斜截面受剪承载力计算
第四章 第四节 斜截面受剪承载力计算公式及适用范围
V ≤ Vu = Vcs = 0.7 f t bh0 + 1.25 f yv Asv h0 s
集中荷载作用下的独立梁
Vcs = 1.75 f t bh0 A + f yv sv h0 λ + 1.0 s
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 有腹筋梁 2、同时配有箍筋和弯起钢筋
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 《规范》采用抗剪承载力试验下限值保证安全 无腹筋梁
V ≤ Vc = 0.7 β h f t bh0
β h = (800 / h0 )1 / 4
有腹筋梁
斜拉破坏 斜压破坏 剪压破坏
构造措施
计算控制
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 有腹筋梁 1、仅配有箍筋
下限值
最小配箍率
ρ sv =
Asv ≥ ρ sv,min bs
ρ sv,min = 0.24 f t / f yv
V ≤ Vu = Vcs + Vsb
Vsb = 0.8 f y Asb sin α s
第四节 斜截面受剪承载力计算公式及适用范围 二、适用范围 上限值
最小截面尺寸
hw / b ≤ 4
V ≤ 0.25β c f c bh0
V ≤ 0.2β c f c bh0
Hale Waihona Puke hw / b ≥ 6hw 4 < hw / b < 6 V ≤ 0.025(14 − )β c f c bh0 b
斜截面受剪承载力的计算
≥ ρsv ,min
ρsv ,min = 0.24
ft f yv
1
例 4-1.有一钢筋混凝土矩形截面简支梁,截面尺寸及纵筋数量见图。该梁承受均布荷载设 计值 70kN/m(包括自重) ,混凝土强度等级为 C30(������������ = 1.43 ������/������������2 、������������ = 1.43 ������/������������2 ) ,
������ 1.43 270
������������
= 250×200 =0.2%> ������������������ ,������������������ = 0.24 ������ ������ = 0.24 ×
2×50.3
= 0.127%,可以。
2
ቤተ መጻሕፍቲ ባይዱ
ℎ ������ ������ 1 1
= 250 = 2.24 < 4
560
属厚腹板
混凝土强度等级为 C30,不超过 C50,故取βc = 1, 则 0.25������������ ������ ������ ������ℎ0 = 0.25 × 1 × 14.3 × 250 × 560 = 500.5 ������������ > ������ = 124.6������������ ,截面符合要 求。 ③ 验算是否需要按计算配置箍筋 0.7������������ ������ℎ0 = 0.7 × 1.43 × 250 × 560 = 140.14 ������������ < ������ = 201.6������������,故选计算配置箍筋。 ④配箍筋 令V = VU ,有 ������������������������1 ������ − 0.7������������ ������ℎ0 201.6 × 103 − 0.7 × 14.3 × 250 × 560 = = = 0.406 ������������2 ������������ ������ ������ ℎ 270 × 560 ������������ 0 采用双肢箍筋Φ 8@200,实有 箍筋配筋率������������������ =
05b斜截面受剪承载力的计算公式与适用范围
1、截面的最小尺寸(上限值)
当梁截面尺寸过小,而剪力较大时,梁往往发生斜压破 坏,这时,即使多配箍筋,也无济于事。 设计时为避免斜压破坏,同时也为了防止梁在使用阶段 斜裂缝过宽(主要是薄腹梁),必须对梁的截面尺寸作如下 的规定: hw 当 ≤4.0时,属于一般的梁,应满足 b
V 0.25c f cbh0
hw 当 ≥6.0时,属于薄腹梁,应满足 b
V 0.2 c f cbh0
hw 当4.0< <6.0时,直线插值 b
2、箍筋的最小含量(下限值)
箍筋配量过少,一旦斜裂缝出现,箍筋中突然增 大的拉应力很可能达到屈服强度,造成裂缝的加速开 展,甚至箍筋被拉断,而导致斜拉破坏。 为了避免发生斜拉破坏,《规范》规定,箍筋最 小配筋率为 :
(2)配有箍筋和弯起钢筋 配有箍筋和弯起钢 筋时梁的斜截面受剪承 载力,其斜截面承载力 设计表达式为:
V Vcs 0.8 f y Asb sin
0.8 ––– 应力不均匀系数
––– 弯筋与梁纵轴的夹角,一般取45,
h 大于或等于 800mm时取60
(三)计算公式的适用 范围
1、截面的最小尺寸 2、箍筋的最小含量 3、箍筋间距的构造要求 4、弯起钢筋的弯终点的构造要求
1.75 Vc h f t bh0 1.0
λ :计算剪跨比 当λ <1. 5时,取λ =1. 5;
当λ >3时,取λ =3
2、无腹筋梁受剪承载力的计算公式
3、有腹筋梁受剪承载力的计算公式
(1)仅配箍筋 A:均布荷载作用下矩形、T形和I形截面的简支 梁,斜截面受剪承载力的计算公式 :
Asv Vu Vcs 0.7 f t bh0 f yv h0 s
05受弯构件斜截面受剪承载力计算
Asi M ui M u As
图5-13
2、纵向钢筋的弯起(如图5-23) (1)钢筋理论充分利用点 图中1、2、3点:是③、②、①号钢筋充分利用 点(图5-23); (2)钢筋理论不需要点 图中的2、3、a点是③、②、①号钢筋不需要点 (图5-23); ; (3) 以③号纵向钢筋弯起为例(图5-23) : 将③号钢筋在E、F点弯起,在G、H点穿过中 和轴进入受压区,对正截面抗弯消失。 分别以E、F点作垂线与③号钢筋交于e、f点。以 G、H点作垂线与②号钢筋交于g、h点,Mu图变成 aigefhb,Mu图>M图,此称之包络图或称材料图
若不满足,则按计算配箍筋 ②最小配箍率(按计算配箍筋)
nAsv1 ft sv sv ,min 0.24 bs f yv
(3)按计算配置腹筋(限制剪压破坏)
当不满足上述(1)、(2) 按计算配制箍筋Asv和弯起筋Asb
三、计算截面位置与剪力设计值的取值
1、计算截面位置:斜截面受剪承载力薄弱部位 截面的抗剪能力沿梁长也是变化的。在剪力或抗剪
hw— 截面的腹板高度,矩形截面取有效高度h0, T形截面取有 效高度减去翼缘高度,工形截面取腹板净高;
βc— 混凝土强度影响系数, (见表5-1)
hf h0 h0 h0 hf
hw
(b) hw = h0 – hf
h
hw hf
(a) hw = h0
(c) hw = h0 – hf – hf
图5-13 hw 取值示意图
临界斜裂缝。梁破坏时与斜裂缝相交的腹筋达
到屈服强度,剪压区的混凝土的面积越来越小,
达到混凝土压应力和剪应力的共同作用下的复
受弯构件斜截面受剪承载力计算
梁的斜截面承载力包括斜截面受剪承载力和斜截面受弯承载力。在实
际工程中,斜截面受剪承载力通过计算配置腹筋来保证,而斜截面受弯
承载力则通过构造措施来保证。
有腹筋梁斜截面破坏工程试验
1
剪跨比λ的定义
影响梁斜截面破坏形态有很多因素,其中最主要的两项是剪跨
比λ的大小和配置箍筋的多少
对于承受集中荷载的梁:第一个集中荷载作用点到支座边缘之
距a(剪跨跨长)与截面的有效高度ℎ0 之比称为剪跨比λ,即
λ=a/ℎ0 。
广义剪跨比λ=M/Vℎ0 (如果λ表示剪跨比,集中荷载作用下的
梁某一截面的剪跨比等于该截面的弯矩值与截面的剪力值和有效
高度乘积之比)。
有腹筋梁斜截面破坏工程试验
2
箍筋配筋率
箍筋配箍率是指箍筋截面面积与截面宽度和箍筋间距乘积的比值,
计算公式为:
1 =Βιβλιοθήκη =式中 ——配置在同一截面内箍筋各肢的全部截面面积(2 );
=1 ;
n——同一截面内箍筋肢数;
1 ——单支箍筋的截面面积(2 );
b——矩形截面宽度,T形、I字形截面的腹板宽度(mm);
1.75
≤ =
ℎ0 +
ℎ0
+1
式中 V——梁的剪力设计值(N/2 )
剪跨比λ<1.5时,取λ=1.5;当λ>3时,取λ=3.
谢 谢 观 看
s——箍筋间距;
仅配箍筋时梁的斜截面受剪承载力计算基本公式
对于矩形、T型、I字形截面的一般受弯构件:
≤ = 0.7 ℎ0 +
ℎ0
对承受集中荷载作用为主的独立梁或对集中荷载作用下(包括作用
斜截面受剪承载力计算步骤
第5章
6. 斜截面承载力计算步骤
⑴ 确定计算截面及其剪力设计值;
⑵ 验算截面尺寸是否足够; ⑶ 验算是否可以按构造配筋; ⑷ 当不能按构造配箍筋时,计算腹筋用量; ⑸ 验算箍筋间距、直径和最小配箍率是否
满足要求。
混凝土结构设计原理
第5章
截面设计:
一般:V
0.7
ft bh0
fyv
解:本例采用C30混凝土,取
as 35mm , h0 h as 550mm 35mm 515mm (1)复核截面的确定和剪力设计值计算
Asv s
h0
0.8 fy Asb sin
特殊:V
1.75
1
ftbh0
f yv
Asv s
h0
0.8 fy Asb
sin
已知 :b、 h0、 V 、 f c、 f t、 f yv、 f y、 、
求:
Asv s
、Asb
未知数:Asv、Asb、s
混凝土结构设计原理
第5章
例5-1 某宿舍钢筋混凝土矩形截面简支梁,设计使用年限为 50年,环境类别为一类,两端支承在砖墙上,净跨度ln 3660mm 截面尺寸b h 200mm 500mm 。该梁承受均布荷载,其中恒荷 载标准值gk 25kN/m(包括自重),荷载分项系数G 1.2,活 荷载qk 38kN/m ,荷载分项系数Q 1.4 ;混凝土强度等级为 C20;箍筋为HPB300级钢筋,按正截面受弯承载力计算; 已选配HRB335级钢筋为纵向受力钢筋。试根据斜截面受剪 承载力要求确定腹筋。 g q
99
kN
< Vcs
混凝土结构设计原理
第5章
故不需要第二排弯起钢筋。其配筋图如下图(b)所示
05b斜截面受剪承载力的计算公式与适用范围
3、有腹筋梁受剪承载力的计算公式
(1)仅配箍筋
A:均布荷载作用下矩形、T形和I形截面的简支 梁,斜截面受剪承载力的计算公式 :
Vu
Vcs
0.7
f t bh0
fyv
Asv s
h0
注:这里所指的均布荷载,也包括作用有多种荷载, 但其中集中荷载对支座边缘截面或节点边缘所产生 的剪力值应小于总剪力值75%。
2、无腹筋梁受剪承载力的计算公式
(2)对集中荷载作用下的独立梁(也包括作用有 多种荷载,但其中集中荷载对支座边缘截面或节点边 缘所产生的剪力值应占总剪力值75%以上)。
Vc
1.75
1.0
h
ft bh0
λ :计算剪跨比 当λ<1. 5时,取λ=1. 5; 当λ>3时,取λ=3
2、无腹筋梁受剪承载力的计算公式
(1)梁斜压破坏时,受剪承载力取决于混凝土的 抗压强度,混凝土强度的影响大。
(2)梁为斜拉破坏时,受剪承载力取决于混凝土 的抗拉强度,而抗拉强度的增加较抗压强度来得缓慢, 故混凝土强度的影响小。
(3)剪压破坏时,混凝土强度的影响则居于上述 两者之间。
3、箍筋配箍率
有腹筋梁出现斜裂缝后,箍筋不仅直接承受相当部
h0
当λ<1. 5时,取λ=1. 5;当λ>3时,取λ=3,因而, 第一项的系数1.75/(λ+1.0)在0.7-0.44之间,说明 随着剪跨比的增大,梁的受剪承载力降低。
3、有腹筋梁受剪承载力的计算公式
集中荷载作用 均布荷载作用
Vcs
1.75
1.0
f t bh0
fyv
Asv s
为了提高斜截面的延 性,不宜采用高强度钢筋 作箍筋。
混凝土结构斜截面承载力计算
混凝土结构斜截面承载力计算1.矩形、T形和I形截面受弯构件的受剪截面应符合下列条件:当hw∕b≤4时V≤O.25βc f c bh o(63.1-1)当hw∕b≥6时V≤O.2βc fcbho(6.3.1-2)当4<hw/b<6时,按线性内插法确定。
式中:V——构件斜截面上的最大剪力设计值;βc——混凝土强度影响系数:当混凝土强度等级不超过C50时,氏取1.0;当混凝土强度等级为C80时,氏取0.8;其间按线性内插法确定;b——矩形截面的宽度,T形截面或I形截面的腹板宽度;ho一截面的有效高度;h w一截面的腹板高度:矩形截面,取有效高度;T形截面,取有效高度减去翼缘高度;I形截面,取腹板净高。
注:1对T形或I形截面的简支受弯构件,当有实践经验时,公式(63.1-1)中的系数可改用03;2对受拉边倾斜的构件,当有实践经验时,其受剪截面的控制条件可适当放宽。
2、计算斜截面受剪承载力时,剪力设计值的计算截面应按下列规定采用:1支座边缘处的截面(图6.3.2a、b截面1-1);2受拉区弯起钢筋弯起点处的截面(图6.3.2a截面2-2、3-3);图6.3・2斜截面受剪承载力剪力设计值的计算截面M支座边缘处的斜截面;2-2、3T受拉区弯起钢筋弯起点的斜截面;4・4艇筋截面面积或间距改变处的斜截面3箍筋截面面积或间距改变处的截面(图6.3.2b截面4-4);4截面尺寸改变处的截面。
注:1受拉边倾斜的受弯构件,尚应包括梁的高度开始变化处、集中荷载作用处和其他不利的截面;2箍筋的间距以及弯起钢筋前一排(对支座而言)的弯起点至后一排的弯终点的距离,应符合本规范第9.2.8条和第9.2.9条的构造要求。
3、不配置箍筋和弯起钢筋的一般板类受弯构件,其斜截面受剪承载力应符合下列规定:V≤0.7j⅛∕l6⅛0(6.3.3-1)A=(警)" (6.3.3-2)式中:βh——截面高度影响系数:当ho小于800mm时,取800mm;当h0大于2000mm时,取2000mm o4、当仅配置箍筋时,矩形、T形和I形截面受弯构件的斜截面受剪承载力应符合下列规定:V≤v w÷vμ(6.3.4-1)Ya=a cv∕t6⅛0÷∕yv生儿(6.3.4-2)Vμ=0.05N p0(6.3.4-3)式中:Vcs——构件斜截面上混凝土和箍筋的受剪承载力设计值;V P-由预加力所提高的构件受剪承载力设计值;Okv—斜截面混凝土受剪承载力系数,对于一般受弯构件取0.7;对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的1.75剪力值占总剪力的75%以上的情况)的独立梁,取C(CV为λ+l,人为计算截面的剪跨比,可取入等于Who,当人小于1.5时,取1.5,当人大于3时,取3,α取集中荷载作用点至支座截面或节点边缘的距离;Asv—配置在同一截面内箍筋各肢的全部截面面积,即∩Asv∣,此处,n为在同一个截面内箍筋的肢数,ASVl为单肢箍筋的截面面积;s——沿构件长度方向的箍筋间距;fyv——箍筋的抗拉强度设计值,按本规范第4.2.3条的规定采用;Npo—计算截面上混凝土法向预应力等于零时的预加力,按本规范第10∙L13条计算;当NPO大于O.3fcAo时,取O.3fcAo,此处,Ao为构件的换算截面面积。
混凝土结构设计受弯构件的斜截面受剪承载力计算
◆(1.5≤ ≤3)
■ ■
剪跨比较小,有一定拱作用
斜裂缝出现后,部分荷载通过 拱作用传递到支座,承载力没 有很快丧失,荷载可继续增加, 并出现其它斜裂缝。 ■最后形成一条临界裂缝,裂缝逐渐向 集中荷载作用点处延伸,致使剪压区 高度不断减小,在剪压区由于混凝土 受剪力和压力的共同作用,达到混凝 土的复合受力下的强度,混凝土被压 碎发生破坏。
箍筋
弯起钢筋
腹筋
5.1概述
抗剪钢筋
第五章 钢筋混凝土受弯构件斜截面承载力计算
弯起钢筋则可利用正截面受弯的纵向钢筋直接弯起而成。弯起 钢筋的方向可与主拉应力方向一致,能较好地起到提高斜截面 承载力的作用,但因其传力较为集中,有可能引起弯起处混凝 土的劈裂裂缝。而且试验研究表明,箍筋对抑制斜裂缝开展的 效果比弯起钢筋好。所以首先选用竖直箍筋,然后再考虑采用 弯起钢筋。选用的弯筋位置不宜在梁侧边缘,且直径不宜过粗。
5.1 概述
受弯构件在荷载作用下,同时 产生弯矩和剪力。
A B C D
BC段仅有弯矩作用,称为纯弯 区段;
支座附近的AB、CD区段内有弯 矩与剪力的共同作用,称为剪 跨。 在弯矩区段,抗弯承载力不足 时,产生正截面受弯破坏,
而在剪力较大的区段(剪跨), 则会产生斜截面破坏。
5.1.1 受弯构件斜截面受力与破坏分析
5.1.2 斜截面的主要破坏形态
对集中荷载作用下的简支梁
h0
a
M a Vh0 h0
计算剪跨比
(狭义剪跨比)
我们把在集中力到支座之间的距离a称之为剪跨, 剪跨a与梁的有效高度h0的比值则称为计算剪跨比。
5.1.2 斜截面的主要破坏形态
1、无腹筋梁
◆(<1.5)或腹板较窄的T形梁或I形梁
受弯构件斜截面受剪承载力计算
受弯构件斜截面受剪承载力计算一、有腹筋梁受剪承载力计算基本公式1.矩形、T形和Ⅰ形截面的一般受弯构件,斜截面受剪承载力计算公式为:VVc0.7ftbh01.25fyvAvh0(5-6)式中ft一混凝土抗拉强度设计值;b一构件的截面宽度,T形和Ⅰ形截面取腹板宽度;h0一截面的有效高度;fyv一箍筋的抗拉强度设计值;Av一配置在同一截面内箍筋各肢的全部截面面积,AvnAv1;n一在同一截面内箍筋的肢数;Av1一单肢箍筋的截面面积;一箍筋的间距。
2.集中荷载作用下的独立梁(包括作用多种荷载,且其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况),斜截面受剪承载力按下式计算:VVcA1.75ftbh0fyvvh01.0(5-7)式中一剪跨比,可取a/h0,a为计算截面至支座截面或节点边缘的距离,计算截面取集中荷载作用点处的截面。
当小于1.5时,取1.5;当大于3.0时,取3.0。
独立梁是指不与楼板整浇的梁。
构件中箍筋的数量可以用箍筋配箍率v表示:vAvb(5-8)3.当梁内还配置弯起钢筋时,公式(5-4)中Vb0.8fyAbin式中(5-9)fy一纵筋抗拉强度设计值;Ab一同一弯起平面内弯起钢筋的截面面积;一斜截面上弯起钢筋的切线与构件纵向轴线的夹角,一般取45o,当梁较高时,可取60。
剪压破坏时,与斜裂缝相交的箍筋和弯起钢筋的拉应力一般都能达到屈服强度,但是拉应力可能不均匀。
为此,在弯起钢筋中考虑了应力不均匀系数,取为0.8。
另外,虽然纵筋的销栓作用对斜截面受剪承载力有一定的影响,但其在抵抗受剪破坏中所起的作用较小,所以斜截面受剪承载力计算中没有考虑纵筋的作用。
二、混凝土的受剪承载力可以抵抗斜截面的破坏,可不进行斜截面承载力计算,仅需按构造要求配置箍筋的条件oV0.7ftbh0或(5-10)V1.75ftbh01.0(5-11)三、计算公式的适用范围(上限和下限)l.截面限制条件当配箍特征值过大时,箍筋的抗拉强度不能发挥,梁的斜截面破坏将由剪压破坏转为斜压破坏,此时,梁沿斜截面的抗剪能力主要由混凝土的截面尺寸及混凝土的强度等级决定,而与配筋率无关。
钢筋混凝土梁设计—斜截面承载力计算
承受一般荷载的矩形、T形和工字形截面梁,其公式为:
KV
Vcs +Vsb
Vc
Vsv
Vsb
0.7 ftbh0
1.25 f yv
Asv s
h0
f y Asb sin s
承受集中力为主的重要的独立梁,其公式为:
KV
Vcs +Vsb
Vc
Vsv
Vsb
0.5 ftbh0
f yv
Asv s
h0
f y Asb sin s
置,对于矩形、T形和工字形截面构件受剪承载力的计算位置,应按下列规
定采用:
(1)支座边缘处的截面1-1;
(2)受拉区弯起钢筋弯起点处的截面2-2;
1
12
1
12
3. 计算位置
(3)箍筋截面面积或间距改变处的截面3-3; (4)腹板宽度改变处的截面4-4。
4
4
3 3
3 3
添加标题2.适用条件
2. 适用条件
(1)防止斜压破坏 当梁截面尺寸过小、配置的腹筋过多、剪力较大时。梁可能发生斜压破
坏,这种破坏形态的构件受剪承载力主要取决于混凝土的抗压强度及构件的 截面尺寸,腹筋的应力达不到屈服强度而不能充分发挥作用。
为了避免发生斜压破坏,构件受剪截面必须符合下列条件:
当 hw b 4 时 当 hw b 6 时 当 4 hw b 6 时
Vsv :与斜裂缝相交的箍筋受剪承载力 Vsb :与斜裂缝相交的弯起钢筋受剪承载力
1. 基本公式
由于影响斜截面抗剪承载力的因素很多,目前《规范》采用的斜截
面承载力计算公式为半理论半经验公式。
承受一般荷载的矩形、T形和工字形截面梁,其公式为:
第四章斜截面受剪承载力计算
纵筋配筋率对梁受剪承载力的影响
第4章 受弯构件斜截面承载力计算
郑州大学
五、弯起钢筋及其强度 bent reinforcement and strength
3
试验表明,在相 同纵向钢筋配筋率下, 弯筋梁的受剪承载力
Vu 钢 /( f t筋 bh0配 ) 筋率 与弯起
A sb 筋 sb 强 bh0
规范规定:
矩形、T形和Ⅰ形截面的受弯构件,其斜截面受剪承载 力应符合下列规定:
ft
仅配箍筋简支梁Vcs实测值与计算值的比较
KV Vu Vcs Vc Vsv
4. 4 受弯构件斜截面受剪承载力计算
第4章 受弯构件斜截面承载力计算
郑州大学
KV Vu Vcs 0.7 f t bh0 1.25 f yv
4.1 概述
第4章 受弯构件斜截面承:
tp cp
2
2
4
2
1 2 arctan( ) 2
4.1 概述
第4章 受弯构件斜截面承载力计算
郑州大学
4.1 概述
第4章 受弯构件斜截面承载力计算
郑州大学
4.2 受弯构件斜截面上的应力状态与破坏形态
混凝土强度对梁受剪承载力的影响
影响则居于上述两者之间。
4. 3 影响受弯构件斜截面受剪承载力的主要因素
第4章 受弯构件斜截面承载力计算
郑州大学
三、箍筋配筋率及其强度 Stirrup Ratio sv and the Strength of Stirrup
Asv n Asv1 sv bs bs
郑州大学
2.有腹筋梁斜截面的破坏形态与发生条件 破坏形态 斜拉破坏
斜截面受剪承载力的计算步骤
F0 斜压破坏 剪压破坏 斜拉破坏
f
5.2 梁斜截面受剪性能及破坏形态
第五章 受弯构件斜截面承载力计算
2、有腹筋梁
➢斜压破坏: 箍筋的配置数量过多; ➢剪压破坏: 箍筋的配置数量适当; ➢斜拉破坏: λ>3且箍筋配置的数量过少;
5.2 梁斜截面受剪性能及破坏形态
第五章 受弯构件斜截面承载力计算
h0
5.2 梁斜截面受剪性能及破坏形态
第五章 受弯构件斜截面承载力计算
2、斜裂缝的形成
正应力: 剪应力:
My
I0
VS
bI0
5.1 概述
第五章 受弯构件斜截面承载力计算
主拉应力:
tp
2
2 2
4
主压应力:
cp
2
2 2
4
主应力作用方向:
tg2 2
5.1 概述
第五章 受弯构件斜截面承载力计算
l0/h
5.3斜截面受剪承载力的计算
第五章 受弯构件斜截面承载力计算
2、混凝土强度
混凝土强度越高,承载力越大,二者大致呈线性关系。
5.3斜截面受剪承载力的计算
第五章 受弯构件斜截面承载力计算
3、纵向钢筋配筋率ρ
5.3斜截面受剪承载力的计算
第五章 受弯构件斜截面承载力计算
4、配箍率ρsv及箍筋强度fyv::
第五章 受弯构件斜截面承载力计算
5.2 建筑工程中受弯构件斜截面设计方法
一、斜截面受剪承载力的计算
(一)无腹筋的板类构件:
V 0.7h ftbh0
h
(
800)
1 4
h0
h ——截面高度影响系数,h0<800mm,h0=800mm;
梁斜截面受剪承载力计算
2. 混凝土强度等级
c ,受剪承载力
3 .纵筋配筋率
,受剪承载力
4. 配箍率,svAbsSv nbAsSv1
sv ,受剪承载力
5. 骨料咬合力
6 .截面尺寸和形状
f ,受剪承载力
箍筋肢数图
4.4.2斜截面抗剪承载力的计算
1.基本假设 一般原则:采用半理论半经验的实用计算公式; 仅讨论剪压破坏的情况;
3).板的受剪承载力公式
V0.7hftb0h
h
800 h0
1/
4
截面高度影响系数
当h0小于800mm时取h0=800mm 当h0≥2000mm时取h0=2000mm
3.有腹筋梁计算公式 1)只有箍筋
均布荷载作用下梁的斜截面抗剪承载力计算公式
集中荷载作用下梁的斜截面抗剪承载力计算公式
§ 4.2 斜裂缝、剪跨比及斜截面破坏形态
在受弯构件的设计中,要保证强剪弱弯!
4.2.1斜裂缝的分类
1.弯剪斜裂缝
2.腹剪斜裂缝
采用增设腹筋的方法来 阻止斜裂缝的扩展
4.2.2剪跨比(Shear span ratio)的概念
剪跨比λ为集中荷载到临近支座的距离a与梁 截面有效高度h0的比值,即λ=a/ h0 。
(5)剪跨比的影响仅在受集中力作用为主的构件中加以考虑。
2.无腹筋梁抗剪承载力的计算
1).均布荷载
矩形、T形和工形截面的一般受弯构件
Vc 0.7ftb0h
2).集中荷载
集中荷载作用下的独立梁 (其中集中荷载在支座截面产生的剪力占总剪力的75%以上)
Vc
1.75
1.0
ftbh0
1 . 5 , 取 1 . 5 ; 3 . 0 , 取 3 . 0
斜截面承载力 计算
V、 M——构件斜截面最大剪力与最大弯矩设计值
Vu 、Mu ——构件斜截面受剪承载力与受弯承载力设计值 在实际工程中一般通过配置腹筋来满足抗剪条件
通过构造措施来满足抗弯
图3-25为一配置箍筋及弯起钢筋的简支梁发生斜截 面剪压破坏时,取出的斜裂缝到支座间的一段隔离 体。斜截面的内力如图所示,其斜截面的受剪承载 力由混凝土、箍筋和弯起钢筋三部分组成,即:
按下列公式计算:
Vc
1.75
1.0
ftbh0
a, 当λ<l.5时,取λ = 1.5,当λ>3
h0
时,取λ=3 。α为集中荷载作用点到支座或节点边缘 的距离。
独立梁是指不与楼板整体浇筑的梁。
4.3 有腹筋梁的受剪性能
◆ 梁中配置箍筋,出现斜裂缝 后,梁的剪力传递机构由原 来无腹筋梁的拉杆拱传递机 构转变为桁架与拱的复合传 递机构
当 hw 4 时, b
V 0.25 c fcbh0 c为高强混凝土的强度折减
系数
当 hw 6 时, b
V 0.20 c fcbh0 fcu,k ≤50N/mm2时,c =1.0 fcu,k =80N/mm2时,c =0.8
当 4 < hw < 6 时,按直线内插法取用。 其间线性插值。
b
三、最小配箍率及配箍构造
◆箍筋参与斜截面的受弯,使斜裂缝出现后纵筋应力ss 的增量
减小;
◆ 配置箍筋对斜裂缝开裂荷载没有影响,也不能提高斜压破坏 的承载力,即对小剪跨比情况,箍筋的上述作用很小;对大 剪跨比情况,箍筋配置如果超过某一限值,则产生斜压杆压 坏,继续增加箍筋没有作用。
二、破坏形态
影响有腹筋梁破坏形态的主要因素有剪跨比 和配箍率rsv