信息安全数学基础
信息安全数学基础课后答案完整版Word版
第一章参考答案(1) 5,4,1,5.(2) 100=22*52, 3288=23*3*137.(4) a,b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,又因为(a,b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––pr)n, b n=(q1q2––qs)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,a n=(p1p2––pr)n, b n=(q1q2––qs)n,因为a n| b n所以对任意的i有, pi的n次方| b n,所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b.(6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––pr,b=q1q2––qs, ab=p1p2––prq1q2––qs, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,9 7,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=ki *mi,a-b是任意mi的倍数,所以a-b是mi 公倍数,所以[mi]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章答案(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.(6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b 有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。
信息安全数学基础习题答案
信息安全数学基础习题答案信息安全数学基础习题答案1.简答题 a) 什么是信息安全?信息安全是指保护信息的机密性、完整性和可用性,以防止未经授权的访问、使用、披露、干扰、破坏或篡改信息的行为。
b) 什么是加密?加密是指通过对信息进行转换,使其无法被未经授权的人理解或使用的过程。
加密算法通常使用密钥来对信息进行加密和解密。
c) 什么是对称加密算法?对称加密算法是一种使用相同的密钥进行加密和解密的算法。
常见的对称加密算法有DES、AES等。
d) 什么是非对称加密算法?非对称加密算法是一种使用不同的密钥进行加密和解密的算法。
常见的非对称加密算法有RSA、ECC等。
e) 什么是哈希函数?哈希函数是一种将任意长度的数据映射为固定长度的输出的函数。
哈希函数具有单向性,即很难从哈希值逆推出原始数据。
2.选择题 a) 下列哪种算法是对称加密算法? A. RSA B. AES C. ECC D.SHA-256答案:B. AESb) 下列哪种算法是非对称加密算法? A. DES B. AES C. RSA D. SHA-256答案:C. RSAc) 下列哪种函数是哈希函数? A. RSA B. AES C. ECC D. SHA-256答案:D. SHA-2563.计算题 a) 使用AES算法对明文进行加密,密钥长度为128位,明文长度为64位。
请计算加密后的密文长度。
答案:由于AES算法使用的是128位的块加密,所以加密后的密文长度也为128位。
b) 使用RSA算法对明文进行加密,密钥长度为1024位,明文长度为64位。
请计算加密后的密文长度。
答案:由于RSA算法使用的是非对称加密,加密后的密文长度取决于密钥长度。
根据经验公式,RSA算法中加密后的密文长度为密钥长度的一半。
所以加密后的密文长度为1024/2=512位。
c) 使用SHA-256哈希函数对一个长度为128位的明文进行哈希计算,请计算哈希值的长度。
答案:SHA-256哈希函数的输出长度为256位。
信息安全数学基础答案
信息安全数学基础答案【篇一:信息安全数学基础习题答案】xt>第一章整数的可除性1.证明:因为2|n 所以n=2k , k?z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1 ,k1?z 7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1 即k1=7 k2,k2?z 所以n=2*5*7 k2 即n=70 k2, k2?z因此70|n32.证明:因为a-a=(a-1)a(a+1)3当a=3k,k?z 3|a 则3|a-a3当a=3k-1,k?z 3|a+1 则3|a-a3当a=3k+1,k?z 3|a-1 则3|a-a3所以a-a能被3整除。
3.证明:任意奇整数可表示为2 k0+1, k0?z22(2 k0+1)=4 k0+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0(k0+1)=2k2所以(2 k0+1)=8k+1 得证。
34.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a-a3由第二题结论3|(a-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1所以6|(a-1)a(a+1) 得证。
5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k?z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1],i=2,3,4,…(k+1) 所以i|(k+1)!+i即(k+1)!+i为合数所以此k个连续正整数都是合数。
1/26.证明:因为191<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191所以191为素数。
1/2因为547<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547所以547为素数。
信息安全数学基础
信息安全数学基础导言信息安全是在当前信息时代中广泛关注的一个重要领域。
它涉及到保护数据的机密性、完整性和可用性,以及防止未经授权的访问、修改或破坏数据的行为。
在信息安全领域,数学起着至关重要的作用。
数学提供了许多基础概念和技术,用于保护信息和数据。
本文将介绍信息安全的一些数学基础知识。
1. 整数论整数论是信息安全中不可或缺的一部分,其主要研究整数及其性质。
在信息安全中,整数论常用于加密算法和密钥生成。
其中,最常见的整数论问题是素数的应用。
素数是只能被1和自身整除的整数。
在信息安全中,素数被广泛应用于加密算法,如RSA算法。
RSA算法的基本原理是利用两个大素数的乘积作为公钥的模数,并求解其积的欧拉函数值。
因此,整数论中研究素数的性质和生成方法对于实现安全的RSA加密算法非常重要。
除了素数,整数论还涉及到很多其他概念和技术,如模运算、同余和剩余类等。
这些概念和技术在信息安全中的密码算法和密钥生成中起着至关重要的作用。
2. 离散数学离散数学是信息安全中的另一个重要基础。
离散数学研究的是离散结构,如集合、图论、布尔代数等。
在信息安全中,离散数学的概念和技术被广泛应用于密码学和网络安全。
密码学是关于信息加密和解密的科学,其中离散数学起着关键作用。
密码学使用离散数学的技术来设计和分析密码算法。
例如,离散数学的图论技术可以用于构建网络拓扑图,以评估网络的安全性。
布尔代数被广泛应用于逻辑门电路的设计和分析,用于实现对信息的逻辑操作和处理。
离散数学的另一个重要应用是在密码学中的离散对数问题。
离散对数问题是指已知一个数的底数和模数,求解指数的问题。
这个问题在公钥密码学中扮演着重要角色,如Diffie-Hellman密钥交换协议和椭圆曲线密码算法。
3. 概率论与统计学概率论和统计学是信息安全中的另一对重要基础。
它们被用于分析密码算法的安全性、测量信息系统的可靠性,并为风险评估和安全决策提供支持。
在密码学中,概率论和统计学的概念被广泛应用于对密码算法的攻击和破解。
信息安全数学基础习题答案.pdf
“信息安全数学基础”习题答案第一章1、证明: (1)|()|()()|a b b ma m Z c d d nc n Z bd acmn mn Z ac bd ⇒=∈⇒=∈∴=∈∵,,,即。
(2)12111112|,|,,|11(3)|(),,k k k k a b a b a b a b c b c b c c c c ∴−+++∵ ,根据整除的性质及递归法,可证得:,其中为任意整数。
2、证明:1-2(2)(3,5)13|5|15|,(15,7)17|105|a a a a a =∴=∴∵∵∵根据例题的证明结论知:,又且,又,且,。
3、证明:1n p n p n >>因为,且是的最小素因数,若假设n/p 不是素数,则有121223131312,2,,,,2,,k k n p p p p k p p p p k n p p p p n p p n n p n n p =×××≥≥==×≥∴≥≤>> (其中为素数且均)若,则即,与题设矛盾,所以假设不成立,即为素数得证。
7、证明:首先证明形如6k -1的正整数n 必含有6k -1形式的素因子,这显然是成立的。
因为如果其所有素因数均为6k +1形式,则12,(61,1,2,,)j i i n p p p p k i j =×××=+= ,从而得到n 是形如6k +1形式的正整数,这与题设矛盾。
其次,假设形如6k -1的素数为有限个,依次为1212,,6s s q q q n q q q = ,考虑整数-1, 则n 是形如6k -1的正整数,所以n 必有相同形式的素因数q ,使得使得q = q j (1≤j ≤s )。
由整数的基本性质(3)有:12|(6)1s q q q q n −= ,这是不可能的。
故假设错误,即存在无穷多个形如4k -1的素数得证。
2n3n最小非负余数最小正余数绝对值最小余数最小非负余数最小正余数绝对值最小余数3 0、1 1、3 0、1 0、1、2 1、2、3 -1、0、14 0、1 1、4 0、1 0、1、3 1、3、4 -1、0、1 8 0、1、4 1、4、8 1,0 0、1、3、5、7 1、3、5、7、8 3、1、-3、-1、0 10 0、1、4、5、6、9 1、4、5、6、9、10 -4、-1、0、1、4、5 0,1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,10-5,-4,-3,-2,-1,0,1,2,3,413、解: (1)259222137222376(222,259)37372592221,1,1s t =×+=×⇒==−×∴==−(2)139571316827136821316823122(1395,713)31317136821713(13957131)2713(1)1395,1,2s t =×+=×+=×⇒==−×=−−×=×+−×∴=−=16、解: (1)(112,56)5611256[112,56]112(112,56)=×== (2)(67,335)6767335[67,335]335(67,335)=×== (3)(1124,1368)411241368[1124,1368]384408(1124,1368)=×==(7,4)1,0,7(1)4211,24410,1,2,771||1000142||100040,1,1427c s t k x k k k y k x k y x kk y k ==∴×−+×=∴=−=⎧=−=−⎪⎪=±±⎨⎪==⎪⎩≤⎧∴≤⎨≤⎩=−⎧∴=±±⎨=⎩∵ 而不定方程的一切解为: 其中,又方程的全部解为 ,其中 ,第二章1、解:(1) 错误。
信息安全数学基础
信息安全数学基础
韩琦
计算机科学与技术学院
9 / 66
近世代数
群
举例
例 (希尔密码) 在希尔密码(Hill Cipher)中加密变换为 (������1 ������2 · · · ������������ ) = (������1 ������2 · · · ������������ )������ ������������������ 26 这里密钥������ ∈ ������������������ (������26 ), ������������ , ������������ ∈ ������26 , ������26 = {0, 1, · · · , 25},������������ 为明 文,������������ 为密文,式1.1右边的行向量(������1 , ������2 , · · · , ������������ )与矩阵������ 乘是先进行 通常的实数行向量与实数矩阵乘再对所得行向量的每一分量取模26。 加密过程 字母������������ · · · ������分别对应0, 1, · · · , 25,加密前先将明文字母串变换为������26 上 的数字串,然后再按上述表达式每次������个数字的将明文数字串变换为密 文数字串,最后将密文数字串变换为密文字母串。
1
当生成元������是无限阶元素时,则������称为无限阶循环群。 如果������的阶为������,即������������ = 1,那么这 时������ =< ������ >=< 1, ������, ������2 , · · · , ������������−1 >,则������称为由������所生成的������阶循 环群,注意此时1, ������, ������2 , · · · , ������������−1 两两不同。
信息安全数学基础习题答案
信息安全数学基础习题答案信息安全数学基础习题答案信息安全是当今社会中一个重要的领域,它涉及到人们的隐私和数据的保护。
在信息安全的学习过程中,数学是一个不可或缺的基础。
本文将为您提供一些信息安全数学基础习题的答案,帮助您更好地理解和应用相关的数学概念。
一、离散对数问题离散对数问题是信息安全领域中的一个重要数学概念。
以下是一些常见的离散对数问题及其答案:1. 如果p是一个素数,a是一个整数,且a不是p的倍数,求解方程a^x ≡ b (mod p)的x值。
答案:x ≡ log_a(b) (mod p-1)2. 如果p是一个素数,g是一个p的原根,a是一个整数,且a不是p的倍数,求解方程g^x ≡ a (mod p)的x值。
答案:x ≡ log_g(a) (mod p)二、RSA算法RSA算法是一种非常常见的公钥加密算法。
以下是一些与RSA算法相关的习题及其答案:1. 如果p=17,q=11,e=7,计算n和d的值,其中n是模数,d是私钥。
答案:n = p * q = 17 * 11 = 187,d ≡ e^(-1) (mod (p-1)*(q-1)) = 7^(-1) (mod 160) = 232. 如果n=187,e=7,加密明文m=88,计算密文c的值。
答案:c ≡ m^e (mod n) = 88^7 (mod 187) = 11三、椭圆曲线密码学椭圆曲线密码学是一种基于椭圆曲线数学问题的加密算法。
以下是一些与椭圆曲线密码学相关的习题及其答案:1. 在椭圆曲线y^2 ≡ x^3 + ax + b (mod p)上,给定一个基点G和一个私钥d,计算公钥Q的值。
答案:Q = d * G2. 在椭圆曲线y^2 ≡ x^3 + ax + b (mod p)上,给定一个基点G和一个私钥d,计算共享密钥K的值。
答案:K = d * Q = d * (d * G)结语本文为您提供了一些信息安全数学基础习题的答案,涉及了离散对数问题、RSA算法和椭圆曲线密码学等内容。
信息安全数学基础第01章
1 正整数 全体素数 全体合数
1.2 整数的进位制表示法
带余除法 整数的二进制表示法 数值转换
1.2 整数的进位制表示法
带余除法 定理1.2.1(带余数除法):设a是正整数,b是整数,则 一定存在唯一的整数q和r,使得 b=qa+r,其中0≤r<a 并分别称q与r为a 除b的商和余数。
1.1 整数
整除 定理1.1.1:若整数a,b,c满足条件a|b且b|c,则a|c。
证明:若a|b且b|c,则由定义1.1.1知道存在整数e和f使得 b=ae且c=bf,于是 c=bf=(ae)f=a(ef) 由于整数e与f的乘积仍然是整数,因而a|c。
例如:由于11|66且66|198,由定理1.1.1就有11|198。
1.2 整数的进位制表示法
带余除法 为什么重复带余除法的过程可以在有限步骤内使得商为 0?
因为b>1,n>0,故 q0>q1>…>qi>… qk-1 ≥0 而qi均为整数,故该不等式一定在有限项内成立。而当 qk-1<b时,必有 qk-1=b∙0+ak, 0≤ak<b 故重复带余除法过程可以在有限步骤内使得商为0。
1.2 整数的进位制表示法
带余除法 证明思路:按照带余除法的方法,先证表达式的存在性 ,再证明其唯一性。
1.2 整数的进位制表示法
带余除法 证明:先证表达式的存在性。首先,以b除n,得到 n=bq0+a0, 0≤a0<b 如果q0≠0,继续以b除q0,得到 q0=bq1+a1, 0≤a1<b 继续这个过程,依次得到 q1=bq2+a2, 0≤a2<b q2=bq3+a3, 0≤a3<b ……..................... qk-2=bqk-1+ak-1,0≤ak-1<b qk-1=b∙0+ak, 0≤ak<b 当商为0时,结束这个过程。
信息安全数学基础第一阶段知识总结
信息安全数学基础第一阶段知识总结第一章整数的可除性一整除的概念和欧几里得除法1 整除的概念定义1 设a、b是两个整数,其中b≠0如果存在一个整数q 使得等式a=bq 成立,就称b整除a或者a被b整除,记作b|a ,并把b叫作a的因数,把a叫作b的倍数.这时,q也是a的因数,我们常常将q写成a/b或否则,就称b不能整除a或者a不能被b整除,记作a b。
2整除的基本性质(1)当b遍历整数a的所有因数时,—b也遍历整数a的所有因数。
(2)当b遍历整数a的所有因数时,a/b也遍历整数a的所有因数。
(3)设b,c都是非零整数,(i)若b|a,则|b|||a|.(ii)若b|a,则bc|ac.(iii)若b|a,则1<|b|≤|a|.3整除的相关定理(1)设a,b≠0,c≠0是三个整数。
若c|b,b|a,则c|a.(2)设a,b,c≠0是三个整数,若c|a,c|b,则c|a±b(3)设a,b,c是三个整数。
若c|a,c|b则对任意整数s,t,有c|sa+tb. (4)若整数a1, …,a n都是整数c≠0的倍数,则对任意n个整数s1,…,s n,整数是c的倍数(5)设a,b都是非零整数.若a|b,b|a,则a=±b(6)设a,b , c是三个整数,且b≠0,c ≠0,如果(a , c)=1,则(ab , c)=(b , c)(7)设a , b ,c是三个整数,且c≠0,如果c|ab ,(a , c) = 1, 则c |b.(8)设p 是素数,若p |ab ,则p |a或p|b(9)设a1, …,a n是n个整数,p是素数,若p|a1…a n,则p一定整除某一个a k二整数的表示主要掌握二进制、十进制、十六进制等的相互转化.三最大公因数和最小公倍数(一)最大公因数1.最大公因数的概念定义:设是个整数,若使得 ,则称为的一个因数.公因数中最大的一个称为的最大公因数.记作。
若,则称互素.若,则称两两互素.思考:1.由两两互素,能否导出2.由能否导出两两互素?2.最大公因数的存在性(1)若不全为零,则最大公因数存在并且(2)若全为零,则任何整数都是它的公因数.这时,它们没有最大公因数.3.求两个正整数的最大公因数.定理1:设任意三个不全为零的整数,且则辗转相除法由带余除法得(1)……因为每进行一次带余除法,余数至少减少1,且是有限整数,故经过有限次带余除法后,总可以得到一个余数是零的情况,即由(1)知,定理2:任意两个正整数,则是(1)中最后一个不等于零的余数.定理3:任意两个正整数的任意公因数都是的因数.4.性质定理4:任意两个正整数,则存在整数,使得成立定理5:设是不全为零的整数.(i)若则(ii)若则(iii)若是任意整数,则从上面定理我们很容易得到下面几个常用结论:①② 且③④5.求两个以上正整数的最大公因数设则有下面的定理:定理6:若是个正整数,则只需证①是的一个公因数.② 是的公因数中最大一个例求解:6.求两个正整数的最大公因数的线性组合(重点掌握)方法一运用辗转相除法求最大公因数的逆过程;方法二补充的方法方法三运用列表法求解(二)最小公倍数1.最小公倍数的定义定义:是个整数,如果对于整数,有 ,那么叫做的一个公倍数.在的一切公倍数中最小一个正整数,叫做最小公倍数.记作.2.最小公倍数的性质.定理1:设是任给的两个正整数,则(i)的所有公倍数都是的倍数.(ii)定理2:设正整数是的一个公倍数,则3.求两个以上整数的最小公倍数定理3:设是个正整数,若则只需证:①是的一个公倍数,即,②设是的任一公倍数,则例1 求解:又四素数算术基本定理1.素数、合数的概念定义:一个大于1的整数,如果它的正因数只有1和它的本身,我们就称它为素数,否则就称为合数.2.性质定理1:设是大于1的整数,则至少有一个素因数,并且当是合数时,若是它大于1的最小正因数,则定理2设n是一个正整数,如果对所有地素数,都有p n,则n一定是素数。
信息安全的数学基础
信息安全的数学基础
信息安全的数学基础可以总结为以下几个方面:
1. 密码学:涉及到各种加密算法和解密算法,主要是数论、代
数和概率论方面的知识。
对称加密算法(如DES、AES等)和非对称加
密算法(如RSA、ECC等)都是基于数学原理的。
2. 数字签名:数字签名是数字证书体系的基础。
数字签名涉及
到哈希函数、公钥密码体制等数学算法,这些算法在数字认证、电子
邮件、电子商务等领域得到广泛应用。
3. 随机数生成:随机数生成是很多加密算法中不可或缺的功能。
在信息安全中,随机数的产生要具有不可预测性,这可以通过伪随机
序列算法和真随机序列算法来实现。
其中,真随机序列算法主要依赖
于物理随机事件的产生,如收音机收音噪声和光学噪声等,这也需要
数学中的统计学和概率论知识。
4. 数字证书:数字证书是数字身份证明的一种方式,它包括了
某个实体的公钥以及相关的信息,可以用于数字证明的验证。
数字证
书一般采用了基于数学算法的公钥密码体制,如RSA和ECC等。
此外,数字证书的设计和实现还要涉及证书格式、证书吊销等方面的数学知识。
总之,信息安全中的数学基础是十分广泛和深奥的,需要掌握多
种数学知识才能确保信息安全。
最新《信息安全数学基础》课程教学大纲资料
《信息安全数学基础》课程教学大纲课程性质:学科基础课课程代码:学时:72(讲课学时:72实验学时:0课内实践学时: 0)学分:4.5适用专业:通信工程一、课程教学基本要求《信息安全数学基础》是通信工程专业教学计划中的一门学科基础课,通过对本课程的学习,可以使学生系统地掌握本学科的数学基础,使得学生能够初步掌握和运用数学理论来分析和研究一些问题。
二、课程教学大纲说明信息安全学科是一门新兴的学科.它涉及通信学、计算机科学、信息学和数学等多个学科。
为了使学生系统的掌握信息安全理论基础和实际知识,需要专门开课讲授与信息安全相关的数学知识,特别是关于初等数论知识。
通过本课程的学习,使学生掌握信息安全学科涉及的数学基本概念、基本原理和实际应用,建立数学体系的完整概念,为后续专业课程的学习奠定基础。
本课程的教学内容主要以理论为主,介绍了整数的可除性、同余理论以及有关原根与指标等知识。
学好本课程内容的前提条件:高等数学和线性代数的基础知识。
教学方法与手段:本课程采用课堂理论教学为主要教学方法,习题课和批改作业为检查措施,期末笔试考试为检查手段,以确保本课程的教学质量。
三、各章教学结构及具体要求(一)第一章整数的可除性1.教学目的和要求。
通过对本章的学习,使学生加深对整数的性质、狭义和广义欧几里得除法和算术基本定理的了解,更深入地理解初等数论与现代密码学的关系。
2.教学内容和要点。
共讲授六个方面的内容:(1)整除的概念、欧几里得除法;(2)整数的表示(3)最大公因数与广义欧几里得除法(4)整除的进一步性质及最小公倍数(5)素数、算术基本定理(6)素数定理。
(二)第二章同余1. 教学目的和要求。
通过对本章的学习,使学生了解同余、剩余类和简化剩余类的概念,熟悉欧拉定理、费马小定理。
2.教学内容和要点。
共讲授五个知识点的内容:(1)同余的概念及基本性质(2)剩余类及完全剩余系(3)简化剩余系与欧拉函数(4)欧拉定理费马小定理(5)模重复平方计算法。
信息安全数学基础第一章下演示文稿[可修改版ppt]
1
一、信息安全数学基础的内容
内容: 初等数论、近世(抽象)代数、椭圆曲线
二、教学方式和目的
方式:课堂教学为主 目的:了解和掌握数论和代数的基本知识,包括整数
的可除性 、同余、同余式、二次同余式与平方 剩余 、原根、群、环、域和椭圆曲线等
三、数论和代数在信息安全中的作用
1.1 整除的概念 欧几里得除法
一、整除基本概念及性质
定 义 1.1.1设 a,b是 任 意 两 个 整 数 ,其 中 b0, 如 果 存 在 一 个 整 数 q使 得 等 式
abq 成 立 ,则 称 b整 除 a或 者 a被 b整 除 ,记 作 b|a. 此时q可
写成a / b或 a . b
如 果 b |a ,则 b 叫 做 a 的 因 数 ,而 a 叫 做 b 的 倍 数 . 如 果 b 不 能 整 除 a ,则 记 作 b |a .
假 设 矛 盾 ,所 以 p 是 素 数 . 因 n 是 合 数 ,p 是 n 的 大 于 1 的 最 小 正 因 数 , 所 以
存 在 整 数 n1,使 得 np n 1 1pn 1n
因 此 p2n,故 p n.
整 数 为 素 数 的 判 别 法 定 理 1 .1 .7设 n 是 一 个 正 整 数 ,如 果 对 所 有 的 素 数
p n ,都 有 p |n ,则 n 是 素 数 .
证 : 反 证 法 ( 素 数 满 足 条 件 , 排 除 合 数 可 能 ) .假 设 n 为 合 数 , 题 设 和 定 理 1.1.6相 矛 盾 .因 为 根 据 定 理 1.1.6, 它 的 大 于 1的 最 小 正 因 数 p'(p'|n)是 素 数 , 且 p'n.因 此 , n为 素 数 , 且 满 足 假 设 条 件 .
信息安全数学基础期末考试试卷及答案(A卷)
信息安全数学基础期末考试试卷及答案(A卷)信息安全数学基础期末考试试卷及答案(A卷)⼀、填空题(本⼤题共8⼩题,每空2分,共24分)1.两个整数a,b,其最⼤公因数和最⼩公倍数的关系为。
2.给定⼀个正整数m,两个整数a,b叫做模m同余,如果 ____________________________ ,记作a三b(modm);否则,叫做模m不同余,记作 ________________________ 。
3.设m,n是互素的两个正整数,则 ?(m n)= ______________________________ 。
e ..4.设m 1是整数,a是与m互素的正整数。
则使得a三1(modm)成⽴的最⼩正整数e叫做a对模m的指数,记做 ________________ 如果a对模m的指数是? (m),贝U a叫做模m的________________ 。
5.设n是⼀个奇合数,设整数b与n互素,如果整数n和b满⾜条件______________________ ,贝U n叫做对于基b的拟素数。
6.设G,G是两个群,f是G到G的⼀个映射。
如果对任意的a,b G,都有__________________ ,那么f叫做G到G'的⼀个同态。
7.加群Z的每个⼦群H都是 _______________________________ 群,并且有H M O A或H = _____________________ 。
8.我们称交换环R为⼀个域,如果R对于加法构成⼀个 ____________ ,戌=R\{0}对于乘法构成⼀个 ____________ 。
⼆、计算题(本⼤题共3⼩题,每⼩题8分,共24分)1.令a =1613, b =3589。
⽤⼴义欧⼏⾥德算法求整数s,t,使得sa tb ⼆(a,b)。
2.求同余⽅程x2三2(mod67)的解数。
3.计算3模19的指数。
叫⑶。
三、解同余⽅程(本⼤题共2⼩题,每⼩题10分,共20分)1.求解⼀次同余⽅程17x =14(mod 21)。
信息安全数学基础习题答案
因此70|n
2.证明:因为a3-a=(a-1)a(a+1)
当a=3k,k Z 3|a 则3|a3-a
当a=3k-1,k Z 3|a+1 则3|a3-a
当a=3k+1,k Z 3|a-1 则3|a3-a
所以a3-a能被3整除。
3.证明:任意奇整数可表示为2 k0+1, k0 Z
(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1
由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k
所以(a+b,4)=4
37.证明:反证法
假设n为素数,则n| a2- b2=(a+b)(a-b)
由1.4定理2知n|a+b或n|a-b,与已知条件矛盾
所以假设不成立,原结论正确,n为合数。
40.证明:(1)假设是21/2有理数,则存在正整数p,q,使得21/2=p/q,且(p, q)=1
=13*41-14*(161-3*41)
=-14*161+55*(363-2*161)
=55*363+(-124)*(1613-4*363)
=(-124)*1613+551*(3589-2*1613)
所以(2t+1,2t-1)=1
(2)解:2(n+1)=1*2n+2
2n=n*2
所以(2n,2(n+1))=2
32.(1)解:1=3-1*2
=3-1*(38-12*3)
=-38+13*(41-1*38)
信息安全数学基础
信息安全数学基础信息安全是当今社会中非常重要的一个领域,随着互联网的发展和普及,信息安全问题也日益突出。
而要保障信息的安全,数学基础是至关重要的。
本文将从信息安全的数学基础入手,简要介绍一些与信息安全密切相关的数学概念和方法。
首先,我们要了解信息安全的基本概念。
信息安全是指在计算机系统中,对信息的保密性、完整性和可用性进行保护的一系列技术和措施。
而在实现这些目标的过程中,数学起着至关重要的作用。
其中,最基本的数学概念之一就是密码学。
密码学是研究如何在敌手存在的情况下,实现信息的保密性和完整性的科学。
在密码学中,数论和代数是两个非常重要的数学分支,它们为密码算法的设计和分析提供了重要的数学基础。
在密码学中,最基本的算法之一就是对称加密算法。
对称加密算法使用一个密钥来对信息进行加密和解密。
而在对称加密算法中,数学中的置换和替换运算是非常重要的。
通过置换和替换运算,可以使得加密后的信息在没有密钥的情况下难以被破解。
而在对称加密算法中,数学基础的坚实与否直接决定了算法的安全性。
除了对称加密算法外,公钥加密算法也是信息安全中非常重要的一部分。
公钥加密算法使用了数论中的大数分解和离散对数等数学问题,这些问题的复杂性使得公钥加密算法能够提供较高的安全性。
同时,公钥加密算法也是实现数字签名和数字证书的基础,这些技术在信息安全中起着至关重要的作用。
此外,信息安全中还涉及到随机数生成、哈希函数、消息认证码等数学概念和方法。
随机数的质量直接关系到密码算法的安全性,而哈希函数和消息认证码则是保证信息完整性的重要手段。
这些方法的设计和分析都需要数学的支持。
总之,信息安全的数学基础是非常重要的。
密码学、数论、代数、概率论等数学分支为信息安全提供了坚实的基础。
只有深入理解和熟练运用这些数学知识,才能更好地保障信息的安全。
希望本文的介绍能够对读者有所帮助,让大家对信息安全的数学基础有一个更清晰的认识。
信息安全数学基础课后答案完整版
第一章参考答案(1)5,4,1,5.(2)100=22*52, 3288=23*3*137.(4)a,b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,又因为(a, b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––p r)n, b n=(q1q2––q s)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,a n=(p1p2––p r)n,b n=(q1q2––q s)n,因为a n| b n所以对任意的i有, p i的n次方| b n, 所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b. (6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––p r, b=q1q2––q s, ab=p1p2––p r q1q2––q s, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199. (11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m 即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=k i*m i,a-b是任意m i的倍数,所以a-b是m i公倍数,所以[m i]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章答案(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x. (6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b 有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。
信息安全数学基础教学大纲
《信息安全数学基础》课程教学大纲课程编码:ZJ28603课程类别:专业基础课学分: 4 学时:64学期: 3 归属单位:信息与网络工程学院先修课程:高等数学、C语言程序设计、线性代数适用专业:信息安全、网络工程(中韩合作)一、课程简介《信息安全数学基础》(Mathematical foundation of information security)是信息安全、网络工程(中韩合作)专业的专业理论课程。
本课程主要讲授信息安全所涉及的数论、代数和椭圆曲线论等基本数学理论和方法,对欧几里得除法、同余、欧拉定理、中国剩余定理、二次同余、原根、有限群、有限域等知识及其在信息安全实践中的应用进行详细的讲述。
通过课程的学习,使学生具备较好的逻辑推理能力,具备利用数学理论知识解决信息安全实际问题的能力,树立信息安全危机意识和防范意识,树立探索未知、追求真理、勇攀科学高峰的责任感和使命感,树立为国家信息安全事业发展做贡献的远大理想。
二、课程目标本课程教学应按照大纲要求,注重培养学生知识的学习和应用能力,使学生在学习过程中,在掌握信息安全领域所必需的数学基础知识的同时,提升学生的理论水平、业务素质、数学知识的应用能力,支撑人才培养方案中“课程设置与人才培养目标达成矩阵”相应指标点的达成。
课程目标对学生价值、知识、能力、素质要求如下:课程目标1:激发学生爱国主义情怀和专业知识钻研精神,使其树立正确的价值观。
课程目标2:培养学生树立信息安全危机意识和防范意识。
课程目标3:激发学生树立为国家信息安全事业发展做贡献的远大理想。
课程目标4:使学生掌握整除的相关概念和欧几里德算法的原理与应用。
课程目标5:使学生掌握同余式的求解方法及其在密码学中的经典应用。
课程目标6:使学生掌握群环域等代数结构的特点及其在密码学中的经典应用。
课程目标7:使学生掌握信息安全数学基础中的专业韩语知识。
三、教学内容与课程目标的关系四、课程教学方法1、理论课堂(1)采用案例式教学,讲述我国科技工作者将自主科研创新和国家重大需求相结合,经过不懈努力取得辉煌成果的真实事件,激发学生爱国主义情怀和专业知识探究热情,使学生树立正确的价值观。
信息安全数学基础试题
信息安全数学基础试题1. 题目:对称加密与非对称加密的区别是什么?请举例说明。
对称加密和非对称加密是信息安全中常用的两种加密方式,它们的区别主要体现在密钥的管理和使用方式上。
(1)对称加密:对称加密也被称为共享密钥加密。
它使用相同的密钥进行加密和解密操作。
加密和解密过程都使用相同的密钥,因此速度较快,但密钥的管理相对困难。
举例:最常见的对称加密算法是DES(数据加密标准)。
例如,Alice想要将一份秘密文件发送给Bob,她需要事先与Bob共享DES密钥。
当Alice加密文件时,她使用这个密钥对文件进行加密,然后将加密后的文件发送给Bob。
Bob接收到文件后,使用相同的密钥进行解密操作,以获取原始文件。
(2)非对称加密:非对称加密也被称为公钥加密。
它使用一对密钥,其中一个是公钥,另一个是私钥。
公钥用于加密操作,私钥用于解密操作。
非对称加密相对安全,但速度较慢。
举例:非对称加密算法中最常见的是RSA算法。
假设Alice想要将一份秘密文件发送给Bob,Bob首先生成一对密钥(公钥和私钥)。
Bob将公钥发送给Alice,而私钥则保留在自己手中。
Alice使用Bob的公钥对文件进行加密后,将加密后的文件发送给Bob。
Bob收到文件后,使用自己的私钥进行解密操作,以获取原始文件。
2. 题目:什么是哈希函数?请简要介绍哈希函数的概念和应用。
哈希函数是一种将输入转换为固定长度输出的函数。
它将任意长度的输入数据映射到固定长度的哈希值,并具有以下特点:(1)唯一性:不同的输入数据会产生不同的哈希值。
(2)定长输出:无论输入数据的长度是多少,哈希函数始终输出固定长度的哈希值。
(3)不可逆性:从哈希值无法还原得到原始的输入数据。
(4)散列性:输入数据发生轻微改变,哈希值会发生巨大变化。
应用领域:(1)数据完整性验证:哈希函数可以用于验证数据的完整性,通过比对哈希值判断数据是否被篡改。
(2)数字签名:哈希函数与非对称加密算法结合使用,利用私钥对数据的哈希值进行签名,保证签名的真实性和完整性。
信息安全数学基础
信息安全数学基础
信息安全数学基础是指在信息安全系统中,使用到的、涉及到的数学理论和算法,是保护数据免受未经授权的使用的一种重要的安全技术。
它的目的是建立数学模型和实际操作,以防止未经授权的使用、更改或泄露信息资源,包括数据被恶意利用然后破坏系统。
信息安全数学基础最常用的数学原理包括加密与解密算法、数字签名和数字摘要、传输代码和数据短信、隐蔽信道和隐蔽通信、验证和认证等。
它们是信息安全的核心技术,为安全环境提供重要的理论支持。
具体来说,加密与解密算法是一种可以在发送者和接收者之间安全传输信息的算法,例如RSA,DES,AES等,旨在应用专业的数学技术来加密信息,让它免受未授权的解读。
数
字签名也是一种信息安全数学基础,可以在通讯中用于验证对方的身份并保证发送者对消息的有效性和真实性,如RSA算法。
传输代码和数据短信是将原始的数字信号翻译成信
号比特流的一种算法,以提高信号的传输效率;而隐蔽信道和隐蔽通信则是数学基础之一,主要是利用各种技术和理论,将网络信道中的信号转换、传输以及延展,从而达到在网络中掩蔽信息的效果。
验证和认证等是保证安全性的重要环节,它基于独特性和身份明确性,以确保只有授权者可以访问系统。
总而言之,信息安全数学基础是信息系统安全技术领域中重要的理论和技术,通过运用基础数学原理,如加密与解密算法、数字签名、传输代码、隐蔽信道、验证与认证等,来保护信息安全,并维护系统的正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RSA算法的描述
ne c(mod N )
c d n(mod N )
验证哥德巴赫猜想
一、什么是哥德巴赫猜想 二、哥德巴赫猜想的验证 三、程序演示
什么是哥德巴赫猜想?
在1742年给欧拉的信中哥德巴赫提出 了以下猜想:任一大于2的整数都可 写成三个质数之和。因现今数学界已 经不使用“1也是素数”这个约定, 原初猜想的现代陈述为:任一大于5 的整数都可写成三个质数之和。欧拉 在回信中也提出另一等价版本,即任 一大于2的偶数都可写成两个质数之 和。今日常见的猜想陈述为欧拉的版 本。把命题"任一充分大的偶数都可 以表示成为一个素因子个数不超过a 个的数与另一个素因子不超过b个的 数之和"记作"a+b"。1966年陈景润证 明了"1+2"成立,即"任一充分大的偶 数都可以表示成二个素数的和,或是 一个素数和一个半素数的和"。
寻找最大梅森数
一、寻找梅森数的猜想 二、寻觅梅森素数漫长曲折历程 三、寻找梅森素数算法的实现 四、存在最大的梅森素数吗
寻找梅森数的猜想
人们都知道,亲数是大于1,并除了它本身和1以外,不能被 其它正整数整除的整数,如2,3 .5.7.··… 梅森素数 (M~~prime)通常记作P,二2”一l(其中P为素数)。梅森素 数是否有无穷个.是否有分布规律,一直是众多研究者试 图攻克的世界知名难题。 法国数学家马林· 梅森 (MarinMeI’8enne)在1644年断定.不大于257的各素数, 只有P二2,3,5,7,一3,17,19,3一,67,127,257,使2,一1是素数, 尽管梅森本人实际只验算了前面的7个数,但人们对其断 定仍深信不疑。 虽然梅森的断定中包含若干错误,但却 极大地激发了人们对Zr一l型素教的研究热情。而当时 梅森所猜想到M,2,也是电脑出现以前人们所确认的最 大梅森素数。 自梅森提出其断定后,人们发现的已知最 大素数几乎都是梅森素数。所以.寻找新的梅森紊数的 历程就几乎等同于寻找欲知最大亲数的历程。
寻找最大一对孪生素数
一、什么是孪生素数 二、最大的孪生素数 三、寻找孪生素数的算法实现 四、程序实现
什么是孪生素数?
所谓孪生素数指的就是这种间隔为 2 的 相邻素数,它们之间的距离已经近得不 能再近了,就象孪生兄弟一样。最小的 孪生素数是 (3, 5),在 100 以内的孪生素 数还有 (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61) 和 (71, 73),总计有 8 组。 但是随着数字的增大,孪生素数的分布 变得越来越稀疏,寻找孪生素数也变得 越来越困难。那么会不会在超过某个界 限之后就再也不存在孪生素数了呢?
存在最大的梅森素数吗?
上小学的时候, 我们就知道所有的自然数可以分为素数( 质数)和 合数两类, 当然还特别规定了������ 1 既不是素数, 也不是合数 。 100以内的素数, 从小到大依次是: 2、3、5、7、11、13、17、19、 %%、83、89、97。不用说了, 你一定会背下来。那么素数的个数 是有限多的呢? 我们先假设素数的个数是有限多的, 那么必然存在一个������ 最 大的素数 , 设这个������ 最大的素数 为N。下面我们找出从1 到N 之间的所有素数, 把它们连乘起来, 就是:2 ∃ 3 ∃ 5∃ 7 ∃ 11 ∃ 13 ∃ %%∃ N把这个连乘积再加上1, 得到一个相当大的数M:M= 2 ∃ 3 ∃ 5 ∃ 7 ∃ 11 ∃ 13 %%∃ N+ 1那么这个M 是质数还是合数呢? 乍一想, 不难判断, 既然N 是最大的质数, 而且M> N, 那么M 就应该是合数。 既然M 是合数, 就可以对M 分解质因数。可是试一下就会发现, 我 们用从1 到N 之间的任何一个素数去除M, 总是余1! 这个现实, 又 表明M 一定是素数。这个自相矛盾的结果, 无非说明: 最大的素数 是不存在的! 如果有一个足够大的素数N, 一定可以像上面那样, 找 到一个比N 更大的素数M。既然不存在最大的素数, 就可以推知自 然数中的素数应该有无限多个
RSA是被研究的最广泛的公钥算法,从提出到现在 已近二十年,经历了各种攻击的考验,逐渐被人们所 接受,普遍被认为是现在最优秀的公钥方案之一。 RSA的安全性依赖于大数的因子分解。但并没有从理 论上证明破译RSA的难度与大数分解难度等价。既 RSA的最大缺陷是无法从理论上把握它的保密性如何, 而且密码学界很多密码学家更倾向于大数的分解而不 是NPC的问题。
信息安全数学基础 ——实现RSA加密系统
验证哥德巴赫猜想 寻找最大梅森数 寻找最大一对孪生素数
——孙为坤、王效雷、朱科林、郭 红、王轩
实现RSA加密系统
一、RSA简介 二、RSA加密算法的描述 三、程序演示
RSA加密简介
RSA算法是第一个能同时用于加密和数字签名的算 法,也易于理解和操作。
哥德巴赫猜想的验证 Nhomakorabea
一、殆素数 殆素数就是素因子个数不多的正整数。现设N是偶数,虽然现在不能证明N是两个素数之和,但是可以证明它能够写成两个殆素数 的和,即N=A+B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。现在用“a+b”来表示如下命题:每个大偶数N 都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1+1"。在这一方向上的进展都是用所谓 的筛法得到的[1]。 二、例外集合 在数轴上取定大整数x,再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数,即例外偶数。x之前所有例外偶数的个数记 为E(x)。我们希望,无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。这样一来,哥德巴赫猜想就等价于 E(x)永远等于1。当然,直到现在还不能证明E(x)=1;但是能够证明E(x)远比x小。在x前面的偶数个数大概是x/2;如果当x趋于无穷 大时,E(x)与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德巴赫猜想对于几乎所有的偶数成立。这就是例外集合的思 路。 三、小变量的三素数定理 如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确。我们可以把这个问题反过来思考。已知奇数N可以表成三个素数之和, 假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,那么我们也就证明了偶数的哥德巴赫猜想。这个思想就 促使潘承洞先生在1959年,即他25岁时,研究有一个小素变数的三素数定理。这个小素变数不超过N的θ次方。我们的目标是要证 明θ可以取0,即这个小素变数有界,从而推出偶数的哥德巴赫猜想。潘承洞先生首先证明θ可取1/4。后来的很长一段时间内,这方 面的工作一直没有进展,直到1995年展涛教授把潘老师的定理推进到7/120。这个数已经比较小了,但是仍然大于0。 四、几乎哥德巴赫问题 1953年,林尼克发表了一篇长达70页的论文。在文中,他率先研究了几乎哥德巴赫问题,证明了,存在一个固定的非负整数k, 使得任何大偶数都能写成两个素数与k个2的方幂之和。这个定理,看起来好像丑化了哥德巴赫猜想,实际上它是非常深刻的。我们 注意,能写成k个2的方幂之和的整数构成一个非常稀疏的集合;事实上,对任意取定的x,x前面这种整数的个数不会超过log x的k 次方。因此,林尼克定理指出,虽然我们还不能证明哥德巴赫猜想,但是我们能在整数集合中找到一个非常稀疏的子集,每次从这 个稀疏子集里面拿一个元素贴到这两个素数的表达式中去,这个表达式就成立。这里的k用来衡量几乎哥德巴赫问题向哥德巴赫猜 想逼近的程度,数值较小的k表示更好的逼近度。显然,如果k等于0,几乎哥德巴赫问题中2的方幂就不再出现,从而,林尼克的定 理就是哥德巴赫猜想。
最大的孪生素数
最新计算发现现有最大孪生素数为 (100000000000000000×1000000000000+38-1, 100000000000000000×1000000000000+38+1)孪生素数是有限个还是有 无穷多个?这是一个一直吸引着众多的数学家孜孜以求地钻研.早在20世纪 初,德国数学家兰道就推测孪生素数有无穷多.许多迹象也越来越支持这个 猜想.最先想到的方法是使用欧拉在证明素数有无穷多个所采取的方法.设 所有的素数的倒数和为: s=1/2+1/3+1/5+1/7+1/11+... 如果素数是有限个,那么这个倒数和自然是有限数.但是欧拉证明了这 个和是发散的,即是无穷大.由此说明素数有无穷多个.1919年,挪威数学家 布隆仿照欧拉的方法,求所有孪生素数的倒数和: b=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+... 如果也能证明这个和比任何数都大,就证明了孪生素数有无穷多个了. 这个想法很好,可是事实却违背了布隆的意愿.他证明了这个倒数和是一个 有限数,现在这个常数就被称为布隆常数:b=1.90216054...布隆还发现,对于 任何一个给定的整数m,都可以找到m个相邻素数,其中没有一个孪生素数。
寻找梅森素数算法的实现
一、基本实现 为了加速整个计算过程, 我们借鉴Ma yer E W. 的Lu cas Lehmer 检验法数值算法, 同样采用了fft 算法来计 算大数的平方, 这样使得乘方运算的复杂度从O( n2 ) 下降到O( nlog 2 n) 。fft_square 子程序应用fft 算法的思想 进行大数的平方, 即实现Lucas Lehmer 检验法中L ( i) * L ( i) 这个部分。 利用St ream C 和Ker nel C 语言[ 6] 开发了一个最多包含28 个Kernel 的流程序, 简称为LUCAS 程序, 处理 的网格大小为( n/ 8) * 8, 需要迭代iter 次。其中, n 为fft算法的执行长度, iter 为迭代次数, 都是由输入给定的, iter的最大值为所要验证的梅森指数减1。 二、数据流图 LU CAS 所需要的Kernel 数目是由n 的大小决定的, 。通过数据流图可以很清楚地知道Ker nel 的功能、执 行顺序、访存以及Kernel 间的生产者消费者局域性和数据重用局域性。 三、基本流化过程 LUCAS 的流化算法可以根据Cluster 数目N 的不同进行扩展, N 的取值可以为4、8、16 等, 以N= 8 为例具体 介绍。LUCAS 主要的流化工作集中在a、b 这两个流上。对于a 和b , 组织方式是一样的。在Ker nel 中, 它们总 是一个作为输入, 另一个作为输出;在下一个Kernel 时, 又将输入和输出调换位置。因此, 只用in 和out 来标记输 入和输出。 四、根据计算特征进行优化 LUCAS 中, 最主要的程序模式是由一个二重循环构成的, 每次循环从一个二维数组中读入16 个数, 经过一系 列计算以后更新另一个二维数组中的16 个数, 而任意两次循环之间是不存在数据相关性的。这是程序最主要 的计算特征。 优化的效果很明显。经过分析, 主要有以下几个原因: ( 1) 流组织开销降低; ( 2) 并行粒度增大; ( 3) Ker nel 中对流的读取次数减少。