基于Matlab的遗传算法研究研究背景及研究意义

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab的遗传算法研究研究背景及研究意义

1.1.1研究背景

伴随着工业化时代的到来,人们的生产生活有了更多更高的要求,很多工业过程的实际问题得不到解决,以及随后达尔文的适者生存,优胜劣汰的自然科学规律的提出,人们借助达尔文的发现,提出了遗传算法这样一种新的算法来解决很多工业过程的实际的问题。遗传算法英文全称是Genetic Algorithm,是在1975年的时候,由美国科学家J.Holland从生物界的进化规律之中发现并且提出来的,借助适者生存,优胜劣汰的自然科学规律运用到科学的训练方法之中,对于对象直接进行操作的一种算法。这种算法不用跟其他算法一样,需要对于模型进行求导和连续性的限制,遗传算法本身就可以借助概率化的求算工具进行全局寻优,并且可以自动的获取并且指导需要优化的搜索区域,如果搜索区域产生偏差,会自动的进行调整。因此,遗传算法本质上不需要跟其他算法一样,不必须有一种明确的规则进行指导进行。

并且可以说与传统的优化相比,在求取符合运行要求的全局最优解时,遗传算法作为一种搜索的方法,已经成为成熟的具有良好收敛性、极高鲁棒性和广泛适用性的优化方法,很好的解决了电力系统的多变量、非线性、不连续、多约束的优化控制问题。现在遗传算法的这些优良的性质被逐渐的开发出来,已经被运用的越来越广泛,不仅可以应用在化工过程的各种生产过程的求解之中,更是可以用在现在最火热的机器学习的领域之中,对于信号处理这一块还有自适应控制这一块的应用也得到了推广,就连比较冷门的人工生命等学科也可以说是有比较广的涉及,可以说遗传算法已经发展成为现当今时代有关智能计算中的一种不容忽视的算法技术。作为当今最火热的一种算法,有必要对于遗传算法进行一些更深入的了解。本文就是基于遗传算法的研究,并且将遗传算法运用在路径规划的问题上进行具体的研究。

1.1.2研究意义

遗传算法作为一种搜索的方法,已经成为成熟的具有良好收敛性、极高鲁棒性和广泛适用性的优化方法,很好的解决了电力系统的多变量、非线性、不连续、多约束的优化控制问题。由于遗传算法的优良性能的存在,因此,对于遗传算法

的进一步研究们可以促进我国其他众多学科的发展,不仅可以为我国的文化理论知识领域进行扩充,更是对于众多生产领域提供了实际操作的切实可行的理论基础。就比如本文研究的关于遗传算法控制的路径规划的问题就是一个非常火热的话题,可以具体应用在非常多的领域,比如:外卖小哥送外卖,怎么送才能在最短时间内准时送达多份外卖;一件快递,如何以最快的速度从北京送到广州;在策划一次旅行中,如何设计最优路线等这些可大可小的问题都出现了最短路径问题,深入了解最短路径算法,能够大大提高生产效率,提升生活质量;这些都是遗传算法可以成功应用的领域。

1.2国内外研究现状

1.2.1国外研究现状

遗传算法问题在生活与生产中的具体应用随处可见,可以说遗传算法问题从发现以来就一直就是一个炙手可热的研究问题,国外很早就开始了遗传算法问题的研究。

在20世纪90年代末期的时候,当时任然身为学生D.Whitey就基于遗传算法问题提出了交叉算子的概念,利用交叉算子的概念,D.Whitey成功的将遗传算法问题运用到了旅行推销员问题、货郎担问题(TSP)的问题上,并且D.Whitey 具体的用实验证明了应用的正确性。在 D.Whitey之后,著名学者 D.H.Ackley 基于遗传算法问题提出了随机迭代遗传爬山法的问题(SIGH),随机迭代遗传爬山法的最大优势就是在求解速度上,大大改善了一般的遗传算法得求解速度问题。著名学者H.Bersini独特的看到了单一方法的优势可以运用到遗传算法之中,H.Bersini将二种方法结合形成了多亲交叉算子,该算子的发现,使得遗传算法有了更好的性能。随后,在20世纪初期的时候,Yun Li和他的学生对于二进制基因进一步拓展研究,将其扩展到了七进制的基因还有十进制的基因设置时还有整数基因和浮点基因,利于遗传算法模糊参量的进一步改善。在2000年的时候,Genetic Programming的创造者美国科学家John Koza等一大批遗传算法研究学者参加了EvoNet 研讨会,进行探讨遗传算法与遗传编程集合起来的结构寻优,从而使得遗传算法打破了固定结构的局限性。,并且从这时候开始遗传算法也不再仅仅拘泥于数值优化。

1.2.2国内研究现状

遗传算法问题一直就是一个炙手可热的研究问题,相比较于国外的研究,国内对于遗传算法问题的研究就相对少一点,并且大量的研究都是从21世纪以后才开始的,但是我国对于遗传算法问题的研究的发展还是比较快的,目前,对于遗传算法问题的研究,国内主要有以下内容:

对于遗传算法问题的研究,国内首先的关注点在于交叉算子的改进,在2002年的时候,中国著名科学家戴晓明基于多种群遗传并行的基本法则,提出了对于不同种群来说可以利用不同的遗传策略来搜索变量空间,进而进一步解决局部最优值问题。在2004年的时候,中国著名科学家赵宏立,考虑到现阶段对于较大规模的拼接组合整体优化的一些情况的时候,可能会出现搜索效率低下的不利情况,进而在这个基础上发明了基于基因块进行编码的并行遗传算法来解决搜索效率低下的不利情况。在2004年的时候,中国著名科学家江雷等基于科学家赵宏立提出的并行遗传算法,来求解TSP相关的问题,这种算法,解决了局部收敛的难题,使得并行遗传算法进一步的向着全局最优解方向前进。接着2016年,黄玲等科学家改进粒子群算法,用遗传算法求解最短路径问题。

1.3研究内容以及研究方法

1.3.1研究内容

本文首先从遗传算法问题的研究背景以及研究意义出发,然后对于遗传算法问题的国内外研究现状进行了探讨,接着对于研究方法进行了总结,最后对于本文要用到的一些理论知识进行了总结,比如:遗传算法的一些基本概念,以及染色体,适应度,遗传操作,图的概念,有向图以及无向图的说明,最短路径的一些概述,以及一般求解最短路径的步骤,还有一些求解最短路径的基本方法做了一些说明。接着对于遗传算法问题进行了详细的分析推到计算,最后本文将遗传算法问题到了最短路径规划问题上,并且对于遗传算法的最短路径规划问题进行了matlab仿真分析,对仿真的结果进行了分析,得到了相关的结论。证明了遗传算法运用在最短路径问题上的正确性与科学性。

1.3.2研究方法

1.文献法——搜集和分析研究各种现存的有关遗传算法方面的文献资料,从

相关文档
最新文档