磁场知识总结

合集下载

磁场场知识点总结

磁场场知识点总结

磁场场知识点总结1. 磁场的产生磁场的产生有两种方式,一是由运动电荷产生,二是由变化电场产生。

对于第一种情况,当电流通过导线时,周围就会产生磁场。

这也解释了为什么有电流的导线周围会出现磁场。

对于第二种情况,根据麦克斯韦方程组,当电场发生变化时,就会产生磁场。

例如,当电流变化时,就会产生磁场。

2. 磁场的性质磁场有以下一些基本性质:(1) 磁场是二维的:磁场是弧线的,不存在磁场的起点或终点,也就是说,磁场是一个连续的有向线。

(2) 磁场的大小:磁场的大小用磁感应强度B来表示,单位是特斯拉(T)。

(3) 磁场的方向:磁场的方向由磁感线给出,磁感线的方向就是磁场的方向。

磁感线从磁场的北极指向南极。

(4) 磁场的作用:磁场对运动的电荷有力的作用,它使电荷受到安培力的作用,即受力方向垂直于速度方向和磁感线的平面。

(5) 磁场的特性:磁场有吸引和排斥的特性,不同磁极之间会产生磁力作用。

3. 磁感应强度磁感应强度B是描述磁场强度大小的物理量。

在真空中,磁场的磁感应强度与电场的电感应强度一样,都是标量。

磁感应强度的方向指示着磁场的方向。

使用特斯拉(T)作为单位。

磁感应强度与电流的关系由安培定律给出,即B=μ0I/(2πr),其中B为磁感应强度,μ0是真空中的磁导率,I是电流,r是电流所在导线的距离。

4. 磁场的产生与磁矩磁场是由磁矩产生的。

磁矩是一个磁性材料在外加磁场中所受的力矩最大值。

根据磁矩的方向,可以分为顺磁性和抗磁性。

当物质内的磁矩和外加磁场相互平行时,称为顺磁性,否则称为抗磁性。

5. 磁场的测量磁场的测量可以采用磁感应强度计或霍尔感应计。

磁感应强度计是一种通过测量磁感应强度大小来测量磁场的仪器,而霍尔感应计是一种通过霍尔元件的霍尔效应来测量磁感应强度大小的仪器。

6. 磁场的应用磁场在生产和生活中具有很多应用,例如电磁铁、电磁感应、永磁材料、磁共振技术等等。

其中,电磁铁是一种人造磁场的产生装置,是将电线的电流转换成磁力的装置。

大物知识点总结磁场

大物知识点总结磁场

大物知识点总结磁场一、磁场的产生1. 电流产生的磁场安培环路定理用来计算电流在产生磁场方面的物理定律。

在一根直导线周围产生的磁场可以使用右手定则确定磁场的方向。

2. 磁性材料产生的磁场磁性物质内部原子和分子的磁矩导致了磁性物质产生的磁场。

这种磁场可以用磁化强度和磁化率描述。

3. 等效电流产生的磁场电流在弯曲闭合导线中产生的总的磁场可以用安培环路定理求和。

这种方法用于计算磁场的大小和方向。

二、磁场的性质1. 磁现象和磁性材料的分类永磁体和电磁体是两种主要的磁性材料类型。

永磁体可以自发地产生磁场,而电磁体需要外部电流或磁场来产生磁效应。

2. 磁场的作用力磁场对带电粒子或者电流产生的作用力可以用洛伦兹力定律计算。

3. 磁场的磁感应强度磁感应强度描述了磁场的强度以及方向,可以用来计算磁场对带电粒子或者磁性物质产生的作用力。

三、磁场的应用1. 磁场在电机中的应用电动机的工作原理基于磁场和电流相互作用产生运动力。

不同类型的电机使用不同的磁场产生方式。

2. 磁场在变压器中的应用变压器工作原理基于电流通过涡流产生的磁场。

变压器可以用来改变电压大小和方向。

3. 磁场在磁共振成像中的应用磁共振成像利用磁场对核磁共振现象进行成像。

磁场对磁共振信号的强度和方向产生影响,从而得到人体组织的影像。

四、磁场的测量和计算1. 磁场的测量方法磁通计量法、霍尔效应、磁力计量法等是常用的磁场测量方法。

2. 磁场的数学描述麦克斯韦方程组用来描述电磁场,磁场可以用磁感应强度、磁场强度和磁化强度等物理量来描述和计算。

总之,磁场是物质周围的一个物理场,它对带电粒子和磁性物质产生作用。

磁场的产生与磁现象、磁性材料的分类有关,其性质包括磁场的作用力和磁感应强度等,而磁场的应用包括在电机、变压器和磁共振成像等方面。

同时,磁场的测量和计算是磁场研究的重要内容,麦克斯韦方程组是描述和计算磁场的重要工具。

磁力学知识点总结

磁力学知识点总结

磁力学知识点总结一、磁场的产生1. 磁场的概念磁场是指磁力的作用范围,在磁场当中,磁体、载流体和磁场之间存在相互作用。

在磁场中,磁体会受到磁力的作用,而载流体也会在磁场中受到洛伦兹力的作用。

2. 磁场的产生磁场是由电荷运动产生的。

根据安培法则,电流元所产生的磁场方向垂直于电流元所在的平面,并且方向由右手定则决定。

同时,根据比奥-萨伐尔定律,通过通电螺线管所产生的磁场与电流方向有一定的关系。

二、磁场的性质1. 磁感应强度磁感应强度是指单位磁极的力矩和磁极之间距离的比值,一般用字母B表示。

磁感应强度的方向是从磁南极指向磁北极。

在同一磁场中,磁感应强度的大小是一定的,与磁体的形状、大小无关。

2. 磁场力磁场中的物体受到的力称为磁场力。

磁场力的大小和方向由磁场强度、电荷速度和电荷的正负决定。

三、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律指出,当导体中的磁通量发生变化时,导体中产生感应电动势。

这种感应电动势的大小与磁场强度的变化率成正比,与导体长度无关。

2. 楞次定律楞次定律指出,在导体中产生的感应电动势会引起感应电流,其方向使产生感应电动势的磁通量产生的磁场强度所产生的磁场的方向相互抵消。

四、磁场的应用1. 磁场在生活中的应用磁场在生活中有很多应用,如磁铁、电磁铁等。

此外,磁场还可以被用于医学领域,磁共振成像技术就是利用磁场对人体进行成像的一种方法。

2. 磁场在工业中的应用磁场在工业中的应用也非常广泛,如在电机、发电机、变压器中均有磁场的应用。

总结:磁力学是物理学的一个重要分支,它研究磁场及其相互作用的规律。

磁场的产生主要是由电流产生的,磁场的性质包括磁感应强度和磁场力。

电磁感应是磁场中的一个重要现象,法拉第电磁感应定律和楞次定律是电磁感应的基本规律。

此外,磁场在生活和工业中有着广泛的应用,如磁铁、发电机、变压器、磁共振成像技术等。

通过本文的总结,我们可以对磁力学有一个更加全面的了解,为我们进一步学习和应用磁力学知识奠定了基础。

磁场知识点总结

磁场知识点总结

磁场知识点总结磁场是物理学中的重要概念,用于描述磁力的作用和性质。

下面是磁场的一些知识点总结。

1. 磁场的基本定义磁场是一种物理现象,由磁性物体或运动电荷产生,并对其周围的物体施加力。

2. 磁场的来源磁场可以是静态的,由永久磁体等物体产生;也可以是动态的,由电流或变化的磁场产生。

3. 磁场的单位和表示磁场的单位是特斯拉(T),通常用磁感应强度B表示。

磁感应强度的方向表示磁场线的方向,磁感应强度的大小表示磁场的强度。

4. 磁场的特性磁场具有方向性和垂直性,磁场线是一条闭合的曲线,沿着磁场线的方向有一定的规则。

5. 磁场的磁力磁场对运动的电荷或磁性物体施加力,这个力称为磁力。

磁力的大小和方向取决于电荷或物体的速度和磁场的性质。

6. 洛伦兹力定律洛伦兹力定律描述了电荷在磁场中受力的规律,它表达为F =q(v × B),其中F表示受力,q表示电荷的大小,v表示速度,B表示磁感应强度。

7. 磁场的磁通量磁通量是描述磁场通过某个曲面的情况的物理量。

磁通量的单位是韦伯(Wb),表示为Φ。

磁通量的大小取决于磁场的强度和曲面的方向垂直度。

8. 高斯定律高斯定律描述了磁场的闭合性,它表达为∮B·dA = 0。

这意味着磁场的所有通量都是来自闭合磁场线的源头,没有磁单极子存在。

9. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场改变时感应电动势的产生,从而导致电流的流动。

它表达为ε = -d(Φ)/dt,其中ε表示电动势,d(Φ)/dt表示磁通量的变化率。

10. 磁场的应用磁场在生活中有许多应用,如磁铁、电动机、电磁铁、磁共振成像等。

磁场还在科学研究领域有广泛的应用,如磁性材料的研究、磁导电等。

以上是对磁场的一些基本知识点的总结,其中包括磁场的基本定义、磁场的来源、磁场的单位和表示、磁场的特性、磁场的磁力、洛伦兹力定律、磁场的磁通量、高斯定律、法拉第电磁感应定律和磁场的应用等。

磁场是物理学中重要的研究对象,对于了解物质世界的本质和相关技术的应用都具有重要意义。

磁场知识点总结

磁场知识点总结

磁场知识点总结磁场是物理学中一个重要的概念,用来描述磁性物体所产生的力和影响。

本文将对磁场的基本概念、磁场的性质、磁场的作用以及磁场的应用进行总结。

1. 磁场的基本概念:磁场是物质周围的一种物理现象,是一种力的表现形式。

它是通过电流或磁石等磁性物体所产生的,并且可以在空间中传递力和能量。

磁场可以用磁感线来表示,磁感线是垂直于磁场方向的曲线,它们趋向于从磁南极到磁北极。

2. 磁场的性质:磁场具有以下几个重要的性质:(1) 磁场是无源场,即不存在磁单极子。

每个磁体都有一个南极和一个北极,它们总是以成对的形式出现。

(2) 磁场是矢量场,具有大小、方向和方向性。

磁场的大小可以通过磁感应强度来表示,方向则由南极指向北极。

(3) 磁场具有叠加性,在空间中的磁场可以由多个独立的磁场叠加而成。

这意味着可以通过相应的磁体或电流分布来产生所需的磁场。

3. 磁场的作用:磁场对电荷、电流和磁性物体都有作用,主要表现为以下几个方面:(1) 对电荷和电流的作用:磁场可以对运动中的电荷和电流产生力的作用,这种力称为洛伦兹力。

电子在磁场中会受到洛伦兹力的作用,产生磁场力线。

洛伦兹力是电流表面电流的基础。

(2) 对电流的作用:磁场可以通过电流产生力矩的作用,使得电流线产生扭转。

这种受力矩的现象称为磁力偶,并且是电动力学中的基本原理之一。

(3) 对磁性物体的作用:磁场可以对磁性物体产生力的作用,使磁性物体受到吸引或排斥。

当一个磁性物体进入一个磁场时,它会受到一个力的作用,这种力称为磁场力。

4. 磁场的应用:磁场的应用广泛,不仅在日常生活中有很多应用,还在科学研究和工程技术领域发挥着重要的作用。

(1) 电磁感应和发电:磁场和电磁感应的理论基础上建立了电动机、发电机和变压器等电气设备,这些设备在我们的生活中起着重要的作用。

(2) 磁共振成像:核磁共振成像是一种医学成像技术,利用磁场对人体内部的水分子核磁共振进行成像,用于检查和诊断人体的疾病。

磁场和磁路知识点总结

磁场和磁路知识点总结

磁场和磁路知识点总结一、磁场基础概念1. 磁场的概念磁场是物质周围或者物质内部存在的空间,该空间内每一点都存在着磁力的作用,通常用B表示。

磁场是物质所具有的最基本的物理性质之一。

在物质中,由于电子自身的自转产生了绕轨道上前进的电流,而电流则产生磁场。

这就是原子、分子和物质微观结构形成的原因,说明了磁场的实质。

2. 磁感线磁感线是用来表示磁场的一种图示法,即表现磁场的方向、强度和区域的一种方法。

3. 磁场强度磁场强度,通常由H表示,是磁场介质内任一点单位长度磁体磁化,产生的磁场强度。

二、磁路的概念1. 磁路的概念磁路是由磁路主体和磁路气隙两个组成部分构成的。

它是闭合的,但绕封闭轮廓的电动机是有励磁的,则没有完全闭合磁路。

在不同的电供电压下,发生不同的电磁能量转化,是电机工作的基础。

2. 磁路设计的基本要求磁路设计是指设计电磁设备的磁路结构,又称磁路设计。

磁路设计的基本要求有很多,包括各种要素的选择及组合。

磁路设计应该是可以促进和推动电机效果,使电机保持最高效率的设计。

3. 磁路的分析磁路分析是为了定量计算磁路中各种参数的影响,及时发现磁路中可能存在的问题,进行技术分析和处理。

三、磁场与磁路的关系1. 磁场与磁路之间的联系磁场与磁路是相互联系的,磁场的产生、存在和变化,必然需要磁路作为周围环境。

反之,磁路中磁通的变化也必然会引起周围磁场的变化。

这种联系是磁场和磁路的关系。

2. 磁路与效应磁场与磁路的关系,不仅是在实际电磁设备中产生电机效应,磁路中的参数对于电磁设备的性能起着至关重要的作用。

任意一点的磁场强度、磁感应强度、磁通、磁势等都至关重要,同时又与磁路中各种参数有关。

不同的磁路、磁场产生和变化的结果,最终会在转换和作用电机效果过程中得到充分的体现,所以这点和电磁学颇为类似。

四、磁路的基本参数1. 磁路的导磁系数磁路的导磁系数,是磁路中的物质对磁通的相对通过能力。

磁路中磁通的大小是取决于磁路导磁系数的。

磁场知识点总结范文

磁场知识点总结范文

磁场知识点总结范文1.磁场的基本概念:磁场是由磁体或者电流产生的一种物理现象。

它是指物体周围存在的一种空间力场,对具有磁性的物质产生力的作用。

2.磁场的起源:磁场的基本起源是物质内部微观电流所形成的微观电流线圈所产生的磁场。

在微观尺度上,电子绕原子核运动形成的电流会产生磁场,从而形成原子磁矩。

当这些原子磁矩在磁性物质中有序地排列时,就形成了宏观上可观察到的磁性现象。

3.磁场的特性:磁场有一些基本特性,包括:-磁场具有磁性:磁场可以产生磁力,并对具有磁性的物质产生作用。

-磁场是无源场:磁场没有单极子,即不存在磁场的源或汇。

-磁场具有方向性:磁场具有磁力线,磁力线上的箭头指向磁场中的北极。

-磁场的力线是闭合曲线:磁力线是环绕磁体或电流线圈的闭合曲线,不存在孤立的磁力线。

4.磁感应强度和磁通量:磁感应强度(B)是描述磁场强度的物理量,它指示了磁场对运动带电粒子的相互作用。

磁场中的磁通量(Φ)是指通过其中一面积的磁力线的数量,它与磁感应强度有关。

5.磁场的测量:磁场的测量可以通过磁力计来进行。

磁力计是一种能够测量磁力的仪器,它的原理是基于洛伦兹力的作用。

6.磁电效应:磁电效应是指电流通过导体时会产生磁场,而磁场的变化也会导致感应电流产生。

这一效应包括法拉第电磁感应定律和自感现象。

磁电效应是电磁学中非常重要的基本现象,也是电子技术的基础。

7.磁场的作用:磁场具有直接的力学作用和间接的热作用:-直接力学作用:磁场对带电粒子产生洛伦兹力,使其受到磁力的作用。

-间接热作用:磁场对电子的运动轨迹产生影响,从而改变了电子的能量和速度分布,引起热现象。

磁场和电场是密切相关的,它们可以相互转化。

根据法拉第电磁感应定律,磁场的变化可以引起感应电场的产生,而根据安培环路定理,电流的变化可以引起磁场的产生。

这种相互转化的关系形成了电磁波的基础。

磁场知识点总结

磁场知识点总结

磁场知识点总结1. 磁场的基本概念磁场是指物体周围存在的一种物理现象,即物体具有磁性时,周围会形成磁场。

磁场可以用于描述磁力的作用和磁力的性质。

磁场是三维空间中的一个向量场,可以用矢量表示,具有方向和大小。

2. 磁场的特性磁场具有以下几个重要特性: - 磁场是无源无旋场:磁场的散度为零,即磁通量在闭合曲面上的积分为零;磁场的旋度也为零,即磁场的环路积分为零。

- 磁场的力线是闭合曲线:磁场的力线是一种特殊的曲线,它们是闭合的,不存在起点和终点。

- 磁场的作用力是相对运动的电荷和磁场之间的相互作用力:根据洛伦兹力定律,带电粒子在磁场中受到的力与其电荷、速度和磁场强度有关。

3. 磁场的量度和单位磁场的量度使用磁感应强度(磁场强度)来表示,符号为B,单位为特斯拉(T)。

磁感应强度的大小表示磁场的强弱,方向表示磁场的方向。

4. 磁场的产生磁场可以通过以下几种方式产生: - 电流:当电流通过导线时,会在导线周围产生磁场。

根据安培环路定理,电流所产生的磁场的强度与电流强度成正比。

- 磁体:磁体是指具有磁性的物体,如铁、钢等。

磁体可以通过磁化来产生磁场,磁场的强度与磁体的磁化强度成正比。

5. 磁场的性质磁场具有以下几个重要性质: - 磁场的极性:磁场有南极和北极之分,相同极性的磁体会相互排斥,不同极性的磁体会相互吸引。

- 磁场线:磁场线是用来描述磁场分布的曲线,它们是从磁体的北极到南极的闭合曲线。

- 磁场的磁力:磁场可以对带电粒子产生力的作用,这种力被称为磁力。

磁力的大小与电荷、速度和磁场强度有关。

6. 磁场的重要观点磁场的研究和应用涉及到很多重要观点,以下是其中几个重要观点: - 安培环路定理:安培环路定理是描述电流所产生的磁场的定理,它说明了电流所产生的磁场的强度与电流强度成正比。

- 洛伦兹力定律:洛伦兹力定律是描述带电粒子在磁场中受力的定律,它说明了带电粒子在磁场中受到的力与其电荷、速度和磁场强度有关。

史上最全磁场知识点总结

史上最全磁场知识点总结

史上最全磁场知识点总结一、磁场的产生1. 磁场的产生基础磁场产生的基础是电流。

当电流通过一根直导线时,就会在它周围产生一个磁场。

这个磁场的特点是,它具有方向性,即有一个方向是“南”极,一个方向是“北”极。

并且,根据安培右手定则,可以确定电流方向与磁场方向之间的关系。

2. 磁场的产生方式除了电流产生磁场外,磁铁也能产生磁场。

在一个磁铁中,由于内部的微观磁矩的排列,就会在其周围产生一个磁场。

这种磁场是不依赖于外界条件而产生的,故而它也可以被用来作为一种磁石来应用。

二、磁场的性质1. 磁场的基本性质磁场有许多基本性质,例如,磁场是一种物质周围的力场,它具有方向性和大小的概念;磁场中有磁感应强度、磁场强度等物理量,它们可以用来描述磁场的性质;而且,磁场是一种场,它有空间分布的特性。

2. 磁场的作用磁场对于磁性物质有着磁化的作用,使得它们变得具有一定的磁性。

而且,在静电学中,我们也学到了,磁场对于运动带电粒子同样有作用,这就是洛伦兹力的作用。

这些作用是磁场在自然界中的重要表现。

三、磁场与电场的关系1. 麦克斯韦方程组麦克斯韦通过他对电磁学理论的研究,得到了著名的麦克斯韦方程组。

这个方程组很好地描述了磁场和电场之间的关系,它们通过麦克斯韦方程组联系在了一起,从而形成了电磁学理论体系。

2. 磁场与电场的作用磁场与电场之间有着多种作用,例如,它们之间的相互感应作用是电磁感应现象的基础,这种感应作用通过法拉第电磁感应定律得到了描述;而且,磁场还对于电场中的电荷有相互作用,这就是洛伦兹力的作用。

三、磁场的应用1. 磁场在物质中的应用磁场在物质中有着多种应用,例如,磁铁在物质分离、传感器、电机等方面都有着广泛的应用,它们通过磁场对于磁性物质的吸引或者排斥来达到物质分离或运动的目的。

2. 磁场在科学研究中的应用磁场不仅在物质中有着广泛的应用,而且在科学研究中也发挥了重要的作用。

例如,核磁共振成像技术就是利用了核磁共振现象对物质进行成像的技术,它在医学成像、生物物理学等方面都具有重要的应用。

磁场知识点总结

磁场知识点总结

磁场知识点总结一、磁场的基本概念1、磁场的定义磁场是一种看不见、摸不着,但却真实存在的特殊物质。

它存在于磁体、电流和运动电荷的周围空间,能够对放入其中的磁体、电流和运动电荷产生力的作用。

2、磁场的基本性质磁场对放入其中的磁体、电流和运动电荷有力的作用。

同名磁极相互排斥,异名磁极相互吸引;电流在磁场中会受到安培力的作用,运动电荷在磁场中会受到洛伦兹力的作用。

3、磁场的方向规定在磁场中某一点小磁针 N 极所受磁场力的方向,也就是小磁针静止时 N 极所指的方向,为该点磁场的方向。

二、磁感线1、磁感线的定义磁感线是为了形象地描述磁场而引入的假想曲线。

在磁场中画出一些有方向的曲线,曲线上每一点的切线方向都跟该点的磁场方向相同。

2、磁感线的特点(1)磁感线是闭合曲线,在磁体外部,磁感线从 N 极出发,回到S 极;在磁体内部,磁感线从 S 极指向 N 极。

(2)磁感线的疏密程度表示磁场的强弱,磁感线越密的地方,磁场越强;磁感线越疏的地方,磁场越弱。

(3)磁感线不相交,因为磁场中某点的磁场方向只有一个。

三、常见磁场的磁感线分布1、条形磁铁条形磁铁外部的磁感线从 N 极出发,回到 S 极;内部从 S 极指向 N 极,形成闭合曲线。

2、蹄形磁铁蹄形磁铁外部的磁感线也是从 N 极出发,回到 S 极;内部从 S 极指向 N 极。

3、通电直导线以导线为中心的同心圆,越靠近导线,磁感线越密集,磁场越强。

其方向可以用安培定则(右手螺旋定则)来判断:用右手握住导线,让伸直的大拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

4、环形电流环形电流的磁感线是一些围绕环形导线的闭合曲线,在环形导线的中心轴线上,磁感线与环形导线的平面垂直。

其方向也可以用安培定则来判断:让右手弯曲的四指与环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。

5、通电螺线管通电螺线管的磁场类似于条形磁铁的磁场,外部从 N 极出发,回到S 极;内部从S 极指向N 极。

有关磁场的知识点总结

有关磁场的知识点总结

有关磁场的知识点总结
1. 磁场的起源和性质
磁场的起源主要来自于电流和磁化的物质。

当电流在导体中流动时,会产生磁场。

这种磁场被称为安培磁场。

另外,磁化的物质也可以产生磁场。

这种磁场被称为磁化磁场。

磁场有许多重要的性质,比如磁场的方向总是沿着磁力线方向,磁场的强度在空间中是不均匀的,磁场具有叠加原理等。

2. 磁场的测量和单位
磁场的测量通常采用磁通量密度(也称为磁感应强度)来表示。

磁通量密度的单位是特斯拉(T)。

通常,我们使用磁场计来测量磁场强度。

同时,我们还可以借助霍尔效应和法拉第电磁感应定律来测量磁场。

3. 磁场的应用
磁场在现实生活中有许多重要的应用。

在电力工程中,磁场被用来制造电动机、变压器等设备。

在通信领域,磁场被用来制造扬声器、麦克风等设备。

在医学领域,磁场被用来制造核磁共振成像(MRI)仪器。

此外,磁场还有许多其他的应用,比如在航天、航海、矿业、材料加工等领域中都有着重要的应用。

总的来说,磁场是自然界中一种重要的场,它具有许多重要的性质和应用。

通过对磁场的深入研究,我们可以更好地理解自然界中的现象,并且可以开发出更多的技术应用。

希望这篇文章能给大家带来对磁场的更深刻的理解。

磁场科学知识点总结

磁场科学知识点总结

磁场科学知识点总结1. 磁场的基本概念磁场是一个向量场,它可以表示为磁力的大小和方向。

在物理学中,磁场是由磁极产生的,磁极有正负之分。

当两个相同极的磁体靠近时,它们会互相排斥,而当它们不同极的朝向相对时,则会相互吸引。

这一现象经过实验证实,从而引出了磁场的概念。

磁场的大小可以通过磁感应强度来衡量,通常用字母B表示。

磁感应强度是标量,它的单位是特斯拉(Tesla)。

在国际单位制(SI)中,1特斯拉等于1牛/安米,可以用来度量磁场的强度。

2. 磁场的性质磁场有一些基本的性质,这些性质对于理解磁场的行为和应用非常重要。

首先,磁场是一个无源场,这意味着磁场中不会存在单极子。

也就是说,磁场线总是以闭合曲线的形式存在,而不会像电场一样以点源或者点汇的形式存在。

其次,磁场是一个旋度场,这意味着磁场满足麦克斯韦方程组中的法拉第电磁感应定律。

这个定律是指,当一个磁场发生变化时,会在该区域中产生一个电场,这一点后文还会继续讨论。

另外,磁场还会对运动的电荷或电流产生力的作用。

在高中物理课程中,我们学习了洛仑兹力公式,该公式描述了电荷在磁场中所受的力。

这一点后文还会详细阐述。

3. 磁场的产生和磁性物质磁场可以通过电流、磁矩产生。

对于电流而言,根据安培定律,当电流通过一根导线时,会在导线周围产生一个磁场。

这个磁场的大小和方向可以通过右手定则来确定。

此外,磁矩也可以产生磁场。

磁矩是指一个物体本身带有磁性,比如铁磁体。

铁磁体中的原子会自发地排列成微小的磁矩,从而产生磁场。

除此之外,根据法拉第电磁感应定律,磁场的变化也可以产生电场。

这一点从科学家法拉第的实验中得到验证。

当磁场的变化通过一根线圈时,会在线圈中产生一个感应电流。

这也是MRI扫描仪中原理的基础,同时也是电动机的工作原理。

从磁性物质的角度来看,根据铁磁性以及反铁磁性,物质对磁场的作用也有所不同。

铁磁性物质在外加磁场的作用下会产生明显的磁化,而反铁磁性物质则在外加磁场下呈现抗磁特性。

磁场的知识点总结

磁场的知识点总结

磁场的知识点总结磁场是物理教学中的一个重点,相关的知识点又有哪一些呢?下面就随一起去阅读磁场的知识点总结,相信能带给大家启发。

一、磁现象的电本质1.罗兰实验正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。

2.安培分子电流假说法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。

安培是最早揭示磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

二、磁场的方向规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

三、磁场磁极和磁极之间的相互作用是通过磁场发生的。

电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。

磁极和电流之间的相互作用也是通过磁场发生的。

电流和电流之间的相互作用也是通过磁场产生的磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

四、磁感线1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。

2.磁感线的特点(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极(2)磁感线是闭合曲线(3)磁感线不相交(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强3.几种典型磁场的磁感线(1)条形磁铁(2)通电直导线a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;b.其磁感线是内密外疏的同心圆(3)环形电流磁场a.安培定则:让右手弯曲的.四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。

磁场知识点总结

磁场知识点总结

磁场知识点总结一、什么是磁场?磁场是周围空间中存在的一个物理概念,它是由物质物体所产生的一种力场。

磁场使得具有磁性的物质在其中受到力的作用。

磁场的存在是由物体的电荷和电流所带来的。

二、磁场的生成1. 磁体发出的磁场磁体可以通过电流产生磁场,这个现象被称为电磁感应。

电流通过导线时,会在周围产生磁场。

这个磁场的强弱与电流的大小成正比,与导线形状和材料有关。

2. 静磁场和运动磁场静磁场是指物体不发出电流时产生的磁场,如永磁体所产生的磁场。

运动磁场是指电流在移动导体中产生的磁场,如电动机中的磁场。

三、磁场的性质1. 磁场的方向和大小磁场是一个矢量量,具有方向和大小。

磁场的方向可以用磁力线表示,它们从一个磁极流向另一个磁极。

磁场的大小可以通过磁感应强度来表示,单位是特斯拉。

2. 磁场的磁通量磁通量是磁场通过某一面积的大小,用符号Φ表示。

磁通量随磁场的强度和面积的变化而变化,可以用安培力定义为单位磁场通过单位面积的磁通量。

3. 磁场对物体的影响磁场可以对具有磁性的物体产生力的作用,这个力被称为磁力。

物体受到磁力的大小取决于物体的磁性以及磁场的强弱。

4. 磁场的行为规律磁场遵循一定的行为规律,如磁场会将同性磁极排斥,异性磁极相吸。

这个规律被称为磁性规律。

四、磁场的应用1. 电磁感应和发电机电磁感应通过磁场和电场的相互作用,将机械能转化为电能。

发电机就是一个利用电磁感应原理的设备,将机械能转化为电能,广泛用于发电工业。

2. 磁记录技术磁记录技术是一种利用磁场记录和存储信息的方法。

如磁带、磁盘等设备就是利用磁场来储存和读取信息的。

3. MRI技术MRI(Magnetic Resonance Imaging)技术是一种通过磁场和无线电波对人体进行成像的技术。

它利用人体组织中的氢原子的磁性来获取人体内部的结构信息,广泛应用于医学诊断领域。

4. 磁悬浮技术磁悬浮技术利用磁场对物体进行悬浮和推动,实现了无接触、无摩擦的悬浮运动。

磁场知识点总结

磁场知识点总结

磁场知识点总结磁场是物理学中一个重要的概念,涉及到电磁现象和磁性材料的研究。

磁场可以通过磁力线的分布来描述,它是由磁荷产生的,类似于电场是由电荷产生的。

磁场有一些基本的性质和规律,下面将对一些常见的磁场知识点进行总结。

1. 磁场的定义磁场是指物质周围的一种特殊空间,存在磁场的区域被称为磁场区域。

磁场可以通过磁力线的分布来描述,磁力线是一种用于表示磁场强度和方向的虚拟线条。

2. 磁场的产生磁场是由磁荷产生的,磁荷分为单极磁荷和双极磁荷。

目前还没有发现单极磁荷的存在,因此磁场主要是由双极磁荷(即磁偶极子)产生的。

磁偶极子由两个相等大小、反向排列的磁荷构成,其磁场强度与距离的平方成反比。

3. 磁场的单位和测量磁场的单位是特斯拉(T),国际单位制中也可以用韦伯/平方米(Wb/m^2)来表示。

磁场可以通过磁感应强度来测量,磁感应强度是磁场对单位面积上垂直于磁力线的力的大小。

磁感应强度的测量可以使用霍尔效应、法拉第电磁感应等方法。

4. 磁场的特性磁场具有一些特性,如磁场的方向是从南极指向北极,磁场线是闭合曲线,磁场线之间不会相交等。

在磁场中的物体会受到磁力的作用,磁力的大小与物体的磁性、磁场强度和物体在磁场中的位置有关。

5. 磁场与电流的关系电流也会产生磁场,这是由于电流中带有的移动电荷形成的磁偶极子。

根据右手定则,电流方向垂直于电流方向和磁场方向的平面上,指向与磁场方向相同的方向。

这一定律可以用来确定电流所产生的磁场方向。

6. 磁场的应用磁场在生活中有着广泛的应用,如电磁铁、电动机、发电机、磁共振成像等。

磁共振成像利用磁场对人体内部的水分子进行激发和检测,从而得到人体的影像。

磁场是物理学中的一个重要概念,涉及到电磁现象和磁性材料的研究。

磁场的产生与磁荷和电流有关,磁场的特性包括方向、闭合性等。

磁场在生活中有着广泛的应用,对人类的生活和科学研究起着重要的作用。

生活磁场知识点总结图解

生活磁场知识点总结图解

生活磁场知识点总结图解一、磁场的基本概念1. 磁场是指周围空间中存在的磁力的影响区域。

2. 磁场是由电荷运动产生的,如电流和电子自旋。

3. 磁场的单位是特斯拉(T),1T=1N/(A·m)。

4. 磁场可分为磁场强度、磁感应强度和磁通量密度等。

5. 磁场的方向为磁力线的方向。

二、磁场的基本性质1. 磁场由两种磁性相反的极性组成,称为磁极。

2. 相同极性的磁极相斥,不同极性的磁极相吸。

3. 磁场在空间中形成磁力线,磁力线呈封闭曲线,不相交,不断。

4. 磁场对磁性物质有吸引和排斥的作用。

5. 磁场对运动电荷产生磁场力的作用。

三、磁场的产生1. 电流在空间中产生磁场。

2. 线圈产生磁场的强弱与电流的大小和方向、线圈的匝数和形状有关。

3. 磁铁产生磁场的强弱与磁铁的磁化强度和形状有关。

四、磁场的作用1. 磁场对物质的相互作用:磁场会对磁性物质产生吸引和排斥的作用。

2. 磁场对运动电荷的作用:运动电荷在磁场中会受到洛伦兹力的作用。

3. 磁场对电流的作用:电流在磁场中受到洛伦兹力的作用,从而产生磁场力和磁矩。

五、磁场的测量和应用1. 磁力计:用于测量磁场的强度和方向。

2. 磁场对电荷的作用:电子在磁场中会受到洛伦兹力的作用。

3. 磁场对导体的作用:导体中的电子在磁场中会受到洛伦兹力的作用。

4. 磁场对电流的作用:磁场可以对通过导线的电流产生磁场力的作用,如电动机和发电机的原理。

六、磁场在生活中的应用1. 磁铁吸附:磁铁可以用来吸附钢铁物质。

2. 磁力浮现:磁浮列车可以利用磁场力来悬浮和推动列车。

3. 电动机:电动机利用磁场力和电流产生转动力,实现机械能和电能的转换。

4. 发电机:发电机利用磁场力和电流产生转动力,实现机械能和电能的转换。

5. 磁记录:磁盘和磁带利用磁场记录和存储信息。

七、生活中的磁场安全问题1. 电磁辐射:家庭电器和手机等电子设备产生的电磁辐射可能对人体健康产生影响。

2. 磁场干扰:在磁场强的环境中使用磁性材料可能受到干扰。

高中物理磁场知识点总结

高中物理磁场知识点总结

高中物理磁场知识点总结一、磁场的概念1. 磁场定义:磁场是磁体周围存在的特殊形态的物质,它是一种力场。

2. 磁场的描述:磁场的强弱和方向可以通过磁力线来描述。

3. 磁场的来源:永久磁铁、电流、运动电荷等。

二、磁场的基本性质1. 磁场对磁体的作用:磁体在磁场中会受到磁力的作用。

2. 磁场对电流的作用:电流在磁场中会受到安培力的作用。

3. 磁通量:通过某一面积的磁力线的总数,表示磁场的强度和面积的乘积。

三、磁场的测量1. 磁感应强度(B):描述磁场强度的物理量,单位是特斯拉(T)。

2. 磁场强度(H):与磁感应强度有关,但受到介质磁化率的影响。

3. 测量工具:磁力计、霍尔效应传感器等。

四、磁场的计算1. 毕奥-萨伐尔定律:计算由电流产生的磁场的基本定律。

2. 磁场的叠加原理:多个磁场源产生的磁场可以通过矢量叠加得到。

3. 磁矩:描述磁体磁性质的物理量,与磁场的关系。

五、磁场的应用1. 电动机和发电机:利用磁场与电流的相互作用原理。

2. 磁悬浮列车:利用磁场的排斥和吸引力实现悬浮。

3. 磁共振成像(MRI):利用磁场和射频脉冲产生身体内部的图像。

六、磁场的分类1. 恒定磁场:磁场随时间不变。

2. 交变磁场:磁场随时间周期性变化。

3. 非均匀磁场:磁场强度在空间中不均匀分布。

七、磁场的安全与防护1. 磁场对人体的影响:强磁场可能对人体产生影响,需采取防护措施。

2. 磁场对电子设备的影响:强磁场可能干扰电子设备的正常工作。

3. 磁场屏蔽:使用磁性材料来减少外部磁场的影响。

八、磁场的前沿研究1. 超导磁体:利用超导材料产生强磁场。

2. 磁制冷:利用磁性材料的磁热效应进行制冷。

3. 量子磁学:研究量子层面上的磁性现象。

请将以上内容复制到Word文档中,并根据需要调整格式和样式。

您可以添加页眉、页脚、目录和其他文档元素以提高专业性和可读性。

磁场笔记知识点总结图

磁场笔记知识点总结图

磁场笔记知识点总结图一、磁场的基本概念1. 磁场的定义:磁场是由磁物质或者电流所产生的具有磁性的空间区域。

2. 磁场的性质:磁场是一种向量场,具有方向和大小,并且遵循磁场线规律。

3. 磁感线:磁感线是用来表示磁场分布的曲线,具有起点和终点,磁感线的方向表示磁场的方向,线的密度表示磁场的强弱。

二、磁场的产生1. 电流产生磁场:安培环形定律和比奥-萨伐特定律描述了通过电流产生磁场的原理。

2. 磁体产生磁场:磁体是产生磁场的物质,具有磁性,可以产生磁场,并且可以吸引铁、镍等物质。

三、磁场的性质1. 磁场的磁通量:磁通量是磁场通过某个平面的总磁场量,用Φ表示,单位为韦伯(Wb)。

2. 磁场的磁感应强度:磁感应强度是磁场在某点的强度,用B表示,单位为特斯拉(T)。

3. 磁场的磁力线:磁力线是切线方向上表示磁感应强度的连续曲线,它的方向是磁感应强度方向。

四、磁场与电流1. 洛伦兹力:当电荷在磁场中运动时,会受到磁场力的作用,这种力被称为洛伦兹力。

2. 比奥-萨伐特定律:描述了通过电流产生磁场的原理,包括了电流元产生的微元磁场强度。

五、磁场的应用1. 电磁感应:当磁通量发生变化时,会产生感应电动势,这是电磁感应现象。

2. 电磁感应的应用:电磁感应在发电机、变压器、感应加热等领域有着广泛的应用。

3. 磁场在生活中的应用:磁场在电动机、磁力计、磁铁等方面有着广泛的应用。

六、磁场的研究和发展1. 磁场的现代研究:磁场在量子力学、相对论等物理领域有着重要的作用,磁场的研究也得到了不断的发展。

2. 磁场在科技领域的应用:磁场在电磁学、天文学、医学等领域有着重要的应用,为人类的科技发展做出了巨大贡献。

七、磁场的保护与利用1. 磁场的保护:磁场对人体健康会产生一定的影响,需要合理保护和利用。

2. 磁场的利用:磁场在电力、通讯、航天等领域有着广泛的应用,为人类社会的发展做出了重要贡献。

以上就是关于磁场的基本概念、产生、性质、与电流的联系、应用、研究和发展,以及保护与利用的知识点总结。

磁场的知识点总结

磁场的知识点总结

磁场的知识点总结磁场是我们生活中常见的物理现象之一,在我们的日常生活中随处可见。

磁场不仅仅存在于磁铁中,还存在于电器、电动机、电磁铁等各种设备中。

本文将对磁场的相关知识进行总结和介绍。

一、磁场的概念磁场是由磁物质(如铁、钕铁硼等)或电流所产生的特殊物理现象。

磁场的存在可使磁物质之间相互吸引或排斥,并对周围空间产生影响。

磁场的强弱通常用磁感应强度(B)来表示,单位为特斯拉(T)。

二、磁场的性质1. 磁场的磁力线研究磁场时,我们常用磁力线来表示磁场的分布情况。

磁力线是从磁南极出发,经磁场后再回到磁北极的曲线,其方向表示磁场中力所作用的方向。

磁力线总是从南极指向北极,且它们彼此之间不能相交。

2. 磁场的磁力磁场对磁物质的作用力被称为磁力。

根据安培定律,当磁场中有导体或者电流通过时,会受到磁场的作用力,这个力被称为洛伦兹力。

洛伦兹力的大小与电流和磁感应强度的乘积成正比。

3. 磁场的磁矩磁矩是描述磁性物体生成磁场强弱的物理量。

在磁场中,磁矩受到磁力矩的作用,使其趋向于与磁场方向一致或者相反。

磁矩是由电子的自旋和轨道运动所产生的,相互叠加形成总磁矩。

三、磁场的产生1. 恒定磁场的产生恒定磁场是由恒定电流产生的,其大小与电流的强弱成正比。

可以通过通过螺线管实验来观测到恒定磁场的形成。

当通过螺线管的电流增大时,磁场的强度也会随之增加。

2. 变化磁场的产生变化磁场的产生常常和电磁感应有关。

根据法拉第电磁感应定律,当磁场中的磁通量发生变化时,会产生感应电动势。

感应电动势的大小和磁场的变化率成正比。

四、磁场的应用1. 电磁铁电磁铁是利用电流通过线圈产生磁场的装置。

通过控制电流的大小和方向,可以改变磁场的强度和方向。

电磁铁被广泛应用于各个领域,如电磁吸盘、电磁驱动器等。

2. 磁共振成像磁共振成像(MRI)是一种以磁场作用于氢核自旋为原理进行医学影像诊断的技术。

通过磁场对人体水分子中的氢原子进行激发和检测,得到身体各个部位的断层图像,用于疾病的诊断与观察。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场知识网络:本章在介绍了磁现象的电本质的基础上,主要讨论了磁场的描述方法(定义了磁感应强度、磁通量等概念,引入了磁感线这个工具)和磁场产生的作用(对电流的安培力作用,对通电线圈的磁力矩作用和对运动电荷的洛仑兹力作用)及相关问题。

其中磁感应强度、磁通量是电磁学的基本概念,应认真理解;载流导体在磁场中的平衡、加速运动,带电粒子在洛仑兹力作用下的圆周运动等内容应熟练掌握;常见磁体周围磁感线的空间分布观念的建立,常是解决有关问题的关键,应注意这方面的训练。

单元切块:按照考纲的要求,本章内容可以分成三部分,即:基本概念安培力;洛伦兹力带电粒子在磁场中的运动;带电粒子在复合场中的运动。

其中重点是对安培力、洛伦兹力的理解、熟练解决通电直导线在复合场中的平衡和运动问题、带电粒子在复合场中的运动问题。

难点是带电粒子在复合场中的运动问题。

知识点、能力点提示1.通过有关磁场知识的归纳,使学生对磁场有较全面的认识,并在此基础上理解磁现象电本质;2.介绍磁性材料及其运用,扩大学生的知识面,培养联系实际的能力;3.磁感应强度B的引入,体会科学探究方法;通过安培力的知识,理解电流表的工作原理;通过安培力的公式F=IlB sinθ的分析推理,开阔学生思路,培养学生思维能力;通过安培力在电流表中的应用,培养学生运用所学知识解决实际问题的意识和能力;4.通过洛仑兹力的引入,培养学生的逻辑推理能力;5.通过带电粒子在磁场中运动及回旋加速器的介绍,调动学生思考的积极性及思维习惯的培养,并开阔思路。

基本概念安培力教学目标:1.掌握电流的磁场、安培定则;了解磁性材料,分子电流假说2.掌握磁感应强度,磁感线,知道地磁场的特点3.掌握磁场对通电直导线的作用,安培力,左手定则4.了解磁电式电表的工作原理5.能够分析计算通电直导线在复合场中的平衡和运动问题。

教学重点:磁场对通电直导线的作用,安培力教学难点:通电直导线在复合场中的平衡和运动问题教学方法:讲练结合,计算机辅助教学教学过程:一、基本概念1.磁场的产生⑴磁极周围有磁场。

⑵电流周围有磁场(奥斯特)。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

(但这并不等于说所有磁场都是由运动电荷产生的,因为麦克斯韦发现变化的电场也能产生磁场。

)⑶变化的电场在周围空间产生磁场。

2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

这一点应该跟电场的基本性质相比较。

3.磁场力的方向的判定磁极和电流之间的相互作用力(包括磁极与磁极、电流与电流、磁极与电流),都是运动电荷之间通过磁场发生的相互作用。

因此在分析磁极和电流间的各种相互作用力的方向时,不要再沿用初中学过的“同名磁极互相排斥,异名磁极互相吸引”的结论(该结论只有在一个磁体在另一个磁体外部时才正确),而应该用更加普遍适用的:“同向电流互相吸引,反向电流互相排斥”,或用左手定则判定。

4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。

5.磁感应强度ILF B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。

磁感应强度是矢量。

单位是特斯拉,符号为T ,1T=1N/(A ∙m )=1kg/(A ∙s 2)6.磁通量如果在磁感应强度为B 的匀强磁场中有一个与磁场方向垂直的平面,其面积为S ,则定义B 与S 的乘积为穿过这个面的磁通量,用Φ表示。

Φ是标量,但是有方向(进该面或出该面)。

单位为韦伯,符号为W b 。

1W b =1T ∙m 2=1V ∙s=1kg ∙m 2/(A ∙s 2)。

可以认为穿过某个面的磁感线条数就是磁通量。

通电直导线周围磁场 通电环行导线周围磁场在匀强磁场磁感线垂直于平面的情况下,B =Φ/S ,所以磁感应强度又叫磁通密度。

在匀强磁场中,当B 与S 的夹角为α时,有Φ=BS sin α。

二、安培力 (磁场对电流的作用力)1.安培力方向的判定(1)用左手定则。

(2)用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。

(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。

可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。

【例1】磁场对电流的作用力大小为F =BIL (注意:L 为有效长度,电流与磁场方向应 ).F 的方向可用 定则来判定.试判断下列通电导线的受力方向.×× ×. . . .× ××. . . × × × . . . .× × × × . . . .试分别判断下列导线的电流方向或磁场方向或受力方向.【例2】如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,BB导线将如何移动?解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。

分析的关键是画出相关的磁感线。

【例3】 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。

水平面对磁铁的摩擦力大小为___。

解:本题有多种分析方法。

⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。

磁铁对水平面的压力减小,但不受摩擦力。

⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。

⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。

【例4】 如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。

(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。

)【例5】 电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。

该时刻由里向外射出的电子流将向哪个方向偏转?解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。

电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。

(本题用其它方法判断也行,但不如这个方法简洁)。

2.安培力大小的计算F =BLI sin α(α为B 、L 间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。

【例6】 如图所示,光滑导轨与水平面成α角,导轨宽L 。

匀强磁场磁感应强度为B 。

金属杆长也为L ,质量为m ,水平放在导轨上。

当回路总电流为I 1时,金属杆正好能静止。

求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?解:画出金属杆的截面图。

由三角形定则得,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。

根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。

当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。

(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。

【例7】如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。

电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后的水平位移为s 。

求闭合电键后通过铜棒的电荷量Q 。

解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I Δt ,由平抛规律可算铜棒离开导线框时的初速度h g s t s v 20==,最终可得hg BL msQ 2=。

【例8】如图所示,半径为R 、单位长度电阻为λ的均匀导体环固定在水平面上,圆环中心为O ,匀强磁场垂直于水平面方向向下,磁感应强度为B 。

平行于直径MON 的导体杆,沿垂直于杆的方向向右运动。

杆的电阻可以忽略不计,杆于圆环接触良好。

某时刻,杆的位置如图,∠aOb =2θ,速度为v ,求此时刻作用在杆上的安培力的大小。

解:ab 段切割磁感线产生的感应电动势为E =vB ∙2R sin θ,以a 、b 为端点的两个弧上的电阻分别为2λR (π-θ)和2λR θ,回路的总电阻为()πθπθλ-=R r 2,总电流为I =E /r ,安培力F=IB ∙2R sin θ,由以上各式解得:()θπλθθπ-=22sin 2R vB F 。

【例9】如图所示,两根平行金属导轨间的距离为0.4 m ,导轨平面与水平面的夹角为37°,磁感应强度为0.5 T 的匀强磁场垂直于导轨平面斜向上,两根电阻均为1Ω、重均为0.1 N 的金属杆ab 、cd 水平地放在导轨上,杆与导轨间的动摩擦因数为0.3,导轨的电阻可以忽略.为使ab 杆能静止在导轨上,必须使cd 杆以多大的速率沿斜面向上运动?解:设必须使cd 杆以v 沿斜面向上运动,则有cd 杆切割磁场线,将产生感应电动势E =Blv在两杆和轨道的闭合回路中产生电流I =RE 2 ab 杆受到沿斜面向上的安培力F 安=Bilab 杆静止时,受力分析如图根据平衡条件,应有 G sin θ一μG cos θ≤F 安≤G sin θ+μG cos θ联立以上各式,将数值代人,可解得 1.8 m/s ≤v ≤4.2 m/s【例10】如图所示是一个可以用来测量磁感应强度的装置:一长方体绝缘容器内部高为L ,厚为d ,左右两管等高处装有两根完全相同的开口向上的管子a 、b ,上、下两侧装有电极C (正极)和D (负极)并经开关S 与电源连接,容器中注满能导电的液体,液体的密度为ρ;将容器置于一匀强磁场中,磁场方向垂直纸面向里,当开关断开时,竖直管子a 、b 中的液面高度相同,开关S 闭合后,a 、b 管中液面将出现高度差。

相关文档
最新文档