是数轴上的点,请参照图并思考,完成F列各题.(1)如果点A表示一3,将点A向右移动7个单位长度,那么终点B表示的数是$ ,A,B两点间的距离是_Z_;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A,B两点间的距离是(3)如果点A表示数一4、将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是—二,A,B两点间的距离是典;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?- 5 •・5・4・3・20 12 3 4M / (4)m + n-p ‘ \n -p\25• (10 分)已知|a|=5,b2=4,且a<b > 求ab-(a+b)的值.解:由|a| = 5 得:a = ±55由b2=4 b = ±2乂Va<b » .\a= -5 » b = ±2 i a= -5 » b = 2时5 ab - (a + b) = (- 5) X2一(一5 + 2)=-7;i a=-5, b= -2时 * ab - (a + b) = (- 5) X( - 2)- [-5 + (-2)J = 77我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
初中数学秋华东师大版七年级数学上第2章有理数检测题含答案解析.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示( )A.支出20元B.收入20元C.支出80元D.收入80元试题2:计算:×2=( )A.-1B.1C.4D.-4试题3:如图,数轴上点表示的数减去点表示的数,结果是()A. B. C. D.试题4:一个数加上等于,则这个数是()A. B. C. D.试题5:下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B. 2C. 3D. 4试题6:有理数、在数轴上对应的位置如图所示,则()A. B.C. D.试题7:如图,数轴上两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数试题8:如图,数轴上的点所表示的是有理数,则点到原点的距离是()A. B. C. D.试题9:2016年3月份我省农产品实现出口额8 362万美元,其中8 362万用科学记数法表示为( )C.0.836试题10:在-3,-1,1,3四个数中,比-2小的数是( )A.-3B.-1C.1D.3试题11:在数轴上,大于-2.5且小于3.2的整数有______.试题12:若的相反数是,,则的值为_________.试题13:甲、乙两同学进行数字猜谜游戏.甲说:一个数的相反数等于它本身;乙说:一个数的倒数也等于它本身.请你猜一猜:_______.试题14:-0.2的倒数的绝对值是________.试题15:计算______.试题16:上海世博会的中国馆建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为构思主题,建筑面积为4.645 7万平方米,精确到千位是万平方米.试题17:在数轴上,点A表示数1,点B与点A相距3个单位长度,点B表示数_______.试题18:观察下列各式:,,,,,,…,你能从中发现底数为3的幂的个位数字有什么规律吗?根据你发现的规律回答:的个位数字是________.试题19:把下列各数填在相应的大括号内:.正数:{ ,…};非负整数:{ ,…};整数:{ ,…};负分数:{ ,…}.试题20:试题21:;试题22:试题23:已知,,且,求的值.试题24:在数轴上标出下列各数:并把它们用“>”连接起来.试题25:比较下列各对数的大小.与;试题26:比较下列各对数的大小.与;试题27:比较下列各对数的大小.与;试题28:比较下列各对数的大小.试题29:袋小麦以每袋为标准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?试题30:计算6÷.方方同学的计算过程如下:原式=6÷+6÷=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.试题31:同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.(1)求|5-(-2)|=______;(2)找出所有符合条件的整数,使得=7.试题32:出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:)如下:(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4/,这天上午老王耗油多少升?试题33:某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):星期一二三四五六日增减-5 +7 -3 +4 +10 -9 -25(1)本周三生产了多少辆摩托车?(2)本周实际生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?(3)产量最多的一天比产量最少的一天多生产了多少辆?试题1答案:C 解析:在实际问题中,由于“收入”和“支出”的意义相反,因此在用正负数表示相反意义的量时,若收入100元记作+100元,那么-80元表示支出80元,所以选项C正确.点拨:解答此类问题的关键是正确理解“-”的意义,本题中即理解“收入”的相反意义是什么.试题2答案:A 解析:×2= 1.点拨:两数相乘,同号得正,异号得负,并把绝对值相乘;0乘以任何一个数都得0.试题3答案:.B 解析:由数轴可知点表示的数是,点表示的数是,所以.故选B.试题4答案:B 解析:因为一个数加上等于,所以-5减去-12等于这个数,所以这个数为,故选B.试题5答案:B 解析:整数和分数统称为有理数,所以①正确;有理数包括正有理数、负有理数和零,所以②不正确;整数包括正整数、负整数和零,所以③不正确;分数包括正分数和负分数,所以④正确.故选B.试题6答案:A 解析:由题图知是负数,是正数,离原点的距离比离原点的距离远,所以,故选A.试题7答案:D 解析:从题图中可以看出两点表示的数分别为,它们的和为,积为(是负数),故选D.试题8答案:B 解析:依题意,得点到原点的距离为,又因为,所以,所以点到原点的距离为,故选B.试题9答案:A 解析:先把8 362万写成83 620 000,再根据科学记数法的概念知8 362万=83 620 ,故选A.规律:用科学记数法表示一个数时要明确:(1)a值的确定:1≤|a|<10;(2)n值的确定(n是正整数):①当原数的绝对值大于或等于10时,原数表示成的形式,n等于原数的整数位数减1;②当原数的绝对值小于1时,原数表示成的形式,n等于原数左起第一位非零数字前所有零的个数(含小数点前的零).试题10答案:A 解析:正数大于负数,两个负数比较大小,绝对值大的数反而小,所以选项A正确.方法:有理数的大小比较要遵循“正数大于0,负数小于0,正数大于一切负数”的原则.试题11答案:.,-1,0,1,2,3 解析:可借助数轴来确定符合要求的数.试题12答案:解析:因为的相反数是,所以.因为,所以.所以的值为.试题13答案:1 解析:因为相反数等于它本身的数是,倒数等于它本身的数是,所以,所以试题14答案:5 解析:,的倒数为,试题15答案:解析: .试题16答案:4.6 解析:4.645 7万的千位数字是6,6后面的4<5,所以4.645 7万精确到千位是4.6万.试题17答案:-2或4 解析:在数轴上,与表示数1的点相距3个单位长度的点有两个,即在表示1的点的左右两边各一个,注意不要漏解.试题18答案:解析:因为,所以的个位数字是.试题19答案:解:正数:非负整数:;整数:;负分数:.试题20答案:试题21答案:试题22答案:试题23答案:解:因为,所以.因为,所以.又因为,所以.所以或. 试题24答案:.解:在数轴上表示如下图:把它们用“>”连接起来为:.试题25答案:因为所以试题26答案:因为=1,,所以.试题27答案:因为所以试题28答案:将题中的每个分数都加1,得因为所以试题29答案:解:因为所以与标准质量相比较,这10袋小麦总计少了.10袋小麦的总质量是.每袋小麦的平均质量是试题30答案:分析:除法没有分配律,题中有除法与加法,还有括号,要先计算括号里面的,再作除法.解:不正确,===-36.试题31答案:分析:(1)直接去括号,再按照去绝对值号的方法去绝对值号就可以了.(2)要求的整数值可以进行分段计算,令或,可分为3段进行计算,最后确定的值.解:(1)7.(2)令或,则或.当时,有,∴,∴.当时,有,∴,,∴.当2时,有,∴,,∴.综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.试题32答案:解:(1)因为,所以将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)+(-2)+(-7)+(+4)+(+6)+(-9)+(-11)=-19,所以将最后一名乘客送到目的地时,老王距上午出发点.(3)因为|+8|+|+4|+|-10|+|-3|+|+6|+|-5|+|-2|+|-7|+|+4|+|+6|+|-9|+|-11|=75(km),75×0.4=30(L),所以这天上午老王耗油.试题33答案:解:(1)本周三生产了摩托车.(2)本周实际生产量为(300-5)+(300+7)+(300-3)+(300+4)+(300+10)+(300-9)+(300-25)=2 079(辆),计划生产量为,,所以本周实际生产量与计划生产量相比减少了,减少了辆.(3)产量最多的一天比产量最少的一天多生产了.。
2021年华东师大版数学七年级上册第2章《有理数》单元检测卷(含答案)

华东师大版数学七年级上册第2章《有理数》单元检测卷一、选择题1.如果水位升高3m 时,水位变化记做+3m ,那么水位下降3m 时,水位的变化记做( )A.-3mB.3mC.6mD.-6m2.据统计我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为( )A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10123.+(-3)的相反数是( )A.-(+3)B.-3C.3D.+(- 13) 4.数轴上的动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C.若点C 表示的数为1,则点A 表示的数为( )A.7B.3C.-3D.-25.下列说法正确的是( )A.任何有理数的绝对值一定是正数B.互为相反数的两个数的绝对值也互为相反数C.绝对值相等的两个数一定相等D.绝对值等于它本身的数是非负数6.-34,-56,-78这三个数的大小关系是( ) A.-78<-56<-34 B.-78<-34<-56 C.-56<-78<-34 D.-34<-56<-787.一天早晨的气温是-7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是( )A.-5℃B.-6℃C.-7℃D.-8℃8.若|m|=3,|n|=5,且m ﹣n >0,则m+n 的值是( )A.﹣2B.﹣8或8C.﹣8或﹣2D.8或﹣29.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×(-错误!未找到引用源。
)÷(-1)=32;④(-4)÷12×(-2)=16. 其中计算正确的个数为( )A.4个B.3个C.2个D.1个10.在(-3)3,(-3)2,-(-3),-|-3|这四个数中,负数有( )A.1个B.2个C.3个D.4个11.已知实数x ,y 满足|x ﹣3|+(y+4)2=0,则代数式(x+y)2019的值为( )A.﹣1B.1C.2012D.﹣201812.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S -S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32014的值是( )A .32015-1B . 32014-1C .D .二、填空题13.计算:3-(-6)=_______14.已知一个数的倒数等于它本身,则这个数为____________15.若a=-78,b=-58,则a 、b 的大小关系是a b(填“>”“<”或“=”). 16.如果(a+2)2+|1﹣b|=0,那么(a+b)2015= .17.已知|x|=3,则x=_______;18.已知a 1,a 2,a 3,a 4,a 5,a 6,…,是一列数,已知第1个数a 1=4,第5个数a 5=5,且任意三个相邻的数之和为15,则第2019个数a 2019的值是________.三、解答题19.计算:434-(+3.85)-(-314)+(-3.15).20.计算:-1+5÷(-错误!未找到引用源。
华东师大新版 七年级上册数学 第2章 有理数 单元测试卷

华东师大新版七年级上册数学第2章有理数单元测试卷一.选择题(共10小题).1.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.+2.5B.﹣0.6C.+0.7D.﹣3.52.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30 千克B.25.51 千克C.24.80 千克D.24.70 千克3.用﹣a表示的数一定是()A.负数B.正数或负数C.负整数D.以上全不对4.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的﹣3.6和x,则x的值为()A.4.2B.4.3C.4.4D.4.55.如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1B.0C.3D.46.下列各数中,既不是正数也不是负数的是()A.0B.﹣(﹣1)C.﹣D.27.下列说法中正确的个数有()①﹣4.2是负分数;②3.7不是整数;③非负有理数不包括零;④正有理数、负有理数统称为有理数;⑤0是最小的有理数A.1个B.2个C.3个D.4个8.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是()A.2018或2019B.2019或2020C.2020或2021D.2021或2022 9.有理数a、b、c在数轴上所对应的点如图所示,则下列结论正确的是()A.a+b<0B.a+b>0C.a+c<0D.b+c>010.如图,检测4个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量角度看,最接近标准的是()A.B.C.D.二.填空题11.如果节约20元钱,记作“+20”元,那么浪费15元钱,记作元.12.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作.13.如果﹣20%表示减少20%,那么+6%表示.14.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,中,整数是.15.在数轴上表示﹣10的点与表示﹣4的点的距离是.16.数轴上表示1的点和表示﹣2的点的距离是.17.如果向东运动8m记作+8m,那么向西运动5m应记作m.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:.负数集:.有理数集:.19.数轴上,如果点A所表示的数是﹣3,已知到点A的距离等于4个单位长度的点所表示的数为负数,则这个数是.20.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N两点间的距离为12个单位长度.三.解答题21.把下列各数分类,并填在表示相应集合的大括号内:﹣11,,﹣9,0,+12,﹣6.4,﹣π,﹣4%.(1)整数集合:{…};(2)分数集合:{…};(3)非负整数集合:{…};(4)负有理数集合:{…}.22.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A处,那么油箱的油够不够?若不够,途中至少需补充多少升油?23.一家水果店从果园购进10筐苹果,每筐以50kg为标准,超过标准记作正,不足标准记作负,现经过磅秤称量记录如下(单位:kg):+1,+1.5,﹣0.8,﹣2,0,+1.2,﹣0.5,﹣1,0,+2.(1)问该水果店一共购进苹果多少千克?(2)水果店招牌上写着:苹果单价4元/kg,优惠价3.5元/kg.若该水果店的苹果收购价为2元/kg,则该水果店所购苹果全部售完时共盈利多少元?24.某检修小组乘汽车检修公路道路.向东记为正,向西记为负.某天自A地出发.所走路程(单位:千米)为:+22,﹣3,+4,﹣2,﹣8,﹣17,﹣2,+12,+7,﹣5;问:①最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?②若每千米耗油0.05升,则今天共耗油多少升?25.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5﹣2﹣5+15﹣10+16﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.26.把下列各数填在相应的括号内:﹣19,2.3,﹣12,﹣0.92,,0,﹣,0.563,π正数集合{…};负数集合{…};负分数集合{…};非正整数集合{…}.27.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问:①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?参考答案与试题解析一.选择题1.解:|+2.5+=2.5,|﹣0.6|=0.6,|+0.7|=0.7,|﹣3.5|=3.5,3.5>2.5>0.7>0.6,故选:B.2.解:∵一种面粉的质量标识为“25±0.25千克”,∴合格面粉的质量的取值范围是:(25﹣0.25)千克~(25+0.25)千克,即合格面粉的质量的取值范围是:24.75千克~25.25千克,故选项A不合格,选项B不合格,选项C合格,选项D不合格.故选:C.3.解:a>0时,﹣a<0,是负数,a=0时,﹣a=0,0既不是正数也不是负数,a<0时,﹣a>0,是正数,综上所述,﹣a表示的数可以是负数,正数或0.故选:D.4.解:根据数轴可知:x﹣(﹣3.6)=8﹣0,解得x=4.4.故选:C.5.解:点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.6.解:0既不是正数也不是负数,故选:A.7.解:①﹣4.2是负分数是正确的;②3.7不是整数是正确的;③非负有理数包括零,原来的说法错误;④正有理数、0、负有理数统称为有理数,原来的说法错误;⑤没有最小的有理数,原来的说法错误.故说法中正确的个数有2个.故选:B.8.解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2020+1=2021,∴2020厘米的线段AB盖住2020或2021个整点.故选:C.9.解:由数轴知,﹣4<b<﹣3<﹣1<a<0<1<c<2,∴a+b<0,a+c>0,b+c<0,故选:A.10.解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.二.填空题11.解:∵节约20元钱,记作“+20”元,∴浪费15元钱,记作﹣15元.故答案为:﹣15.12.解:根据题意:收入记作“+”,则支出记作“﹣”,∴同一天支出水、电、维修等各种费用600元,应记作﹣600元.故答案为:﹣600元.13.解:“正”和“负”相对,如果﹣20%表示减少20%,那么+6%表示增加6%.14.解:0,﹣,2是整数,故答案为:0,﹣,2.15.解:在数轴上,表示﹣10的点与表示﹣4的点的距离是|﹣4﹣(﹣10)|=6.故答案为:616.解:∵|1﹣(﹣2)|=3,∴数轴上表示﹣2的点与表示1的点的距离是3.故答案为:3.17.解:正”和“负”相对,所以向东是正,则向西就是负,因而向西运动5m应记作﹣5m.故答案为:﹣5.18.解:分数集:5%、﹣2.3、、3.1415926、﹣;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.19.解:∵点A所表示的数是﹣3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是﹣3﹣4=﹣7.故答案为:﹣7.20.解:分两种情况,①当点N沿着数轴向右移动,则点M表示的数为(﹣2+5t),点N表示的数为(4+4t),由MN=12得,|(﹣2+5t)﹣(4+4t)|=12,解得,t=﹣6(舍去),或t=18;②当点N沿着数轴向左移动,则点M表示的数为(﹣2+5t),点N表示的数为(4﹣4t),由MN=12得,|(﹣2+5t)﹣(4﹣4t)|=12,解得,t=﹣(舍去),或t=2;故答案为:2或18.三.解答题21.解:(1)整数集合:{﹣11,﹣9,0,+12…};(2)分数集合:{,﹣6.4,﹣4%…};(3)非负整数集合:{0,+12…};(4)负有理数集合:{﹣11,,﹣9,﹣6.4,﹣4%…}.故答案为:(1)﹣11,﹣9,0,+12;(2),﹣6.4,﹣4%;(3)0,+12;(4)﹣11,,﹣9,﹣6.4,﹣4%.22.解:(1)10+(﹣9)+7+(﹣15)+6+(﹣5)+4+(﹣2)=﹣4(千米).答:他在出发点的西方,距出发点4千米;(2)总耗油量(10+|﹣9|+7+|﹣15|+6+|﹣5|+4+|﹣2|+4)×0.2=62×0.2=12.4(升),12.4﹣10=2.4(升).答:不够,途中至少需补充2.4升油.23.解:(1)50×10+(1+1.5﹣0.8﹣2+0+1.2﹣0.5﹣1+0+2)=501.4(kg);答:该水果店一共购进苹果501.4千克;(2)501.4×(3.5﹣2)=752.1(元),答:该水果店所购苹果全部售完时共盈利752.1元.24.解:①(+22)+(﹣3)+(+4)+(﹣2)+(﹣8)+(﹣17)+(﹣2)+(+12)+(+7)+(﹣5)=45+(﹣37)=8千米,所以,不能回到出发点,在A地东边8千米处;②|+22|+|﹣3|+|+4|+|﹣2|+|﹣8|+|﹣17|+|﹣2|+|+12|+|+7|+|﹣5|=22+3+4+2+8+17+2+12+7+5=82千米,82×0.05=4.1升.25.解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.26.解:正数集合{2.3,,0.563,π…};负数集合{﹣19,﹣12,﹣0.92,﹣…};负分数集合{﹣0.92,﹣…};非正整数集合{﹣19,﹣12,0 …}.故答案为:{ 2.3,,0.563,π…};{﹣19,﹣12,﹣0.92,﹣…};{﹣0.92,﹣…};{﹣19,﹣12,0 …}.27.解:(1)如图所示:(2)CD=3.5﹣1=2.5,BC=1﹣(﹣2)=3;(3)MN=|a﹣b|;(4)①依题意有2t﹣t=3,解得t=3.故t为3秒时P,Q两点重合;②依题意有2t﹣t=3﹣1,解得t=2;或2t﹣t=3+1,解得t=4.故t为2秒或4秒时P,Q两点之间的距离为1.故答案为:2.5,3;|a﹣b|.。
华东师大版七年级上册第二章《有理数》单元测试卷(含答案)

华东师大版七年级上册第二章《有理数》单元测试卷本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。
题号 一 二三全卷总分总分人1718 19 20 21 22 得分注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。
一、选择题(本大题共12个小题,每小题4分,共48分.) 1、下列说法错误的是( C ) A 、0既不是正数,也不是负数B 、零上6摄氏度可以写成+6℃,也可以写成6℃C 、向东走一定用正数表示,向西走一定用负数表示D 、若盈利1000元记作+1000元,则﹣200元表示亏损200元2、“珍爱地球,人与自然和谐共生”是今年世界地球日的主题,旨在倡导公众保护自然资源。
全市现有自然湿地28700公顷,人工湿地13100公顷,这两类湿地共有( B )A 、51018.4⨯公顷B 、41018.4⨯公顷C 、31018.4⨯公顷D 、2108.41⨯公顷3、如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm则数轴上点B 所对应的数b 为( C ) A 、3B 、1-C 、2-D 、3-4、2022-的相反数是( A ) A 、2022B 、2020-C 、20001-D 、200015、若0|3||2|=++-b a ,则a b 的值为( D ) A 、1B 、1-C 、6-D 、96、把()()()5473+-+---写成省略加号的和的形式是( B ) A 、5473-+--B 、5473-++-C 、5473+-+D 、5473----7、下列各数:1--,23-,321⎪⎭⎫ ⎝⎛-,232⎪⎭⎫ ⎝⎛-,()20211--,其中负数有( C )A 、2个B 、3个C 、4个D 、5个8、计算()()2022202122-+-等于( D ) A 、40432-B 、2-C 、20212-D 、202129、如图,数轴上A 、B 两点分别对应有理数a 、b ,则下列结论:①0>ab ;②0>-b a ;③0>+b a ;④0||||>-b a ; ⑤01<+a ; ⑥01<-b ;其中正确的有( B )A 、1个B 、2个C 、3个D 、4个10、制作拉面需将长方形面条摔匀拉伸后对折,并不断重复、随着不断地对折,面条根数不断增加、若一拉面店一碗面约有64根面条,一天能拉出2048碗拉面,用底数为2的幂表示拉面的总根数为( C )A 、62B 、112C 、172D 、66211、设0≠abc ,且0=++c b a ,则abcabc c c b b a a +++的值可能是( A ) A 、0 B 、1±C 、2±D 、0或2±12、计算:100994322121212121211+++++++ 结果是( C ) A 、100211-B 、101211-C 、100212-D 、101212- 二、填空题(本大题共4个小题,每小题4分,共16分)13、若a 是最大的负整数,b 是最小的正整数,c 的相反数等于它本身,则____2=+-c b a ; 【答案】2-14、20222021654321-++-+-+- 的值是 ;【答案】1011-15、大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚、这启发人们设计了一种新的加减记数法:比如:9写成11,11011-=1;198写成220,2200220-=; 7683写成32321,323201000032321+-=总之,数字上画一杠表示减去它,按这个方法请计算_________12431325=-;【答案】2068 16、在数学中,为了简便,记()n n k nk +-++++=∑=11321 ,1!1=,12!2⨯=,123!3⨯⨯=3,…,()()12321!⨯⨯⨯⨯-⨯-⨯= n n n n ,则_________!2009!20102010120091=+-∑∑==k k k k .【答案】0 三、解答题(本大题6个小题,共56分。
华师大七年级上数学第二章有理数单元检测试题及答案(K12教育文档)

华师大七年级上数学第二章有理数单元检测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(华师大七年级上数学第二章有理数单元检测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为华师大七年级上数学第二章有理数单元检测试题及答案(word版可编辑修改)的全部内容。
华师大七年级上数学第二章有理数单元检测试题班级 学号 姓名 成绩一、填空题(每题3分,共24分)1、计算-3+1= ;=⎪⎭⎫ ⎝⎛-÷215 ;=-42 .2、“负3的6次幂”写作 。
25-读作 ,平方得9的数是 。
3、-2的倒数是 , 311-的倒数的相反数是 。
有理数 的倒数等于它的绝对值的相反数。
4、根据语句列式计算: ⑴-6加上-3与2的积: ;⑵-2与3的和除以-3: ; ⑶-3与2的平方的差: 。
5、用科学记数法表示:109000= ;89900000≈ (保留2个有效数字)。
6、按四舍五入法则取近似值:70。
60的有效数字为 个,2.096≈ (精确到百分位);15.046≈ (精确到0.1). 7、在括号填上适当的数,使等式成立: ⑴⨯=÷-78787( );⑵8-21+23-10=(23-21)+( ); ⑶+-=⨯-69232353( )。
8、在你使用的计算器上,开机时应该按键 。
当计算按键为时,虽然出现了错误,但不需要清除,补充按键 就可以了。
二、选择题(每题2分,共20分)9、①我市有58万人;②他家有5口人;③现在9点半钟;④你身高158cm ;⑤我校有20个班;⑥他体重58千克。
华东师大版七年级数学上册第二章 有理数 单元测试卷(含答案)

第二章 有理数 单元测试卷班级_________ 座号_________姓名__________ 得分________ 一、选择题 (每小题2分,共24分)1、下列说法正确的是( )A 、一个数前面加上“-”号这个数就是负数;B 、非负数就是正数;C 、正数和负数统称为有理数D 、0既不是正数也不是负数;2、 在-(-2),-|-7|,-|+1|,|-( )中,负数有,511(-|32+A 、1个B 、2个C 、3个D 、4个3、 一个数的倒数是它本身的数 是( )A 、1B 、-1C 、±1D 、04. 下列计算正确的是()A 、(-4)2=-16B 、(-3)4=-34C 、(-34-)31(-D 12515143=-=、5、 (-0.2)2020× 52020+(-1)2020+(-1)2019的值是( )A 、3B 、-2C 、 -1D 、16、 如果两个数的绝对值相等,那么这两个数是( )A 、互为相反数B 、相等C 、积为0D 、互为相反数或相等7、 下列说法正确的是( )A 、若两具数互为相反数,则这两个数一定是一个正数,一个负数;B 、一个数的绝对值一定不小于这个数;C 、如果两个数互为相反数,则它们的商为-1;D 、一个正数一定大于它的倒数;8、 若a<0,b<0,则下列各式正确的是( )A 、a -b<0B 、a -b>0C 、a -b=0D 、(-a)+(-b)>09、 若0<a<1,则a ,)(,12从小到大排列正确的是a a A 、a 2<a< B 、a < < a 2 C 、<a< a 2D 、a < a 2 <a 1a 1a1a110、在数轴上距2.5有3.5个单位长度的点所表示的数是( )A 、6B 、-6C 、-1D 、-1或611、学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( )A 、约104元;B 、1000元C 、100元D 、约21.4元12、当n 为正整数时,(-1)2n+1-(-1)2n 的值是( )A 、0B 、2C 、-2D 、2或-2二.填空题(每小题 2分,共24分)13、对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么-3克表示=_____14、有理数2,+7.5,-0.03,-0.4,0,中,非负数是__________3115、如果-x=-(-12),那么x= __________16、化简| 3.14 -π|= _________17、计算:(-= _________53)32(52()31+-+--18、在-(-2),-|-2|,(-2)2,-22四个数中,负数有_________个19、如果x<0,且x 2=25,那么x= _________20、把按从小到大排列的顺序是_______________________32(-3)51(-32-0,41,,,21、计算:-3×23-(-3×2)3= _________22、若|x|=-x ,则x 是_________数;23、水池中的水位在某天八个不同时间测得记录事下:(规定向上为正,向下为负,单位:厘米)+3,-6,-1,+5,-4,+2,-3,-2,那么这天中水池中水位的最终变化情况是___________24、如果x<0,且x 2=4,那么x= _________三、计算题(每题3分,共24分)25、①计算:(-3)×(-9)-8×(-5)②计算:-63÷7+45÷(-9)③计算:-3;x 22-(-3×2)3④计算:(-0.1)3-253(41-⨯ ⑤计算:-23-3×(-2)3-(-1)4⑥计算:(-62)21()25.0(|-3|32)23÷-+÷⨯ ⑦计算:[11×2-|3÷3|-(-3)2-33]÷43⑧计算:22234.0)2.1()21(-192÷⨯--四、解答下列各题(共28分)26、参加世界杯足球赛的23名中国队员的年龄如下表所示:2129242733222525323128312424232120272628233434⑴求出年龄最大的队员与年龄最小的队员的年龄差(2分)⑵求出中国队队员的平均年龄。
华东师大新版七年级上册数学《第2章 有理数》单元测试题(有答案)

2020-2021学年华东师大新版七年级上册数学《第2章有理数》单元测试题一.选择题(共10小题)1.下列各对数中,互为相反数的一对是()A.﹣23与(﹣2)3B.32与﹣23C.2a与﹣2a D.a与|a|2.如果两个有理数的和大于零,那么()A.两个有理数一定都是正数B.两个有理数一个是正数,一个是负数C.两个有理数不可能都是负数D.两个有理数可能都是零3.两数相加,如果和比每两个加数都小,那么这两个数()A.同为正数B.同为负数C.一正一负D.一个为零,一个为负数4.人造地球卫星环绕地球运行的速度约为7.9×103米/秒,近似数7.9×103保留有效数字的位数是()A.2位B.3位C.4位D.5位5.下列不是具有相反意义的量是()A.前进5米和后退5米B.收入30元和支出10元C.超过5克和不足2克D.向东走10米和向北走10米6.是真分数,是假分数,a是()A.1B.6C.7D.57.某一电子昆虫落在数轴上的某点K0,从K0点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4……依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K100表示的数恰好是2015,则电子昆虫的初始位置K0所表示的数是()A.2065B.﹣1965C.1965D.﹣20658.下列各式中,正确的是()A.﹣|﹣4|>0B.|0.08|>|﹣0.08|C.|﹣|<0D.﹣>﹣9.若m+|﹣20|=|m|+|20|,则m一定是()A.任意一个有理数B.任意一个非负数C.任意一个非正数D.任意一个负数10.已知(﹣mn)(﹣mn)(﹣mn)>0,则()A.mn<0B.m>0,n<0C.mn>0D.m<0,n<0二.填空题(共10小题)11.如果向北走2m记作﹣2,那么+3表示.12.如图,直径为单位2的圆从原点沿着数轴无滑动的逆时针滚动两周到达A点,则点A 表示的数是.13.﹣1.2的相反数是,的相反数是它本身.14.有理数a,b,c满足|a+b+c|=a﹣b+c,且b≠0,则|a﹣b+c+5|﹣|b﹣2|的值为.15.﹣5+=10,﹣2﹣=﹣6.16.计算:|﹣1|=,若a,b互为相反数,则|a+b﹣1|=.17.相反数等于本身的数有,倒数等于本身的数有,奇次幂等于本身的数有,绝对值等于本身的数有.18.计算:3.142+6.28×0.86+0.862=.19.龙岩市有着丰富而独特的旅游资源.据报道,去年该市接待游客4.3×106人次,近似数4.3×106是精确到位.20.用计算器计算:13.4﹣(﹣2.57)3÷(﹣26)+(59﹣102)=.三.解答题(共8小题)21.把下列各数填在相应的集合里:﹣7,,﹣3.68,0,﹣5,+98,0.3.正数集合:{…};负数集合:{…};正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.22.把下列各数在数轴上表示出来,并直接用“<”把各数连接起来:﹣1,﹣|﹣4|,0,﹣(﹣1).23.用简便方法计算:99×(﹣9).24.已知a,b、c三数在数轴上的位置如图所示,化简.25.科学家研究发现,每公顷的森林可吸收二氧化碳约 1.5吨,我国人工林累计面积达48000000公顷,用科学记数法表示,这48000000公顷人工林可吸收多少吨二氧化碳.26.按要求用四舍五入法求10.8095的近似值.(1)精确到0.1;(2)精确到千分位;(3)保留四个有效数字.27.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负.沈师博营运十批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣7,+8,+4,﹣9,﹣4,+3,﹣3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?28.填表.原数﹣59.204相反数3﹣7参考答案与试题解析一.选择题(共10小题)1.解:A、﹣23=﹣8,(﹣2)3=﹣8,不是互为相反数,故本选项错误;B、32=9,﹣23=﹣8,不是互为相反数,故本选项错误;C、2a与﹣2a是互为相反数,故本选项正确;D、只有a是非正数时,a与|a|互为相反数,故本选项错误.故选:C.2.解:如果两个有理数的和大于零,那么两个有理数不可能都是负数.故选:C.3.解:根据分析可得:这两个数都为负.故选:B.4.解:近似数7.9×103的有效数字是7,9,一共2位.故选:A.5.解:A、前进5米和后退5米是具有相反意义的量,故本选项不符合题意;B、收入30元和支出10元是具有相反意义的量,故本选项不符合题意;C、超过5克和不足2克是具有相反意义的量,故本选项不符合题意;D、向东走10米和向北走10米不是具有相反意义的量,故本选项符合题意.故选:D.6.解:是真分数,是假分数,则6≤a<7,即a=6.故选:B.7.解:设K0在数轴上所表示的数为a,由题意得,K1=a﹣1,K2=a+1,K3=a﹣2,K4=a+2…k100=a+50,因此a+50=2015,解得a=1965,故选:C.8.解:A、﹣|﹣4|=﹣4<0,故此选项错误;B、0.08|=|﹣0.08|,故此选项错误;C、|﹣|=>0,故此选项错误;D、∵|﹣|=,|﹣|==,且,∴﹣,故此选项正确.故选:D.9.解:∵m+|﹣20|=|m|+|20|,∴m=|m|,∴m=0或m是正数,即m是任意一个非负数,故选:B.10.解:(﹣mn)(﹣mn)(﹣mn)=﹣m3n3>0,∴(mn)3<0.∴mn<0.故选:A.二.填空题(共10小题)11.解:如果向北走2m记作﹣2,那么+3表示向南走3m,故答案为:向南走3m.12.解:由题意可知,点A所表示的数在原点的左侧,且到原点的距离为4π,因此,点A表示的数是﹣4π,故答案为:﹣4π.13.解:﹣1.2的相反数是1.2;0的相反数是它本身,故答案为:1.2;0.14.解:若a+b+c≥0,则|a+b+c|=a+b+c,于是a+b+c=a﹣b+c ∴2b=0即b=0,与已知条件相矛盾∴a+b+c<0于是可得|a+b+c|=﹣a﹣b﹣c,∴﹣a﹣b﹣c=a﹣b+c∴2(a+c)=0,即a+c=0而a+b+c<0,即b<0∴a﹣b+c>0,|a﹣b+c+5|=﹣b+5,|b﹣2|=﹣b+2则|a﹣b+c+5|﹣|b﹣2|=(﹣b+5)﹣(﹣b+2)=3故原式的值为3.15.解:∵10﹣(﹣5)=15,∴﹣5+15=10;∵﹣2﹣(﹣6)=3,∴﹣2﹣3=﹣6.故答案为:15;3.16.解:|﹣1|=1﹣=;若a,b互为相反数,则a+b=0,所以a+b﹣1|=|﹣1|=1.故答案为:;1.17.解:相反数等于本身的数有0,倒数等于本身的数有±1,奇次幂等于本身的数有±1,0,绝对值等于本身的数有非负数,故答案为:0,±1,±1、0.18.解:3.142+6.28×0.86+0.862=(3.14+0.86)2=42=16,故答案为:1619.解:∵4.3×106=4300000,3在十万位,∴4.3×106精确到十万位;故答案为:十万.20.解:13.4﹣(﹣2.57)3÷(﹣26)+(59﹣102)=﹣30.25286895.三.解答题(共8小题)21.解:在﹣7,,﹣3.68,0,﹣5,+98,0.3中,把下列各数填在相应的集合里:﹣7,,﹣3.68,0,﹣5,+98,0.3.正数集合:{,+98,0.3…};负数集合:{﹣7,﹣3.68,﹣5…};正整数集合:{+98…};负整数集合:{﹣7…};正分数集合:{,0.3…};负分数集合:{﹣3.68,﹣5…}.故答案为:,+98,0.3;,+98,0.3;+98;﹣7;,0.3;﹣3.68,﹣5.22.解:在数轴上表示出来为:用“<”号把它们连接起来为:.23.解:99×(﹣9)=(100﹣)×(﹣9)=100×(﹣9)﹣×(﹣9)=﹣900+=﹣899.24.解:由图可知,a>0,b>0,c<0,所以,++=++=1+1﹣1=1.25.解:48000000公顷人工林可吸收二氧化碳:48000000×1.5=72000000=7.2×107(吨),答:48000000公顷人工林可吸收7.2×107吨二氧化碳.26.解:(1)10.8095≈10.8;(2)10.8095≈10.810;(3)10.8095≈10.81.27.解:(1)由题意得:(+8)+(﹣6)+(+3)+(﹣7)+(+8)+(+4)+(﹣9)+(﹣4)+(+3)+(﹣3)=﹣3(千米),答:将最后一批乘客送到目的地时,沈师傅在距离第一批乘客出发地的西面,距离是3千米;(2)由题意得:|+8|+|﹣6|+|+3|+|﹣7|+|+8|+|+4|+|﹣9|+|﹣4|+|+3|+|﹣3|=55(千米),上午8:00~9:15李师傅开车的时间是:1小时(15分)=1.25小时;55÷1.25=44(千米/小时),答:上午8:00~9:15沈师傅开车的平均速度是44千米/小时;(3)一共有10位乘客,则起步费为:8×10=80(元),超过3千米的收费总额为:[(8﹣3)+(6﹣3)+(3﹣3)+(7﹣3)+(8﹣3)+(4﹣3)+(9﹣3)+(4﹣3)+(3﹣3)+(3﹣3)]×2=50(元),80+50=130(元),答:沈师傅在上午8:00~9:15一共收入130元.28.解:原数﹣5﹣39.2047相反数53﹣9.20﹣4﹣7故答案为:5,﹣3,﹣9.2,0,﹣4,7.。
华师大版七年级数学上册《第2章有理数》单元测试卷含答案

华师版七年级数学上册单元测试卷第2章 有理数班级 姓名一、选择题(每题3分,共30分) 1.下列说法正确的是( D ) A.零既是整数,又是正数 B.有理数可分为正数和负数C.收入100元和支出-100元是互为相反意义的量D.若向东走5 m 记作+5 m ,则向西走8 m 记作-8 m 2.-5的相反数是( B ) A.15 B.5 C.-15 D.-53.在0,2,-1,-2这四个数中,最小的数为( D ) A.0 B.2 C.-1 D.-24.下列关于“-1”的说法中,错误的是( B ) A.-1的相反数是1 B.-1是最小的负整数 C.-1的绝对值是1 D.-1是最大的负整数5.下列计算,不正确的是( D ) A.(-9)-(-10)=1B.(-6)×4+(-6)×(-9)=30C.⎝ ⎛⎭⎪⎫-85×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-23=-415D.(-5)2÷⎝ ⎛⎭⎪⎫-123=200 6.绝对值大于1而小于4的整数有( C ) A.-2,-3 B.2,3 C.±2,±3 D.0,2,37.C 919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学计数法表示为 ( A )A.1×106B.100×104C. 1×107D.0.1×1088.对有理数a 、b ,规定运算如下:a ※b =a +a b ,则-2※3的值为( A )A.-10B.-8C.-6D.-49.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为( B )A.7B.-5C.1D.510.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,……,按此规律,5小时后细胞存活的个数是( B )A.31B.33C.35D.37【解析】 根据题意可知,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1; 3小时后分裂成10个并死去1个,剩9个,9=23+1; ……所以5小时后细胞存活的个数是25+1=33(个). 二、填空题(每题3分,共18分) 11.-|-5|=__-5__.12.有理数:-3,0,20,-1.25,134,-|-12|,-(-5)中,正整数是__20,-(-5)__,负整数是__-3,-|-12|__,正分数是__134__,非负数是__0,20,134,-(-5)__.13.某品牌电脑进价为5 000元,按照定价的9折销售时,获利760元,则此电脑的定价为__6__400__元.14.若实数a 满足⎪⎪⎪⎪⎪⎪a -12=32,则a 对应于图中数轴上的点可以是A 、B 、C 三点中的点__B __.15.已知a 1=-32,a 2=55,a 3=-710,a 4=917,a 5=-1126,…,则a 8=__1765__.【解析】 由题意给出的5个数可知a n =(-1)n2n +1n 2+1,当n =8时,a 8=1765.16.在数的原有运算法则中,我们补充定义新运算“”如下 :当a ≥b 时,a b =b 2; 当a <b 时,a b =a . 则当x =2时,(1x )·x -(3x )的值为__-2__.(“·”和“-”仍为有理数运算中的乘号和减号)三、解答题(共52分)17.(8分)画出数轴,在数轴上表示下列各数,并用“<”连接各数:+5,-3.5,12,-112,4,0,2.5.解:在数轴上表示为第17题答图4分所以-3.5<-112<0<12<2.5<4<+5.8分 18.(8分)计算.(1)⎝ ⎛⎭⎪⎫-58÷143×⎝ ⎛⎭⎪⎫-165÷⎝ ⎛⎭⎪⎫-67; (2)-3-⎣⎢⎡⎦⎥⎤-5+⎝ ⎛⎭⎪⎫1-0.2×35÷(-2);(3)⎝ ⎛⎭⎪⎫413-312×(-2)-223÷⎝ ⎛⎭⎪⎫-12; (4)⎣⎢⎡⎦⎥⎤50-⎝ ⎛⎭⎪⎫79-1112+16×(-6)2÷(-7)2. 解:(1)原式=-58×314×165×76=-12; (2)原式=-3+5+⎝ ⎛⎭⎪⎫1-325×12=21125;(3)原式=56×(-2)+163=323;(4)原式=(50-28+33-6)×149=49×149=1.19.(8分)某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店盈亏情况如何?解:设两个计算器的进价分别是x 、y 元, 由题意得(1+60%)x =80,(1-20%)y =80, 4分解得x =50,y =100,所以两个计算器的进价为50+100=150(元), 而售价为80×2=160(元),160-150=10(元), 即盈利10元.8分20.(8分)规定一种新的运算:a ★b =a ×b -a -b 2+1.例如:3★(-4)=3×(-4)-3-(-4)2+1.请用上述规定计算下面各式:(1)2★5;(2)(-2)★(-5).解:(1)2★5=2×5-2-25+1=-16;3分 (2)(-2)★(-5)=10+2-25+1=-12.8分21.(8分)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:-3 -5 0 +3 +4(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是__15__;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是__-53__;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子(至少写出两种):解:(3)方法不唯一,如:抽取-3 -5 0 +3,则{0-[(-3)+(-5)]}×3=24;如:抽取-3 -5 +3 +4,则-[(-3)÷3+(-5)]×4=24. 22.(12分)观察下列等式:第一个等式:a 1=21+3×2+2×22=12+1-122+1;第二个等式:a 2=221+3×22+2×(22)2=122+1-123+1;第三个等式:a 3=231+3×23+2×(23)2=123+1-124+1;第四个等式:a 4=241+3×24+2×(24)2=124+1-125+1;…按上述规律,回答下列问题:(1)请写出第六个等式:a 6=261+3×26+2×(26)2=126+1-127+1;(2)用含n 的代数式表示第n 个等式:a n =2n1+3×2n +2×(2n )2=12n +1-12n +1+1; (3)a 1+a 2+a 3+a 4+a 5+a 6=__1443__(得出最简结果); (4)计算:a 1+a 2+…+a n . 【解析】 (3)原式=12+1-122+1+122+1-123+1+123+1-124+1+124+1-125+1+125+1-126+1+126+1-127+1=12+1-127+1 =1443.解:(4)原式=12+1-122+1+122+1-123+1++12n +1-12n +1+1=12+1-12n +1+1=2n +1-23(2n +1+1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 有理数单元测试题
一.判断题:
1.有理数可分为正有理数与负有理数 . ( )
2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. ( )
3.两个有理数的差一定小于被减数. ( )
4.任何有理数的绝对值总是不小于它本身. ( )
5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( )
二.填空题:
1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 .
2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数
是 .
3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数
是 ,立方等于本身的数是 .
4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是3
12,则b = . 5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 . 6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .
7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 .
三.选择题:
1.若a ≤0,则2++a a 等于 ( )
A .2a +2
B .2
C .2―2a
D .2a ―2
2.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcd
b a cd p 的值是 ( ). A .3 B .2 C .1 D .0
3.若01<<-a ,则2,1,
a a
a 的大小关系是 ( ). A .21a a a << B .21a a a
<< C .a a a <<21 D .a a a 12<< 4.下列说法中正确的是 ( ).
A. 若,0>+b a 则.0,0>>b a
B. 若,0<+b a 则.0,0<<b a
C. 若,a b a >+则.b b a >+
D. 若b a =,则b a =或.0=+b a
5.c
c b b a a ++的值是 ( ) A .3± B .1±
C .3±或1±
D .3或1
6.设n 是正整数,则n )1(1--的值是 ( )
A .0或1
B .1或2
C .0或2
D .0,1或2
四.计算题
1.[]
24)3(2611--⨯-- 2.23.013.0)211653(1⨯⎥⎦
⎤⎢⎣⎡+--÷ 3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-
4.22320012003)2
1(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡
-⨯--⨯+÷- 五、2++b a 与4)12(-ab 互为相反数,求代数式++-+b
a a
b ab b a 33)(21的值. 六、 a 是有理数,试比较2
a a 与的大小.
七.32-12=8×1
52-32=8×2
72-52=8×3
92-72=8×4
……
观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-1999
2的值.
第二章 有理数单元测试题
参 考 答 案
一.判断题:×√×√√
二.填空题:(1)1,—1,0;(2)±16,±8,—4;(3)0,±1,非负数,0和±1;
(4)367-,7
3±;(5)1或5;(6)c <a <b . 三.选择题:(1)B (2)B (3)B (4)D (5)C (6)C 四.1.6
1;2.1;3.100; 4.原题应改为223200120003)21(24)32(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡
-⨯--⨯+÷
- =—34. 五.12
53 六.当a <0或a >1时,a < a 2;0< a <1,a > a 2;当a =0或a =1时,a =a 2.
七.n n n 8)12()12(22=--+,8000.
初中数学试卷
桑水出品。