数值分析试验幂法与反幂法matlab
数值分析幂法和反幂法
数值分析幂法和反幂法数值分析中的幂法和反幂法是求解矩阵最大特征值和最小特征值的常用方法。
这两种方法在许多数值计算问题中都有着广泛的应用,包括图像压缩、数据降维、谱聚类等。
幂法(Power Method)是一种迭代算法,通过不断迭代矩阵与一个向量的乘积,来逼近原矩阵的最大特征值和对应的特征向量。
其基本思想是,对于一个矩阵A和一维向量x,可以通过不断迭代计算Ax,Ax,Ax...,来使得向量x逼近最大特征值对应的特征向量。
具体的迭代过程如下:1.初始化一个向量x0(可以是单位向量或任意非零向量)2.令x1=Ax0,对向量进行归一化(即除以向量的范数)得到x13.重复步骤2,即令x2=Ax1,x3=Ax2...,直到收敛(即相邻迭代向量的差的范数小于一些阈值)为止4. 最终得到的向量xn就是A的最大特征值对应的特征向量在实际求解时,我们可以将迭代过程中的向量进行归一化,以防止数值溢出或下溢。
此外,为了提高迭代速度,我们可以选择使得xn与xn-1的内积大于0的方向作为迭代方向,这样可以使得特征值的模快速收敛到最大特征值。
幂法的收敛性是保证的,但收敛速度可能较慢,尤其是当最大特征值与其他特征值非常接近时。
此时可能需要使用一些改进的方法来加速收敛,例如Rayleigh商或位移策略。
相反,反幂法(Inverse Power Method)是求解矩阵的最小特征值和对应的特征向量的方法。
它的基本思想和幂法类似,但在每次迭代中,需要计算A和依其逆矩阵A-1的乘积。
迭代过程如下:1.初始化一个向量x0(可以是单位向量或任意非零向量)2.令x1=A-1x0,对向量进行归一化(即除以向量的范数)得到x13.重复步骤2,即令x2=A-1x1,x3=A-1x2...4. 最终得到的向量xn就是A的最小特征值对应的特征向量反幂法和幂法的区别在于迭代过程中乘以了A的逆矩阵,从而可以利用矩阵的特殊结构或性质来提高迭代速度。
同时,在实际求解时,可能需要将矩阵进行一些变换,以确保A-1存在或数值稳定性。
数值分析-MATLAB相关算法
数值分析-MATLAB算法刘亚1、四阶龙格库塔法:function yout=xin(bianliang)%定义输入输出clear allx0=0;xn=1;y0=1;h=0.1;%设置初始值、区间和步长[y,x]=lgkt4j(x0,xn,y0,h);%四阶龙格库塔法n=length(x);fprintf(' i x(i) y(i)\n');%输出格式for i=1:nfprintf('%2d %3.3f %4.4f\n',i,x(i),y(i)); endfunction [y,x]=lgkt4j(x0,xn,y0,h)x=x0:h:xn;%设置区间n=length(x);y1=x;y1(1)=y0;for i=1:nK1=f(x(i),y1(i));K2=f(x(i)+h/2,y1(i)+h/2*K1);K3=f(x(i)+h/2,y1(i)+h/2*K2);K4=f(x(i)+h,y1(i)+h*K3);y1(i+1)=y1(i)+h/6*(K1+2*K2+2*K3+K4);endy=y1;function Dy=f(x,y)Dy=y-2*x/y;C语言程序#include<math.h>main(){float x=0,y0=1,h=0.2,y1,k1,k2,k3,k4;k1=y0-2*x/y0;k2=y0+h/2*k1-(2*x+h)/(y0+h/2*k1);k3=y0+h/2*k2-(2*x+h)/(y0+h/2*k2);k4=y0+h*k3-(2*x+2*h)/(y0+h*k3);y1=y0+h/6*(k1+2*k2+2*k3+k4);do{printf("%5.4f\n",y1);x=x+h;y0=y1;k1=y0-2*x/y0;k2=y0+h/2*k1-(2*x+h)/(y0+h/2*k1);k3=y0+h/2*k2-(2*x+h)/(y0+h/2*k2);k4=y0+h*k3-(2*x+2*h)/(y0+h*k3);y1=y0+h/6*(k1+2*k2+2*k3+k4);}while(x<1);}2、幂法求特征值function [m x biaozhi]=mifa(A,jingdu,cishu)%幂法求矩阵最大特征值,其中%m为绝对值最大的特征值,x为对应最大特征值的特征向量%biaozhi表明迭代是否成功if nargin<3cishu=100;endif nargin<2jingdu=1e-5;endn=length(A);x=ones(n,1);biaozhi='迭代失败!';k=0;m1=0;while k<=cishuv=A*x;[vmax,k]=max(abs(v));m=v(k);x=v/m;if abs(m-m1)<jingdubiaozhi='迭代成功!';break;endm1=m;k=k+1;end3、拉格朗日插值function [c,l]=lglr(x,y)%x为n个节点的横坐标组成的向量,y为纵坐标组成的向量%c为插值函数的系数组成的向量%输出为差值多项式的系数w=length(x);n=w-1;l=zeros(w,w);for k=1:n+1v=1;for j=1:n+1if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j));endendl(k,:)=v;endc=y*l;举例4、改进欧拉法function yout=gaijinoula(f,x0,y0,xn,n)%定义输入输出x=zeros(1,n+1);y=zeros(1,n+1);x(1)=x0;y(1)=y0;h=(xn-x0)/n;for i=1:nx(i+1)=x(i)+h;z0=y(i)+h*feval(f,x(i),y(i));y(i+1)=y(i)+(feval(f,x(i),y(i))+feval(f,x(i+1),z0))*h/2; endshuchu=[x',y']fprintf(' x(i) y(i)')function Dy=f(x,y)Dy=x+y;5、最小二乘M文件:function c=zxrc(x,y,m)%x 是数据点横坐标,y 数据点纵坐标%m 要构造的多项式的系数,c 是多项式由高到低的系数所组成的向量 n=length(x);b=zeros(1:m+1);f=zeros(n,m+1);for k=1:m+1f(:,k)=x'.^(k-1);enda=f'*f;b=f'*y';c=a\b;c=flipud(c);-2-1.5-1-0.500.51 1.52---6、矩阵相关的算法(1).求矩阵的行列式function d=hanglieshi(a)%求任意输入矩阵的行列式clear all;a=input('输入矩阵a=');d=1;n=size(a); %方阵的行(或者列)数for k=1:n-1e=a(k,k); %设矩阵的主元for i=k:n %求出矩阵的全主元for j=k:nif abs(a(i,j))>ee=a(i,j);p=i;q=j;else c=0;endendendfor j=k:n %行交换t=a(k,j);a(k,j)=a(p,j);a(p,j)=t;endif p~=k %判断行列式是否换号d=d*(-1);else d=d;endfor i=k:n %列交换t=a(i,k);a(i,k)=a(i,q);a(i,q)=t;endif q~=k %判断行列式是否换号d=d*(-1);else d=d;endif a(k,k)~=0for i=k+1:n %消元r=a(i,k)/a(k,k);for j=k+1:na(i,j)=a(i,j)-r*a(k,j);endendelse d=d;endendfor i=1:n%求行列式d=d*a(i,i);enddisp('矩阵a的行列式为:')d(2)矩阵的换行function c=huanhang(a)%实现矩阵换行clear all;a=input('输入矩阵a=');[m,n]=size(a);for j=1:nt=a(1,j);a(1,j)=a(2,j);a(2,j)=t;endc=a;disp('换行后矩阵a变为:')c(3)列主元消元法解方程function d=jiefang(a)%列主元消元法解方程clear all;a=input('输入矩阵a=');[row,column]=size(a);for i=1:column%每一列的列标m(i)=i;s(i)=0;x(i)=0;endfor k=1:row-1%最后一行不用比较e=a(k,k);p=k;q=k;for i=k:rowfor j=k:column-1if abs(a(i,j))>abs(e)e=a(i,j);p=i;q=j;else c=0;endendendt=m(k); %换列标记m(k)=m(q);m(q)=t;for i=1:row %列交换t=a(i,k);a(i,k)=a(i,q);a(i,q)=t;endfor j=k:column %行变换t=a(k,j);a(k,j)=a(p,j);a(p,j)=t;endif a(k,k)==0 %消元disp('非唯一解')else for i=k+1:rowr=a(i,k)/a(k,k);for j=k:columna(i,j)=a(i,j)-r*a(k,j);endendendendif a(row,row)==0disp('非唯一解')elses(row)=a(row,column)/a(row,row);s(row)q=m(row);x(q)=s(row);for i=row-1:1for j=i+1:rows(i)=s(i)+a(i,j)*x(i);ends(i)=[a(i,column)-s(i)]/a(i,i);q=m(i);x(q)=s(i);endendfor i=1:rowx(i)endend(4)两矩阵相乘function d=chengfa(A,B)% 实现两个矩阵相乘clear all;A=input('输入矩阵A=');B=input('输入矩阵B=')[m n]=size(A);[nb p]=size(B);C=zeros(m,p);if n~=nbdisp('不满足矩阵相乘条件') else for i=1:mfor j=1:pd=0;for k=1:nd=d+A(i,k)*B(k,j);endC(i,j)=d;endenddisp('矩阵AB结果为:')CEnd(5)矩阵元素最大值及下标function d=xunzhuyuan(a)%求一个矩阵的最大元素及其下标clear all;a=input('输入矩阵a=');e=a(1,1); %设e=a(1,1)为最大元素p=1;q=1;[m,n]=size(a);for i=1:mfor j=1:nif abs(a(i,j))>ee=a(i,j);p=i;q=j;else c=0;endendenddisp('最大元素为:')d=a(p,q)disp('最大元素所在的行为:')pdisp('最大元素所在的列为:')qend(6)矩阵元素最大值及下标function d=zuidazhi(A)%求矩阵的最大元素及其下标clear all;A=input('输入矩阵A=');B=A'; %转置[a,r]=max(A); %求出矩阵A每一列的最大值和每列最大值所在的行数[maxV,column]=max(a); %最大元素及其所在的列[b,c]=max(B);[maxV1,row]=max(b);%最大元素及其所在的行disp('矩阵A的最大元素为:')maxVdisp('矩阵A最大元素所在的列为:')columndisp('矩阵A最大元素所在的行为:')row。
数值分析试验幂法与反幂法matlab
一、问题的描述及算法设计(一)问题的描述我所要做的课题是:对称矩阵的条件数的求解设计1、求矩阵A 的二条件数问题 A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----210121012 2、设计内容:1)采用幂法求出A 的 错误!未找到引用源。
.2)采用反幂法求出A 的错误!未找到引用源。
.3)计算A 的条件数 ⅡA Ⅱ2* ⅡA -1Ⅱ2=cond2(A )=错误!未找到引用源。
/错误!未找到引用源。
.(精度要求为10-6)3、设计要求1)求出ⅡA Ⅱ2。
2)并进行一定的理论分析。
(二)算法设计1、幂法算法(1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1.(2)计算v )(k =Au )1(-k ,m k =max(v )(k ), u )(k = v )(k / m k(3)若| m k = m 1-k |<ε,则停止计算(m k 作为绝对值最大特征值1λ,u )(k 作为相应的特征向量)否则置k=k+1,转(2)2、反幂法算法(1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1.(2)对A 作LU 分解,即A=LU(3)解线性方程组 Ly )(k =u )1(-k ,Uv )(k =y )(k(4)计算m k =max(v )(k ), u )(k = v )(k / m k(5)若|m k =m 1-k |<ε,则停止计算(1/m k 作为绝对值最小特征值n λ,u )(k 作为相应的特征向量);否则置k=k+1,转(3).二、算法的流程图(一)幂法算法的流程图为 v )(k = A 1-u )1(-k ,m k =max(v )(k ), u )(k = v )(k / m k (2)2、对于反幂法的定理按式(2)计算出的m k 和u )(k 满足:∞>-k lim m k =nλ1, ∞>-k lim u )(k =)max (n n x x 在式(2)中,需要用到A 1-,这给计算带来很大的不方便,因此,把(2)式的第一式改为求解线性方程组A v )(k = u )1(-k (3) 但由于在反幂法中,每一步迭代都需求解线性方程组(3)式,迭代做了大量的重复计算,为了节省工作量,可事先把矩阵A 作LU 分解,即 A=LU所以线性方程组(3)改为Ly )(k =u )1(-k ,Uv )(k =y )(k 四、相关的数值结果(一)幂法程序的运行结果m = 3.4142 u = -0.7071 index = 11.0000-0.7071(二)反幂法程序的运行结果m 0 = 0.5858 u = 0.7071 index = 11.00000.7071(三)矩阵A 的二条件数的结果ⅡA Ⅱ2* ⅡA -1Ⅱ2=cond2(A )=m/ m 0=3.4142/0.5858=5.828269五、数值计算结果的分析求n阶方阵A的特征值和特征向量,是实际计算中常常碰到的问题。
幂法和反幂法的matlab实现
幂法和反幂法的matlab实现幂法求矩阵主特征值及对应特征向量摘要矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。
实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。
称模最大的特征根为主特征值。
幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。
用java来编写算法。
这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。
其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。
关键字:主特征值;特征向量;线性方程组;幂法函数块POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THEMATRIXABSTRACTNumerical algorithm for the eigenvalue of matrix, in science and engineering technology, alot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum.Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow.Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part isthe exponentiation function block. The fourth part is the page design and eventprocessing .The basic process is a power law function block by calling the matrix is transformed into linear equations method, after a series of validation and iteration results.Power method for finding the eigenvalues and corresponding eigenvectors of the matrixKey words: Main eigenvalue; characteristic vector; linear equations; power function block、目录1幂法......................................................... . (1)1.1幂法的基本理论和推导 (1)1.2幂法算法的迭代向量规范化 (2)2概要设计........................................................ (3)2.1设计背景 (3)2.2运行流程........................................... . (3)2.3运行环境........................................... (3)3程序详细设计 (4)3.1矩阵转化为线性方程组……..………………………………………. .43.2特征向量的极大值 (4)3.3求幂法函数块............….....…………...…......…………………………3.4界面设计与事件处理..........................................................................4运行过程及结果................................................ (6)4.1 运行过程....................................... ..................………………………………………. .64.2 运行结果................................................ .. (6)4.3 结果分析.......................................... (6)5结论 (7)参考文献 (8)附录 (56)1 幂法设实矩阵nn ijaA ⨯=)(有一个完备的特征向量组,其特征值为n λλλ ,,21,相应的特征向量为nx x x ,,21。
数值分析 -第7讲_幂法和反幂法
则存在酉矩阵U使 定理9( Schur定理) 设A ∈ R n×n, r11 r12 L r1n r22 L r2n ∆ = R, U T AU = O rnn 其中rii (i = 1,2,L, n)为A的特征值.
定理10(实Schur分解) 设A ∈ R n×n, 则存在正交矩阵Q使 R11 R12 L R1m R22 L R2m , QT AQ = O Rmm 其中当Rii (i = 1,2,L, m)为一阶时Rii是A的实特征值,当Rii为 二阶时Rii的两个特征值是A的两个共轭复特征值.
xn xn
α1 x1 α1 x1
数值分析
不同范数选取下的特征值的计算
1. 取范数为2-范数时 取范数为2
T T yk −1uk = yk −1 Ayk −1 ⇒
α1 x1T α1 x1 A = λ1 α1 x1 2 α1 x1 2
对应的迭代公式
∀ u0 ∈ R n T η k −1 = uk −1uk −1 yk −1 = uk −1 η k −1 uk = Ayk −1 T β k = yk −1uk ( k = 1, 2,...)
数值分析
实际使用的迭代公式为: 实际使用的迭代公式为:
uk −1 yk −1 = u k −1 u = Ay k −1 k
于是可得
Auk −1 A2uk −2 A k u0 uk = = = L = k −1 uk −1 Auk −2 A u0
uk Ak u0 yk = = k uk A u0
数值分析
定义3 定义3 设A = (aij ) n×n , 令 n ( )i = ∑ | aij | (2) Di = {z | | z − aii |≤ ri , z ∈ C }, (i = 1,L, n) 1 r , j≠i 称Di为复平面上以aii为圆心以ri为半径的Gerschgorin圆盘.
数值分析幂法和反幂法
| 1 |>| 1 |≥…≥| 1 |
n
n 1
1
对 A 1 实行幂法,就可得 A 1 的绝对值最大的特征值 1/ n 和相应的特征向量, 即 A 的绝对值最小的特征值和相应的特征向量。
由于用 A 1 代替 A 作幂法计算,因此该方法称为反幂法,反幂法的迭代格
说
( I-A)x=0
(3)
明
的解,就可得到相应的特征向量。
上述方法对于 n 很小时是可以的。但当 n 稍大时,计算工作量将以惊
人的速度增大,并且由于计算带有误差,方程(2)未必是精确的特征方程,
自然就不必说求解方程(2)与(3)的困难了。幂法是一种计算矩阵主特
征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,特别是用于
按式(1)计算出 m k 和 u (k ) 满足
lim
k
m
k
=
1
,
lim u (k ) = x1
k
max(x1 )
(二)反幂法算法的理论依据及推导
反幂法是用来计算绝对值最小的特征值忽然相应的特征向量的方法。是对 幂法的修改,可以给出更快的收敛性。
1、反幂法的迭代格式与收敛性质
设 A 是非奇异矩阵,则零不是特征值,并设特征值为 | 1 |≥| 2 |≥…≥| n1 |>| n |
幂法流程图:
开始
输入 A;[m,u,index] =pow(A,1e-6)
k=0;m1= v=A*u
[vmax,i]=max(abs(v))
m1=m;k=k+1
m=v(i);u=v/m
abs(m-m1)< 1e-6
index=1;break; 输出:m,u,index
北航数值分析-lec7-幂法和反幂法
迭代收敛性
反幂法在求解特征值问题中的应用
特征值问题
反幂法主要用于求解矩阵的特征值和特征向量问题。通过迭代过程,反幂法能够找到矩阵的所有特征 值和对应的特征向量。
数值稳定性
反幂法在求解特征值问题时,需要关注数值稳定性问题。由于计算机浮点运算的误差累积,反幂法可 能会产生数值不稳定的解。因此,需要采取适当的策略来提高数值稳定性。
误差分析比较
幂法
由于幂法是通过连续的矩阵乘法来计算矩阵的幂,因此误差会随着计算的次数逐渐 累积。为了减小误差,需要选择合适的计算精度和减少计算次数。
反幂法
反幂法是通过求解线性方程组来计算矩阵的逆和行列式,因此误差主要来自于线性 方程组的求解精度。为了减小误差,需要选择合适的求解方法和提高求解精度。
202X
北航数值分析-lec7-幂法 和反幂法
单击此处添加副标题内容
汇报人姓名 汇报日期
目 录幂法介绍Fra bibliotek反幂法介绍
幂法和反幂法的比较
幂法和反幂法的实现细节
幂法和反幂法的实际应用案例
单击此处输入你的正文,文字是
您思想的提炼,请尽量言简意赅
的阐述观点
contents
单击此处输入你的正文,文字是 您思想的提炼,请尽量言简意赅 的阐述观点
反幂法的实现细节
反幂法是一种迭代算法,用 于求解线性方程组的近似逆。
反幂法的收敛速度取决于矩阵的谱 半径,如果矩阵的谱半径较小,则 反幂法收敛速度较快。
ABCD
反幂法的实现步骤包括:选择初始 矩阵、计算迭代矩阵、更新解矩阵 和判断收敛性。
在实际应用中,反幂法通常用于 求解大规模稀疏线性系统的预处 理和后处理问题。
01
幂法和反幂法的matlab实现
幂法和反幂法的matlab实现幂法求矩阵主特征值及对应特征向量摘要矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。
实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。
称模最大的特征根为主特征值。
幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。
用java来编写算法。
这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。
其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。
关键字:主特征值;特征向量;线性方程组;幂法函数块POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THEMATRIXABSTRACTNumerical algorithm for the eigenvalue of matrix, in science and engineering technology, alot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum.Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow.Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part isthe exponentiation function block. The fourth part is the page design and eventprocessing .The basic process is a power law function block by calling the matrix is transformed into linear equations method, after a series of validation and iteration results.Power method for finding the eigenvalues and corresponding eigenvectors of the matrixKey words: Main eigenvalue; characteristic vector; linear equations; power function block、目录1幂法......................................................... . (1)1.1幂法的基本理论和推导 (1)1.2幂法算法的迭代向量规范化 (2)2概要设计........................................................ (3)2.1设计背景 (3)2.2运行流程........................................... . (3)2.3运行环境........................................... (3)3程序详细设计 (4)3.1矩阵转化为线性方程组……..………………………………………. .43.2特征向量的极大值 (4)3.3求幂法函数块............….....…………...…......…………………………3.4界面设计与事件处理..........................................................................4运行过程及结果................................................ (6)4.1 运行过程....................................... ..................………………………………………. .64.2 运行结果................................................ .. (6)4.3 结果分析.......................................... (6)5结论 (7)参考文献 (8)附录 (56)1 幂法设实矩阵nn ij a A ⨯=)(有一个完备的特征向量组,其特征值为nλλλ ,,21,相应的特征向量为nx x x ,,21。
幂法及其MATLAB程序
5.2 幂法及其MATLAB 程序5.2.2 幂法的MATLAB 程序用幂法计算矩阵A 的主特征值和对应的特征向量的MATLAB 主程序function [k,lambda,Vk,Wc]=mifa(A,V0,jd,max1)lambda=0;k=1;Wc =1; ,jd=jd*0.1;state=1; V=V0;while ((k<=max1)&(state==1))Vk=A*V; [m j]=max(abs(Vk)); mk=m;tzw=abs(lambda-mk); Vk=(1/mk)*Vk;Txw=norm(V-Vk); Wc=max(Txw,tzw); V=Vk;lambda=mk;state=0;if (Wc>jd)state=1;endk=k+1;Wc=Wc;endif (Wc<=jd)disp('请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:')elsedisp('请注意:迭代次数k 已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc 如下:') endVk=V;k=k-1;Wc;例 5.2.2 用幂法计算下列矩阵的主特征值和对应的特征向量的近似向量,精度510-=ε.并把(1)和(2)输出的结果与例5.1.1中的结果进行比较.(1)⎪⎪⎭⎫ ⎝⎛-=4211A ; (2)⎪⎪⎪⎭⎫ ⎝⎛=633312321B ;(3)⎪⎪⎪⎭⎫ ⎝⎛--=1124111221C ;(4)⎪⎪⎪⎭⎫ ⎝⎛---=20101350144D . 解 (1)输入MATLAB 程序>>A=[1 -1;2 4]; V0=[1,1]';[k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100),[V,D] = eig (A), Dzd=max(diag(D)), wuD= abs(Dzd- lambda), wuV=V(:,2)./Vk,运行后屏幕显示结果请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc =33 3.00000173836804 8.691862856124999e-007Vk = V = wuV =-0.49999942054432 -0.70710678118655 0.44721359549996 -0.894428227562941.00000000000000 0.70710678118655 -0.89442719099992 -0.89442719099992Dzd = wuD =3 1.738368038406435e-006由输出结果可看出,迭代33次,相邻两次迭代的误差W c ≈8.69 19e-007,矩阵A 的主特征值的近似值lambda ≈3.000 00和对应的特征向量的近似向量V k ≈(-0.500 00,1.00000T ), lambda 与例5.1.1中A 的最大特征值32=λ近似相等,绝对误差约为1.738 37e-006,V k 与特征向量X =T22k T )1,21(- )0(2≠k 的第1个分量的绝对误差约等于0,第2个分量的绝对值相同.由wuV 可以看出,2λ的特征向量V (:,2) 与V k 的对应分量的比值近似相等.因此,用程序mifa.m 计算的结果达到预先给定的精度510-=ε.(2) 输入MATLAB 程序>>B=[1 2 3;2 1 3;3 3 6]; V0=[1,1,1]';[k,lambda,Vk,Wc]=mifa(B,V0,0.00001,100), [V,D] = eig (B), Dzd=max(diag(D)), wuD= abs(Dzd- lambda), wuV=V(:,3)./Vk,运行后屏幕显示结果请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc = Dzd = wuD =3 9 0 9 0Vk = wuV =0.50000000000000 0.816496580927730.50000000000000 0.816496580927731.00000000000000 0.81649658092773V =0.70710678118655 0.57735026918963 0.40824829046386-0.70710678118655 0.57735026918963 0.408248290463860 -0.57735026918963 0.81649658092773(3) 输入MATLAB 程序>> C=[1 2 2;1 -1 1;4 -12 1];V0=[1,1,1]';[k,lambda,Vk,Wc]=mifa(C,V0,0.00001,100), [V,D] = eig (C), Dzd=max(diag(D)), wuD=abs(Dzd-lambda),Vzd=V(:,1),wuV=V(:,1)./Vk,运行后屏幕显示请注意:迭代次数k 已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc =100 0.09090909090910 2.37758124193119Dzd = wuD =1.00000000000001 0.90909090909091Vk= Vzd = wuV =0.99999999999993 0.90453403373329 0.904534033733350.99999999999995 0.30151134457776 0.301511344577781.00000000000000 -0.30151134457776 -0.30151134457776由输出结果可见,迭代次数k 已经达到最大迭代次数max 1=100,并且lambda 的相邻两次迭代的误差Wc ≈2.377 58>2,由wuV 可以看出,lambda 的特征向量V k 与真值Dzd 的特征向量V zd 对应分量的比值相差较大,所以迭代序列发散.实际上,实数矩阵C 的特征值的近似值为i ,i ,010*********.000321=-==λλλ ,并且对应的特征向量的近似向量分别为X T1=1k (0.90453403373329,0.30151134457776,-0.30151134457776)T ,X =T 22k (-0.72547625011001,-0.21764287503300-0.07254762501100i, 0.58038100008801-0.29019050004400i )T ,X =T33k ( -0.72547625011001, -0.21764287503300 + 0.07254762501100i,0.58038100008801 + 0.29019050004400i)T0,0(21≠≠k k , 03≠k 是常数).(4)输入MATLAB 程序>> D=[-4 14 0;-5 13 0;-1 0 2]; V0=[1,1,1]';[k,lambda,Vk,Wc]=mifa(D,V0,0.00001,100), [V,Dt] =eig (D), Dtzd=max(diag(Dt)), wuDt=abs(Dtzd-lambda),Vzd=V(:,2),wuV=V(:,2)./Vk,运行后屏幕显示结果请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k = lambda = Wc =19 6.00000653949528 6.539523793591684e-006Dtzd = wuDt =6.00000000000000 6.539495284840768e-006Vk = Vzd = wuV =0.79740048053564 0.79740048053564 0.797400480535640.71428594783886 0.56957177181117 0.79740021980618-0.24999918247180 -0.19935012013391 0.797403088133705.3 反幂法和位移反幂法及其MATLAB程序5.3.3 原点位移反幂法的MATLAB程序(一)原点位移反幂法的MATLAB主程序1用原点位移反幂法计算矩阵A的特征值和对应的特征向量的MATLAB主程序1 function [k,lambdan,Vk,Wc]=ydwyfmf(A,V0,jlamb,jd,max1)[n,n]=size(A); A1=A-jlamb*eye(n); jd= jd*0.1;RA1=det(A1);if RA1==0disp('请注意:因为A-aE的n阶行列式hl等于零,所以A-aE不能进行LU分解.')returnendlambda=0;if RA1~=0for p=1:nh(p)=det(A1(1:p, 1:p));endhl=h(1:n);for i=1:nif h(1,i)==0disp('请注意:因为A-aE的r阶主子式等于零,所以A-aE不能进行LU分解.')returnendendif h(1,i)~=0disp('请注意:因为A-aE的各阶主子式都不等于零,所以A-aE 能进行LU分解.')k=1;Wc =1;state=1; Vk=V0;while((k<=max1)&(state==1))[L U]=lu(A1); Yk=L\Vk;Vk=U\Yk; [mj]=max(abs(Vk));mk=m;Vk1=Vk/mk; Yk1=L\Vk1;Vk1=U\Yk1;[m j]=max(abs(Vk1));mk1=m;Vk2=(1/mk1)*Vk1;tzw1=abs((mk-mk1)/mk1);tzw2=abs(mk1-mk);Txw1=norm(Vk)-norm(Vk1);Txw2=(norm(Vk)-norm(Vk1))/norm(Vk1);Txw=min(Txw1,Txw2); tzw=min(tzw1,tzw2);Vk=Vk2;mk=mk1; Wc=max(Txw,tzw);Vk=Vk2;mk=mk1;state=0;if(Wc>jd)state=1;endk=k+1;%Vk=Vk2,mk=mk1,endif (Wc<=jd)disp('A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:')elsedisp('A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k 已经达到最大迭代次数max1,按模最小特征值的迭代值lambda,特征向量的迭代向量Vk,相邻两次迭代的误差Wc 如下:')endhl,RA1endend[V,D]=eig(A,'nobalance'),Vk;k=k-1;Wc;lambdan=jlamb+1/mk1;例5.3.2 用原点位移反幂法的迭代公式(5.28),根据给定的下列矩阵的特征值n λ的初始值n λ~,计算与n λ对应的特征向量n X 的近似向量,精确到0.000 1. (1)⎪⎪⎪⎭⎫ ⎝⎛----210242011,2.0~2=λ;(2)⎪⎪⎭⎫ ⎝⎛-4211,001.2~2=λ;(3)⎪⎪⎪⎭⎫ ⎝⎛--3315358215211,8.26~3=λ.解 (1)输入MATLAB 程序>> A=[1 -1 0;-2 4 -2;0 -1 2];V0=[1,1,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,0.2,0.0001,10000)运行后屏幕显示结果 请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行LU 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc = hl =3 0.2384 1.0213e-007 0.8000 1.0400 0.2720Vk = V = D =1.0000 -0.2424 -1.0000 -0.5707 5.1249 0 00.7616 1.0000 -0.7616 0.3633 0 0.2384 00.4323 -0.3200 -0.4323 1.0000 0 0 1.6367(2)输入MATLAB 程序>> A=[1 -1;2 4];V0=[20,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,2.001,0.0001,100)运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行LU 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc = hl =2 2.0020 5.1528e-007 -1.0010 -0.0010Vk = V = D =1.0000 -1.0000 0.5000 2 0-1.0000 1.0000 -1.0000 0 3(3)输入MATLAB 程序>> A=[-11 2 15;2 58 3;15 3 -3];V0=[1,1,-1]';[k,lambdan,Vk,Wc]=ydwyfmf(A,V0,8.26, 0.0001,100)运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行LU 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambdan= Wc = hl =2 8.2640 6.9304e-008 -19.2600 -961.9924 -6.1256Vk = V = D =-0.7692 0.7928 0.6081 0.0416 -22.5249 0 00.0912 0.0030 -0.0721 0.9974 0 8.2640 0-1.0000 -0.6095 0.7906 0.0590 0 0 58.2609例 5.3.3 用原点位移反幂法的迭代公式(5.28),计算⎪⎪⎪⎭⎫ ⎝⎛-----=1026471725110A 的分别对应于特征值 1.001~11=≈λλ,.001 2~22=≈λλ, 001.4~33=≈λλ的特征向量1X ,2X ,3X 的近似向量,相邻迭代误差为0.001.将计算结果与精确特征向量比较. 解 (1)计算特征值 1.001~11=≈λλ对应的特征向量1X 的近似向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]= ydwyfmf(A,V0,1.001, 0.001,100),[V,D]=eig(A);Dzd=min(diag(D)), wuD= abs(Dzd- lambda),VD=V(:,1),wuV=V(:,1)./Vk,运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行L U 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:hl =-1.00100000000000 5.98500100000000 -0.00299600100000k = lambda = RA1 =5 1.00200000000000 -0.00299600100000Vk = VD = wuV =-0.50000000000000 -0.40824829046386 0.81649658092773-0.50000000000000 -0.40824829046386 0.81649658092773-1.00000000000000 -0.81649658092773 0.81649658092773Wc = Dzd = wuD =1.378794763695562e-009 1.00000000000000 0.00200000000000 从输出的结果可见,迭代5次,特征向量1X 的近似向量1~X 的相邻两次迭代的误差Wc ≈1.379 e-009,由wuV 可以看出,1~X = Vk 与VD 的对应分量的比值相等.特征值1λ的近似值lambda ≈1.002与初始值=1~λ 1.001的绝对误差为0.001,而与 1λ的绝对误差为0.002,其中 =1X T )000000000001.000 , 000000000000.500- , 000000000000.500( -, =1~X T )000000000001.000 , 000000000000.500- , 000000000000.500(-. (2)计算特征值.001 2~22=≈λλ对应特征向量2X 的近似向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,2.001, 0.001,100) ,[V,D]=eig(A); WD=lambda-D(2,2),VD=V(:,2),wuV=V(:,2)./Vk,运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行L U 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:hl =-2.00100000000000 -8.01299900000000 0.00200099900000k = Wc = lambda = WD =2 3.131363162302120e-007 2.00200000000016 0.00200000000016Vk = VD = wuV =-0.24999999999999 0.21821789023599 -0.87287156094401 -0.49999999999999 0.43643578047198 -0.87287156094398 -1.00000000000000 0.87287156094397 -0.87287156094397 从输出的结果可见,迭代2次,特征向量2X 的近似向量2~X 的相邻两次迭代的误差Wc ≈3.131e-007,2~X 与2X 的对应分量的比值近似相等.特征值2λ的近似值lambda ≈2.002与初始值=2~λ 2.001的绝对误差约为0.001,而lambda 与2λ的绝对误差约为0.002,其中 =2~X T )00000000000000.1,99999999999499.0,99999999999249.0(---, =2X T ) 000000000001.000- ,000000000000.500- ,99999999999-0.249( . (3)计算特征值 001.4~33=≈λλ对应特征向量3X 的近似向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,4.001, 0.001,100)[V,D]=eig(A);WD=lambda-max(diag(D)),VD=V(:,3),wuV=V(:,3)./Vk,运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行L U 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:hl =-4.00100000000000 -30.00899900000000 -0.00600500099999 k = lambda = Wc = WD =2 4.00199999999990 1.996084182914842e-007 0.00199999999990Vk = VD = wuV =0.40000000000001 -0.32444284226153 -0.81110710565380 0.60000000000001 -0.48666426339229 -0.81110710565381 1.00000000000000 -0.81110710565381 -0.81110710565381 从输出的结果可见,迭代2次,特征向量3X 的近似向量3~X 的相邻两次迭代的误差Wc ≈1.996e-007,3~X 与3X 的对应分量的比值近似相等.特征值3λ的近似值 4.001~4.0022=≈λ与初始值lambda 的绝对误差近似为001.0,而lambda 与3λ的绝对误差约为0.002,其中 =3X (-0.400 000 000 000 00,-0.600 000 000 000 00,-1.000 000 000 000 00T ), =3~X T )000000000001.000 ,100000000000.600 ,10000000000.400(.(二)原点位移反幂法的MATLAB 主程序2用原点位移反幂法计算矩阵A 的特征值和对应的特征向量的MATLAB 主程序2function [k,lambdan,Vk,Wc]=wfmifa1(A,V0,jlamb,jd,max1)[n,n]=size(A); jd= jd*0.1;A1=A-jlamb*eye(n);nA1=inv(A1); lambda1=0;k=1;Wc =1;state=1; U=V0;while ((k<=max1)&(state==1))Vk=A1\U; [m j]=max(abs(Vk)); mk=m; Vk=(1/mk)*Vk;Vk1=A1\Vk;[m1 j]=max(abs(Vk1)); mk1=m1,Vk1=(1/mk1)*Vk1;U=Vk1,Txw=(norm(Vk1)-norm(Vk))/norm(Vk1);tzw=abs((lambda1-mk1)/mk1);Wc=max(Txw,tzw); lambda1=mk1;state=0;if (Wc>jd)state=1;endk=k+1;endif (Wc<=jd)disp('请注意迭代次数k,特征值的近似值lambda,对应的特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:')elsedisp('请注意迭代次数k 已经达到最大迭代次数max1, 特征值的近似值lambda,对应的特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:') end[V,D] =eig(A,'nobalance'),Vk=U;k=k-1;Wc;lambdan=jlamb+1/mk;例5.3.4 用原点位移反幂法的迭代公式(5.27),计算例题5.3.3,并且将这两个例题的计算结果进行比较.再用两种原点位移反幂法的MATLAB 主程序,求979999999990.999~1=λ对应的特征向量. 解 (1)计算特征值 1.001~11=≈λλ对应特征向量1X 的近似向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=wfmifa1(A,V0,1.001,0.001,100)运行后屏幕显示结果请注意迭代次数k,特征值的近似值lambda,对应的特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc =5 1.00200000000138 1.376344154436924e-006Vk’ = -0.50000000000000 -0.50000000000000 -1.00000000000000同理可得,另外与两个特征值对应的特征向量.(2)再用两种原点位移反幂法的MATLAB 主程序,求979999999990.999~1=λ对应的特征向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,0.99999999999997,0.001,100) 运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行LU 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:hl =-0.99999999999997 6.00000000000045 0.00000000000010RA1 = 1.039168751049192e-013 k = 2 lambda = 1.00000000000000输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=wfmifa1(A,V0, 0.99999999999997,0.001,100) 运行后屏幕显示结果请注意迭代次数k,特征值的近似值lambda,对应的特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = 3 lambda = 1.00000000000000 Wc =5.412337245047640e-016Vk = 0.50000000000000 0.50000000000000 1.00000000000000 Wc = 4.317692037236759e-013 Vk =0.500000000000000.500000000000001.000000000000005.4 雅可比(Jacobi)方法及其MATLAB 程序5.4.3 雅可比方法的MATLAB 程序用雅可比方法计算对称矩阵A 的特征值和对应的特征向量的MATLAB 主程序function [k,Bk,V,D,Wc]=jacobite(A,jd,max1)[n,n]=size(A);Vk=eye(n);Bk=A;state=1;k=0;P0=eye(n); Aij=abs(Bk-diag(diag(Bk)));[m1 i]=max(Aij);[m2 j]=max(m1);i=i(j);while ((k<=max1)&(state==1))k=k+1,aij=abs(Bk-diag(diag(Bk)));[m1 i]=max(abs(aij));[m2 j]=max(m1);i=i(j),j,Aij=(Bk-diag(diag(Bk)));mk=m2*sign(Aij(i,j)),Wc=m2,Dk=diag(diag(Bk));Pk=P0;c=(Bk(j,j)-Bk(i,i))/(2*Bk(i,j)),t=sign(c)/(abs(c)+sqrt(1+c^2)),pii=1/( sqrt(1+t^2)), pij=t/( sqrt(1+t^2)),Pk(i,i)=pii;Pk(i,j)=pij;Pk(j,j)=pii; Pk(j,i)=-pij;Pk,B1=Pk'*Bk;B2=B1*Pk; Vk=Vk*Pk,Bk=B2,if (Wc>jd)state=1;elsereturnendPk;Vk;Bk=B2;Wc;endif (k>max1)disp('请注意迭代次数k 已经达到最大迭代次数max1,迭代次数k,对称矩阵Bk,以特征向量为列向量的矩阵V,特征值为对角元的对角矩阵D 如下:')elsedisp('请注意迭代次数k,对称矩阵Bk,以特征向量为列向量的矩阵V,特征值为对角元的对角矩阵D 如下:')endWc;k=k; V=Vk;Bk=B2;D=diag(diag(Bk));[V1,D1]=eig(A,'nobalance')例5.4.2 用雅可比方法的MATLAB 程序计算矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=12101152302756135612A 的特征值i λ和对应的特征向量i X (4,3,2,1=i ).解 (1)保存名为jacobite.m 为M 文件;(2)输入MATLAB 程序>> A=[12 -56 3 -1;-56 7 2 0;3 2 5 1;-1 0 1 12];[k,B,V,D,Wc]=jacobite(A,0.001,100)(3)运行后屏幕显示如下:k = i = j = mk = Wc =1 2 1 -56 56c = t =-0.04464285714286 -0.95635313919972pii = pij =0.72270271801843 -0.69115901308510Pk =0.72270271801843 0.69115901308510 0 0 -0.69115901308510 0.72270271801843 0 0 0 0 1.00000000000000 00 0 0 1.00000000000000Vk =0.72270271801843 0.69115901308510 0 0 -0.69115901308510 0.72270271801843 0 00 0 1.00000000000000 00 0 0 1.00000000000000Bk =65.55577579518456 0 0.78579012788509 -0.72270271801843 -0.00000000000001 -46.55577579518456 3.51888247529217 -0.691159013085100.78579012788509 3.51888247529217 5.00000000000000 1.00000000000000 -0.72270271801843 -0.69115901308510 1.00000000000000 12.00000000000000 k =i = j = mk = Wc =2 3 2 3.51888247529217 3.51888247529217c = t =-7.32558932518824 -0.06793885568129pii = pij =0.99770011455446 -0.06778260409592Pk =1.00000000000000 0 0 00 0.99770011455446 0.06778260409592 00 -0.06778260409592 0.99770011455446 00 0 0 1.00000000000000Vk =0.72270271801843 0.68956942653035 0.04684855775127 0 -0.69115901308510 0.72104058455581 0.04898667221449 00 -0.06778260409592 0.99770011455446 00 0 0 1.00000000000000Bk =65.55577579518456 -0.05326290114092 0.78398290060672 -0.72270271801843 -0.05326290114093 -46.79484464383285 0 -0.757352030626270.78398290060672 0.00000000000000 5.23906884864829 0.95085155680318 -0.72270271801843 -0.75735203062627 0.95085155680318 12.00000000000000 k = i = j = mk = Wc =3 4 3 0.95085155680318 0.95085155680318c = t =-3.55519802380213 -0.13796227443116pii = pij =0.99061693994324 -0.13666776612460Pk =1.00000000000000 0 0 00 1.00000000000000 0 00 0 0.99061693994324 0.136667766124600 0 -0.13666776612460 0.99061693994324 Vk =0.72270271801843 0.68956942653035 0.04640897492032 0.00640268773403 -0.69115901308510 0.72104058455581 0.04852702732712 0.006694899061430 -0.06778260409592 0.98833863446096 0.136353445918420 0 -0.13666776612460 0.99061693994324 Bk =65.55577579518456 -0.05326290114092 0.87539690801061 -0.60877636330628 -0.05326290114093 -46.79484464383285 0.10350561019562 -0.750245751038800.87539690801061 0.10350561019562 5.10788720522532 -0.00000000000000 -0.60877636330628 -0.75024575103880 -0.00000000000000 12.13118164342297 k =i = j = mk = Wc =4 1 3 0.87539690801061 0.87539690801061c = t =-34.52598931799430 -0.01447880833914pii = pij =0.99989519853186 -0.01447729093877Pk =0.99989519853186 0 -0.01447729093877 00 1.00000000000000 0 00.01447729093877 0 0.99989519853186 00 0 0 1.00000000000000Vk =0.72329885394465 0.68956942653035 0.03594133368062 0.00640268773403 -0.69038403871280 0.72104058455581 0.05852805174080 0.006694899061430.01430846595712 -0.06778260409592 0.98823505512105 0.13635344591842-0.00197857901214 0 -0.13665344314206 0.99061693994324Bk =65.56845049923633 -0.05175883827808 -0.00000000000000 -0.60871256264964-0.05175883827809 -46.79484464383285 0.10426586517177 -0.75024575103880-0.00000000000000 0.10426586517177 5.09521250117356 0.00881343252823-0.60871256264964 -0.75024575103880 0.00881343252823 12.13118164342297 k = i = j = mk = Wc =5 4 2 -0.75024575103880 0.75024575103880c = t =39.27114962375084 0.01272992971264pii = pij =0.99991898429114 0.01272889838836Pk =1.00000000000000 0 0 00 0.99991898429114 0 -0.012728898388360 0 1.00000000000000 00 0.01272889838836 0 0.99991898429114Vk =0.72329885394465 0.68959505973603 0.03594133368062 -0.00237529014628-0.69038403871280 0.72106738763160 0.05852805174080 -0.002483695665250.01430846595712 -0.06604148348220 0.98823505512105 0.13720519702737-0.00197857901214 0.01260946237032 -0.13665344314206 0.99053668440964Bk =65.56845049923633 -0.05950288535679 -0.00000000000000 -0.60800441437674-0.05950288535680 -46.80439521951078 0.10436960328590 0.00000000000000-0.00000000000000 0.10436960328590 5.09521250117356 0.00748552889860-0.60800441437674 0.00000000000000 0.00748552889860 12.14073221910090 k =i = j = mk = Wc =6 4 1 -0.60800441437674 0.60800441437674c = t =-43.93694931878409 -0.01137847012503pii = pij =0.99993527149402 -0.01137773361366Pk =0.99993527149402 0 0 0.011377733613660 1.00000000000000 0 00 0 1.00000000000000 0-0.01137773361366 0 0 0.99993527149402Vk =0.72327906130899 0.68959505973603 0.03594133368062 0.00585436528595-0.69031109235777 0.72106738763160 0.05852805174080 -0.010338540582940.01274645560931 -0.06604148348220 0.98823505512105 0.13735911385404-0.01324851347145 0.01260946237032 -0.13665344314206 0.99045005670500Bk =65.57536865930122 -0.05949903382392 -0.00008516835377 -0.00000000000000-0.05949903382393 -46.80439521951078 0.10436960328590 -0.00067700797883-0.00008516835377 0.10436960328590 5.09521250117356 0.00748504437150-0.00000000000000 -0.00067700797883 0.00748504437150 12.13381405903603 k =i = j = mk = Wc =7 3 2 0.10436960328590 0.10436960328590c = t =-2.486337309269764e+002 -0.00201098208240pii = pij =0.99999797798167 -0.00201097801616Pk =1.00000000000000 0 0 00 0.99999797798167 0.00201097801616 00 -0.00201097801616 0.99999797798167 00 0 0 1.00000000000000…………………………………………………………………………请注意迭代次数k,对称矩阵Bk,以特征向量为列向量的矩阵V,特征值为对角元的对角矩阵D 如下:V1 =0.68990429476497 -0.03732423222484 0.00588594854431 -0.722913771734500.72058252860300 -0.05998661236737 -0.01028322161977 0.69069289931337-0.06802029759277 -0.98795368410472 0.13841044442471 -0.012779125692250.01288885768193 0.13768088498200 0.99030407443219 0.01325486405899D1 =-46.80463661419736 0 0 00 5.09541442877727 0 00 0 12.13382202426702 00 0 0 65.57540016115307k =10B =65.57540016045945 0.00000000000175 -0.00020481967566 0.000000148628360.00000000000175 -46.80463661419739 0.00000062739984 0.00000000000000-0.00020481967566 0.00000062739984 5.09541442947090 -0.000000000007370.00000014862836 -0.00000000000000 -0.00000000000737 12.13382202426704V =0.72291389811507 0.68990429521617 0.03732177568689 0.00588595055487-0.69069269613201 0.72058252932816 0.05998894273570 -0.010283223540620.01278247108107 -0.06802028564977 0.98795364164379 0.13841044446122-0.01325533307898 0.01288885601755 -0.13768084024946 0.99030407439520D =65.57540016045945 0 0 00 -46.80463661419739 0 00 0 5.09541442947090 00 0 0 12.13382202426704Wc =6.920584967017158e-0045.5 豪斯霍尔德(Householder)方法及其MATLAB程序5.5.1 豪斯霍尔德方法及其MATLAB程序求初等反射矩阵P,使得PX的第一个分量以外的其余的分量都为零的MATLAB主程序function [xigema,rou,miou,P,PX]=Householder(X)n=size(X);nX=norm(X,2);xigema=nX*sign(X(1));rou=xigema*(xigema+X(1));miou=[xigema,zeros(1,n-1)]'+X,E=eye(n,n); C=2*miou*(miou)';P=E-C/(norm(miou,2)^2); PX=P*X;例5.5.1设向量=X()T1,2,2,确定一个初等反射矩阵P,使得PX的后两个分量为零.解输入MATLAB程序>> X=[2 2 1]'; [xigema,rou,miou,P,PX]=Householder(X)运行后屏幕显示结果P = PX =-0.6667 -0.6667 -0.3333 -3.0000-0.6667 0.7333 -0.1333 0.0000-0.3333 -0.1333 0.9333 0.00005.5.2 矩阵约化为上豪斯霍尔德矩阵及其MATLAB程序用豪斯霍尔德变换将n阶矩阵A规约成上豪斯霍尔德矩阵的MATLAB主程序function [k,Sk,uk,ck,Pk,Uk,Ak]=Householdrer1(A)n=size(A); Ak=A;for k=1:n-2k,Sk=norm(Ak(k+1:n,k))*sign(Ak(k+1,k)),uk= Ak(k+1:n,k)+ Sk*eye(n-k,1),ck=(norm(uk,2)^2)/2,Pk= eye(n-k,n-k)-uk*uk'/ck,Uk=[eye(k,k),zeros(k,n-k);zeros(n-k, k),Pk],A1=Uk*Ak;Ak=A1,end例5.5.3 用初等反射矩阵正交相似约化实矩阵A 为上豪斯霍尔德矩阵.其中⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=34 19- 37 78- 41- 31 11 72- 98 10.2- 78- 32-94- 21 12 1 0 1- 63- 72 1 5 2 3 17- 32 02 7 56- 51- 17 12- 34 52- 12A . 解 输入MATLAB 程序>> A=[12 -52 34 -12 17 -51;-56 7 2 0 32 -17;3 2 5 1 72 -63;-1 0 1 12 21 -94;-32 -78 -10.2 98 -72 11;31 -41 -78 37 -19 34];[k,Sk,uk,ck,Pk,Uk,Ak]=Householdrer1(A)运行后屏幕显示结果k = Sk = ck =1 -71.6310 9.1423e+003uk = Pk =-127.6310 -0.7818 0.0419 -0.0140 -0.4467 0.43283.0000 0.0419 0.9990 0.0003 0.0105 -0.0102-1.0000 -0.0140 0.0003 0.9999 -0.0035 0.0034-32.0000 -0.4467 0.0105 -0.0035 0.8880 0.108531.0000 0.4328 -0.0102 0.0034 0.1085 0.8949Uk =1.0000 0 0 0 0 00 -0.7818 0.0419 -0.0140 -0.4467 0.43280 0.0419 0.9990 0.0003 0.0105 -0.01020 -0.0140 0.0003 0.9999 -0.0035 0.00340 -0.4467 0.0105 -0.0035 0.8880 0.10850 0.4328 -0.0102 0.0034 0.1085 0.8949Ak =12.0000 -52.0000 34.0000 -12.0000 17.0000 -51.000071.6310 11.7128 -30.5678 -27.8930 1.6473 21.76430.0000 1.8892 5.7655 1.6556 72.7134 -63.9112-0.0000 0.0369 0.7448 11.7815 20.7622 -93.6963-0.0000 -76.8184 -18.3655 91.0066 -79.6101 20.71910.0000 -42.1447 -70.0897 43.7749 -11.6277 24.5846k = Sk = ck =2 87.6402 7.8464e+003uk = Pk =89.5295 -0.0216 -0.0004 0.8765 0.48090.0369 -0.0004 1.0000 0.0004 0.0002-76.8184 0.8765 0.0004 0.2479 -0.4126-42.1447 0.4809 0.0002 -0.4126 0.7736Uk =1.0000 0 0 0 0 00 1.0000 0 0 0 00 0 -0.0216 -0.0004 0.8765 0.48090 0 -0.0004 1.0000 0.0004 0.00020 0 0.8765 0.0004 0.2479 -0.41260 0 0.4809 0.0002 -0.4126 0.7736Ak =12.0000 -52.0000 34.0000 -12.0000 17.0000 -51.000071.6310 11.7128 -30.5678 -27.8930 1.6473 21.7643-0.0000 -87.6402 -49.9272 100.7790 -76.9476 31.4002-0.0000 -0.0000 0.7219 11.8223 20.7005 -93.6570-0.0000 0.0000 29.4202 5.9564 48.8026 -61.06030.0000 0.0000 -43.8731 -2.8860 58.8230 -20.2818…………………………………………………………………………k = Sk = ck =4 -12.2088 195.0398uk = Pk =-15.9753 -0.3085 0.951211.6133 0.9512 0.3085Uk =1.0000 0 0 0 0 00 1.0000 0 0 0 00 0 1.0000 0 0 00 0 0 1.0000 0 00 0 0 0 -0.3085 0.95120 0 0 0 0.9512 0.3085Ak =12.0000 -52.0000 34.0000 -12.0000 17.0000 -51.000071.6310 11.7128 -30.5678 -27.8930 1.6473 21.7643-0.0000 -87.6402 -49.9272 100.7790 -76.9476 31.40020.0000 -0.0000 -52.8292 -5.8754 21.3902 18.44030.0000 0.0000 0.0000 12.2088 40.2435 -106.81340.0000 0.0000 -0.0000 0.0000 64.7555 -34.09095.5.3 实对称矩阵的三对角化及其MATLAB程序将n阶实对称矩阵A规约成三对角形式的MATLAB主程序function T=house(A)[n,n]=size(A);for k=1:n-2s=norm(A(k+1:n,k),2);if (A(k+1,k)<0)s=-s;endr=sqrt(2*s*(A(k+1,k)+s));U(1:k)=zeros(1,k);U(k+1)=(A(k+1,k)+s)/r;U(k+2:n)=A(k+2:n,k)'/r;V(1:k)=zeros(1,k);V(k+1:n)=A(k+1:n,k+1:n)*U(k+1:n)';C=U(k+1:n)*V(k+1:n)';P(1:k)=zeros(1,k);P(k+1:n)=V(k+1:n)-C*U(k+1:n);A(k+2:n,k)=zeros(n-k-1,1);A(k,k+2:n)=zeros(1,n-k-1);A(k+1,k)=-s; A(k,k+1)=-s;A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-2*U(k+1:n)'*P(k+1:n)-2*P( k+1:n)'*U(k+1:n);endT=A;例5.5.4 用初等反射矩阵正交相似约化实对称矩阵A为三对角矩阵.其中⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------------=5261215121416134237299021237312611451721253233219612371564901435612A 解 输入MATLAB 程序>> A=[12 -56 3 -14 -90 -4;-56 71 23 61 -9 -21;3 23 53 12 -72 51;-14 61 12 73 23 21;-90 -9 -72 23 -34 -61;-41 -21 51 21 -61 -52];T=house(A)运行后屏幕显示结果T =12.0000 114.5513 0 0 0 0114.5513 -43.2395 -108.2763 0 0 00 -108.2763 49.7411 -22.7766 0 00 0 -22.7766 40.2476 -89.1355 00 0 0 -89.1355 44.9606 39.30900 0 0 0 39.3090 19.29025.6 QR 方法及其MATLAB 程序5.6.5 最末元位移QR 法计算实对称矩阵特征值及其MATLAB 程序用最末元位移QR 方法求实对称矩阵A 全部特征值的MATLAB 主程序function tzg=qr4(A,t,max1)[n,n]=size(A); k=0;Ak=A;tzg=zeros(n); state=1;for i=1:n;while ((k<=max1)&(state==1)&(n>1))b1=abs(Ak(n,n-1)); b2=abs(Ak(n,n));b3=abs(Ak(n-1,n-1));b4=min(b2, b3); jd=10^(-t); jd1=jd*b4;if (b1>=jd1)sk=Ak(n,n); Bk=Ak-sk*eye(n); [Qk,Rk]=qr(Bk);At=Rk*Qk+sk*eye(n); k=k+1;tzgk=Ak(n,n);disp('请注意:下面的i 表示求第i 个特征值,k 是迭代次数,sk 是原点位移量,')disp(' Bk=Ak-sk*eye(n),Qk 和Rk 是Bk 的QR 分解,At=Rk*Qk+sk*eye(n)迭代矩阵:')i,state=1;k,sk,Bk,Qk,Rk,At,Ak=At;elsedisp('请注意:i 表示求第i 个特征值,tzgk 是矩阵A 的特征值的近似值,k 是迭代次数,')disp(' 下面的矩阵B 是m 阶矩阵At 的(m-1)阶主子矩阵,即At 降一阶.')i,tzgk=Ak(n,n),tzg(n,1)=tzgk;k=k,sk,Ak;B=Ak(1:n-1,1:n-1),Ak=B;n=n-1;state==1; i=i+1;endendendtzg(1,1)=Ak;tzg=sort(tzg(:,1));tzgk=Akdisp('请注意:n 阶实对称矩阵A 的全部真特征值lamoda 和至少含t个有效数字的近似特征值tzg 如下:')lamoda=sort(eig(A))例5.6.5 用最末元位移QR 方法求下列实对称矩阵的全部近似特征值,并将计算结果与A 全部真特征值比较.其中,2 1 1 1 1 3 1 21 1 4- 21 2 2 5)1(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 精度为=ε510-; ,52612151214161342372990212373126114517212532332196123715641901435612)2(⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------------=A 精度为=ε410-.解 (1)首先保存用最末元位移QR 方法求实对称矩阵A 全部特征值的MATLAB 主程序为M 文件,取名为qr4.m.在MATLAB 工作窗口输入程序>> A=[5 2 2 1;2 -4 1 1;2 1 3 1;1 1 1 2]; tzg=qr4(A,5,100) 运行后屏幕显示结果请注意:下面的i 表示求第i 个特征值,k 是迭代次数,sk 是原点位移量,Bk=Ak-sk*eye(n),Qk 和Rk 是Bk 的QR 分解,At=Rk*Qk+sk*eye(n)迭代矩阵:i =1k =1sk =2Bk =3 2 2 12 -6 1 12 1 1 11 1 1 0Qk =-0.70710678118655 0.38807526285317 0.12674485010490 -0.57735026918963-0.47140452079103 -0.87963726246718 0.06337242505245 0-0.47140452079103 0.20697347352169 -0.63372425052448 0.57735026918963-0.23570226039552 0.18110178933148 0.76046910062937 0.57735026918963 Rk =-4.24264068711929 0.70710678118655 -2.59272486435067 -1.649915822768610 6.44204936336256 0.28458852609232 -0.284588526092320 0 0.44360697536713 -0.443606975367130 0 0 0.00000000000000At =6.27777777777778 -3.10388935193069 -0.10455916682125 0.00000000000000-3.10388935193069 -3.65930388219545 0.01147685957127 0.00000000000000-0.10455916682125 0.01147685957127 1.38152610441767 0.00000000000000 -0.00000000000000 0.00000000000000 0.00000000000000 2.00000000000000 请注意:i 表示求第i 个特征值,tzgk 是矩阵A 的特征值的近似值,k 是迭代次数,下面的矩阵B 是m 阶矩阵At 的(m-1)阶主子矩阵,即At 降一阶.i =1tzgk =2.00000000000000k =1sk =2B =6.27777777777778 -3.10388935193069 -0.10455916682125-3.10388935193069 -3.65930388219545 0.01147685957127-0.10455916682125 0.01147685957127 1.38152610441767请注意:下面的i 表示求第i 个特征值,k 是迭代次数,sk 是原点位移量,Bk=Ak-sk*eye(n),Qk和Rk是Bk的QR分解,At=Rk*Qk+sk*eye(n)迭代矩阵:i =2k =2sk =1.38152610441767Bk =4.89625167336011 -3.10388935193069 -0.10455916682125-3.10388935193069 -5.04082998661312 0.01147685957127-0.10455916682125 0.01147685957127 0Qk =-0.84445320114929 -0.53537837009187 0.016394874396770.53532568873289 -0.84460953959679 -0.007818734217300.01803324849744 0.00217404228940 0.99983502413586Rk =-5.79813264571247 -0.07718952005739 0.094439180886190 5.91931326753920 0.046285251232420 0 -0.00180396892170At =6.23815929000691 3.16959512520840 -0.000032531419853.16959512520840 -3.61788172311421 -0.00000392190472-0.00003253141985 -0.00000392190472 1.37972243310730请注意:i表示求第i个特征值,tzgk是矩阵A的特征值的近似值,k是迭代次数,下面的矩阵B是m阶矩阵At的(m-1)阶主子矩阵,即At降一阶.i =2tzgk =1.37972243310730k =2sk =1.38152610441767B =6.23815929000691 3.169595125208403.16959512520840 -3.61788172311421请注意:下面的i表示求第i个特征值,k是迭代次数,sk是原点位移量,Bk=Ak-sk*eye(n),Qk和Rk是Bk的QR分解,At=Rk*Qk+sk*eye(n)迭代矩阵:i =3k =3sk =-3.61788172311421Bk =9.85604101312112 3.169595125208403.16959512520840 0Qk =-0.95198403663348 -0.30614766697629-0.30614766697629 0.95198403663348Rk =-10.35315786173815 -3.017403961789690 -0.97036415284199At =7.16193047323385 0.297074721510000.29707472151000 -4.54165290634115请注意:下面的i表示求第i个特征值,k是迭代次数,sk是原点位移量,Bk=Ak-sk*eye(n),Qk和Rk是Bk的QR分解,At=Rk*Qk+sk*eye(n)迭代矩阵:i =3k =4sk =-4.54165290634115Bk =11.70358337957500 0.297074721510000.29707472151000 0。
数值方法课程设计幂法反幂法计算矩阵特征值和特征向量-附Matlab程序
矩阵的特征值与特征向量的计算摘要物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。
矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。
幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。
其基本思想是任取一个非零的初始向量。
由所求矩阵构造一向量序列。
再通过所构造的向量序列求出特征值和特征向量。
反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。
本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。
计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。
然后通过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。
关键词:矩阵;特征值;特征向量;冥法;反冥法THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIXABSTRACTPhysics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and theoretical physics in some of the problems. Matrix eigenvalue calculation is a very important part in matrix computation. In this paper, we use the power method and inverse power method to calculate the maximum of the matrix, according to the minimum characteristic vector and the corresponding characteristic value.Power method is an iterative method to calculate the eigenvalues of a matrix. It has the advantage that the method is simple and suitable for sparse matrices, but sometimes the convergence rate is very slow. The basic idea is to take a non - zero initial vector. Construct a vector sequence from the matrix of the matrix. Then the eigenvalues and eigenvectors are obtained by using the constructed vector sequence.The inverse power method is used to calculate the minimum feature vectors and their eigenvalues of the matrix, and to calculate the eigenvalues of the matrix. In this paper, we use the inverse power method to calculate the minimum eigenvalue of a matrix and its corresponding eigenvalues. The basic idea of calculating the minimum characteristic vector of a matrix is to transform it to the maximumc haracteristic vector of the modulus of the inverse matrix. Then, according to the model, the minimum feature vector of the original matrix is introduced.Key words: Matrix ;Eigenvalue ;Eigenvector ;Iteration methods;目录1引言 (1)2相关定理。
数值分析第三章小结
矩阵的特征值和特征向量的计算线性代数中对于x Ax λ=,解该方程的特征值λ和特征向量x 的方法主要是使用数值解法,本章学习另外的方法用MATLAB 来编程解某个实矩阵的特征值和特征向量. 一、幂法和反幂法 1、乘幂法幂法主要用于计算矩阵的按模为最大的特征值和对应的特征向量。
(1)思想为: ,2,1,1==-k u A u k kn n X X X u ααα+++= 22110])([2111101∑=-+===ni i ki i kkk k X X u A u A u λλααλ当k 取得足够大时,特征值向量得计算公式为:111X u kk αλ≈特征值为:111111111)()()()(λαλαλ=≈++ik i k ik i k X X u u迭代格式为之一⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=====∈-------- ,2,1111111110k u y y A u uy u u R u k Tk k k k k k k k Tk k n βηη任取初始向量迭代格式之二⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=======------≤≤- ,2,1)sgn(),,,(max ),,,(任取初始向量)()1()()(2)(11)1(11)1(1)1()0()0(2)0(10k h h h h h y A u h u y h h h h h u k r k r k Tk n k k k k k r k k k j nj k r Tn β两种迭代格式相比较,格式一编程容易,迭代一次所需时间也短,迭代格式二迭代时间长,但它在计算过程中舍入误差的影响较格式一小。
幂法的缺点是如果矩阵A 的特征根有重根时不能用。
2、反幂法目的同乘幂法,用于计算矩阵的按模为最大的特征值和对应的特征向量。
反幂法的迭代格式为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=====∈-------- ,2,1任取初始向量111111110k u y y A u uy u u R u k T k k k k k k k k Tk k n βηη3、带原点位移的反幂法迭代格式为 ,2,1)max(11=⎪⎪⎩⎪⎪⎨⎧===--k m y u y m u A y k kkk k k k三、Jacobi 方法和QR 方法Jacobi 方法主要用于求实对称矩阵的全部特征值和特征向量的一种方法,所以个人觉得雅克比法更为现实更为有用。
幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量
数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1. 幂法简介:当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。
矩阵A 需要满足的条件为:(1) 存在n 个线性无关的特征向量,设为n x x x ,...,,211.1计算过程:i n i i i u xx αα,1)0()0(∑==,有对任意向量不全为0,则有 可见,当||12λλ越小时,收敛越快;且当k 充分大时,有1)1111)11111λαλαλ=⇒⎪⎩⎪⎨⎧==+++(k )(k k (k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。
2 算法实现3 matlab 程序代码function [t,y]=lpowerA,*0,eps,N) % t 为所求特征值,y 是对应特征向量k=1;z=0; % z 相当于λy=*0./ma*(abs(*0)); % 规化初始向量*=A*y; % 迭代格式b=ma*(*); % b 相当于 βif abs(z-b)<eps % 判断第一次迭代后是否满足要求t=ma*(*);return ;endwhile abs(z-b)>eps && k<Nk=k+1;z=b;y=*./ma*(abs(*));*=A*y;b=ma*(*);end[m,inde*]=ma*(abs(*)); % 这两步保证取出来的按模最大特征值t=*(inde*); % 是原值,而非其绝对值。
end4 举例验证选取一个矩阵A ,代入程序,得到结果,并与eig(A)的得到结果比拟,再计算A*y-t*y ,验证y 是否是对应的特征向量。
结果如下:结果正确,说明算法和代码正确,然后利用此程序计算15阶Hilb 矩阵,与eig(A)的得到结果比拟,再计算 A*y-t*y ,验证y 是否是对应的特征向量。
设置初始向量为*0=ones(15,1),结果显示如下可见,结果正确。
幂法和反幂法的matlab实现
幂法求矩阵主特征值及对应特征向量摘要矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。
实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。
称模最大的特征根为主特征值。
幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。
用java来编写算法。
这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。
其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。
关键字:主特征值;特征向量;线性方程组;幂法函数块POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THEMATRIXABSTRACTNumerical algorithm for the eigenvalue of matrix, in science and engineering technology, a lot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum.Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow.Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part is the exponentiation function block. The fourth part is the page design and event processing .The basic process is a power law function block by calling the matrix is transformed into linear equations method, after a series of validation and iteration results.Power method for finding the eigenvalues and corresponding eigenvectors of the matrixKey words: Main eigenvalue; characteristic vector; linear equations; power function block、目录1幂法 (1)1.1幂法的基本理论和推导 (1)1.2幂法算法的迭代向量规范化 (2)2概要设计 (3)2.1设计背景 (3)2.2运行流程 (3)2.3运行环境 (3)3程序详细设计 (4)3.1矩阵转化为线性方程组 (4)3.2特征向量的极大值 (4)3.3求幂法函数块............….....…………...…......…………………………3.4界面设计与事件处理............….....…………...…......…………………………4 运行过程及结果 (6)4.1 运行过程.........................................................………………………………………. .64.2 运行结果 (6)4.3 结果分析 (6)5结论 (7)参考文献 (8)附录 (56)1 幂法设实矩阵n n ij a A ⨯=)(有一个完备的特征向量组,其特征值为n λλλ ,,21,相应的特征向量为n x x x ,,21。
数值分析课程设计+幂法与反幂法MATLAB
一、问题的描述及算法设计(一)问题的描述本次课程设计我所要做的课题是:对称矩阵的条件数的求解设计 1、求矩阵A 的二条件数问题 A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----210121012 2、设计内容: 1)采用幂法求出A 的. 2)采用反幂法求出A 的.3)计算A 的条件数 ⅡA Ⅱ2* ⅡA -1Ⅱ2=cond2(A )=/.(精度要求为10-6)3、设计要求 1)求出ⅡA Ⅱ2。
2)并进行一定的理论分析。
(二)算法设计1、幂法算法(1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1. (2)计算v )(k =Au )1(-k ,m k =max(v )(k ), u )(k = v )(k / m k(3)若| m k = m 1-k |<ε,则停止计算(m k 作为绝对值最大特征值1λ,u )(k 作为相应的特征向量)否则置k=k+1,转(2) 2、反幂法算法(1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1. (2)对A 作LU 分解,即A=LU(3)解线性方程组 Ly )(k =u )1(-k ,Uv )(k =y )(k (4)计算m k =max(v )(k ), u )(k = v )(k / m k(5)若|m k =m 1-k |<ε,则停止计算(1/m k 作为绝对值最小特征值n λ,u )(k 作为相应的特征向量);否则置k=k+1,转(3).二、算法的流程图(一)幂法算法的流程图(二)反幂法算法的流程图三、算法的理论依据及其推导(一)幂法算法的理论依据及推导幂法是用来确定矩阵的主特征值的一种迭代方法,也即,绝对值最大的特征值。
稍微修改该方法,也可以用来确定其他特征值。
幂法的一个很有用的特性是它不仅可以生成特征值,而且可以生成相应的特征向量。
实际上,幂法经常用来求通过其他方法确定的特征值的特征向量。
数值分析3.1幂法和反幂法
第三章 矩阵的特征值与特征向量
3.1 幂法与反幂法 3.2 Jacobi方法
3.3 QR方法
第三章 矩阵的特征值与特征向量
3.1幂法与反幂法
一、乘幂法 二、反幂法
三、带原点位移的反幂法
四、反幂法的特点
第三章 矩阵的特征值与特征向量
3.1幂法与反幂法
一、乘幂法
1、基本思想
2、算法(迭代公式) ◆一般算法
具体算法: (1)使用范数 2
1 X 1 yk , k 1 1 X 1
(2)使用范数
uk A yk 1
令
k
er u k er y k 1
T
T
k
lim k 1
留为作业自学
具体算法: (1)使用范数 2 1 X 1 yk , k 1 1 X 1
1 2 n
第三章 矩阵的特征值与特征向量
一、乘幂法 1、基本思想 设A有n个线性无关的特征向量 X 1 , X 2 ,, X n ,
AX j j X j , j 1,2,, n
3.1幂法与反幂法
★ 设 1为实数而且是单根: 1 2 n
u0 1 X 1 2 X 2 n X n
具体算法: 按取范数的不同, 迭代公式也不同。 (1)使用范数 2
任取初始向量u0 R n T k 1 u k 1 u k 1 u k 1 yk 1 k 1 (3.4) u k A yk 1 k yk 1T uk k 1,2,
T
精确结果:
X 1 (0,0.5,1) , 1 45
T
max( uk ) 表示 u k 的绝对值最大的分量。 (3)
数值分析幂法与反幂法-matlab程序
数值分析幂法与反幂法matlab程序随机产生一对称矩阵,对不同的原点位移和初值(至少取3个)分别使用幂法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征值及特征向量。
要求1)比较不同的原点位移和初值说明收敛性2)给出迭代结果,生成DOC文件。
3)程序清单,生成M文件。
解答:>> A=rand(5) %随机产生5*5矩阵求随机矩阵A =0.7094 0.1626 0.5853 0.6991 0.14930.7547 0.1190 0.2238 0.8909 0.25750.2760 0.4984 0.7513 0.9593 0.84070.6797 0.9597 0.2551 0.5472 0.25430.6551 0.3404 0.5060 0.1386 0.8143>> B=A+A' %A矩阵和A的转置相加,得到随机对称矩阵BB =1.4187 0.9173 0.8613 1.3788 0.80440.9173 0.2380 0.7222 1.8506 0.59790.8613 0.7222 1.5025 1.2144 1.34671.3788 1.8506 1.2144 1.0944 0.39290.8044 0.5979 1.3467 0.3929 1.6286B=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡6286.13929.03467.15979.08044.03929.00944.12144.18506.13788.13467.12144.15025.17222.08613.05979.08506.17222.02380.09173.08044.03788.18613.09173.04187.1编写幂法、反幂法程序:function [m,u,index,k]=pow(A,u,ep,it_max) % 求矩阵最大特征值的幂法,其中 % A 为矩阵;% ep 为精度要求,缺省为1e-5; % it_max 为最大迭代次数,缺省为100; % m 为绝对值最大的特征值; % u 为对应最大特征值的特征向量;% index ,当index=1时,迭代成功,当index=0时,迭代失败 if nargin<4 it_max=100; end if nargin<3 ep=1e-5; endn=length(A);index=0;k=0;m1=0;m0=0.01;% 修改移位参数,原点移位法加速收敛,为0时,即为幂法I=eye(n)T=A-m0*Iwhile k<=it_maxv=T*u;[vmax,i]=max(abs(v));m=v(i);u=v/m;if abs(m-m1)<ep;index=1;break;endm=m+m0;m1=m;k=k+1;endfunction[m,u,index,k]=pow_inv(A,u,ep,it_max)% 求矩阵最大特征值的反幂法,其中% A为矩阵;% ep为精度要求,缺省为1e-5;% it_max为最大迭代次数,缺省为100;% m为绝对值最大的特征值;% u为对应最大特征值的特征向量;% index,当index=1时,迭代成功,当index=0时,迭代失败if nargin<4it_max=100;endif nargin<3ep=1e-5;endn=length(A);index=0;k=0;m1=0;m0=0;% 修改移位参数,原点移位法加速收敛,为0时,即为反幂法I=eye(n);T=A-m0*I;invT=inv(T);while k<=it_maxv=invT*u;[vmax,i]=max(abs(v));m=v(i);u=v/m;if abs(m-m1)<epindex=1;break;endm1=m;k=k+1;endm=1/m;m=m+m0;修改输入的m0的值,所得结果:幂法:反幂法:THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
数值分析中常用的matlab程序
1.% 最小二乘法拟合数据点方法1:% 左除右除:xA=B ==> x=B/A | Ax=B ==> x=B\A% A 表示拟合函数的组合,如:多项式插值,A=[1,x,x.^2,...,x.^n],表示拟合函数为% 多项式:s(x)=a0+a1*x+...+an*x^n;又如:A=[log(x),cos(x),exp(x)]%则表示拟合函数为s(x)=a0*ln(x)+a1*cos(x)+a2*exp(x)% 法方程为:A'*A*z=A'*y ==> A*z=y ==> z=A\y z=(a0,...,an)'% Date: 2012-1-1clear;clc;x=[0 0.25 0.5 0.75 1]';y=[1 1.284 1.6487 2.1170 2.7183]';%索要拟合的数据点x1=ones(size(x),1);A=[x1 x x.^2];%拟合函数Z=A\y %A中每列函数的参数% 最小二乘法拟合数据方法2:采用polyfit函数% Date:2012-1-1clear;clc;x=[0 0.25 0.5 0.75 1]';y=[1 1.284 1.6487 2.1170 2.7183]';%索要拟合的数据点p=polyfit(x,y,2) %polyfit(x,y,n),(x,y)为数据点坐标,n为拟合多项式阶数,p 为% 所求拟合多项式的幂次从高到低排列的系数。
2.% 复合梯形公式计算积分值% 输入:fun--积分函数;a,b--积分区间;n--区间等分数% 输出:I--数值积分结果% 调用格式(ex):re=ftrapz(@fun1,0,1,10)% 2012-1-1function I=ftrapz(fun,a,b,n)h=(b-a)/n;%区间等分x=linspace(a,b,n+1);%将a到b的区间等分成(n+1)-1个区间,数据点有(n+!)个y=feval(fun,x);I=h*(0.5*y(1)+sum(y(2:n))+0.5*y(n+1));%积分原函数% Date:2012-1-1function y=fun1(x)y=exp(-x);3.% 复合simpson公式求积分% 输入:fun--积分函数;a,b--积分区间;n--区间等分数% 输出:I--数值积分结果% 调用格式(ex):re=fsimpson(@fun1,0,1,10)% 2012-1-1function I=fsimpson(fun,a,b,n)h=(b-a)/n;x=linspace(a,b,2*n+1);y=feval(fun,x);I=(h/6)*(y(1)+2*sum(y(3:2:2*n-1))+4*sum(y(2:2:2*n))+y(2*n+1));4.% 两点GS-Legendre公式求积分% 输入:fun--积分函数;a,b--积分区间;% 输出:I--数值积分结果% 调用格式(ex):re=GSLege(@fun2,0,1)% 2012-1-1function I=GSLege(fun,a,b)%将区间[a.b]通过变量替换x=(a+b)/2-(b-a)/2*t变到[-1,1]%其中t取GS-Lege的高斯点m1=feval(fun,(a+b)/2+(b-a)/2*(-1/sqrt(3)));m2=feval(fun,(a+b)/2+(b-a)/2*(1/sqrt(3)));I=(b-a)/2*(m1+m2);% GS-Legendre公式的积分函数% Date:2012-1-1function y=fun2(x)y=sin(x)/x;5.% 追赶法求解线性方程组Ax=b,其中A是三对角方阵%function x=tridiagsolver(A,b)clear;clc;A=[2 -1 0 0;-1 3 -2 0;0 -2 4 -3;0 0 -3 5];%三对角矩阵,线性方程组系数矩阵b=[6,1,-2,1]';%[n,n]=size(A);for i=1:nif(i<2)l(i)=A(i,i);y(i)=b(i)/l(i);u(i)=A(i,i+1)/l(i);elseif i<nl(i)=A(i,i)-A(i,i-1)*u(i-1);y(i)=(b(i)-y(i-1)*A(i,i-1))/l(i);u(i)=A(i,i+1)/l(i);elsel(i)=A(i,i)-A(i,i-1)*u(i-1);y(i)=(b(i)-y(i-1)*A(i,i-1))/l(i);endendx(n)=y(n);for j=n-1:-1:1x(j)=y(j)-u(j)*x(j+1);endx6.% SOR迭代求解非线性方程组Ax=b% 输入:A--系数矩阵;b--;omega--松弛因子(0~2);tol--精度% 输出:x--方程的解向量;iter--迭代次数;% 调用格式(ex):[x,iter=sor(A,b,1.1,1e-4)% 2012-1-1%function [x,iter]=sor(A,b,omega,tol)%{%}clear;clc;A=[2 -1 0;-1 3 -1;0 -1 2];b=[1 8 -5]';omega=1.1;tol=1e-4;D=diag(diag(A));%diag(A)返回的是A的对角元组成的列向量;diag(b)返回的是以列向量b为对角元的方阵;L=D-tril(A);%tril(A)返回的是矩阵A的下三角矩阵;U=D-triu(A);%triu(A)返回的是矩阵A的上三角矩阵;x=zeros(size(b));%给定迭代初始值零向量iter=1;while iter<500x=(D-omega*L)\(omega*b+(1-omega)*D*x+omega*U*x);%迭代格式error=norm(b-A*x)/norm(b);%收敛条件if error<tolbreak;enditer=iter+1;endif iter>= 500fprintf('root not found!');end7.% 牛顿法求解非线性方程的根% 输入:fun--非线性函数;dfun--非线性函数导数;x0--初始值;tol--精度;% 输出:x--非线性方程数值根% 调用格式(ex):x=newton(@fun3,@dfun3,6,1e-3)% 2012-1-1function x=newton(fun,dfun,x0,tol)iter=1;if abs(feval(fun,x0))<tolx=x0;return;endwhile iter<500if iter==1x=x0-feval(fun,x0)/feval(dfun,x0);if abs(feval(fun,x))<tolbreak;endelsex=x-feval(fun,x)/feval(dfun,x);if abs(feval(fun,x))<tolbreak;endenditer=iter+1;endif iter==500fprintf('not successful!');x=NaN;end% newton的函数文件% Date:2012-1-1function y=fun3(x)y=3.*x.^3-8.*x.^2-8.*x-11;% newton的导函数文件% Date:2012-1-1function y=dfun3(x)y=9.*x.^2-16.*x-8;8.% 两点割线法求解非线性方程的根% 输入:fun--非线性函数;a,b--两个初始值;tol--精度;% 输出:x--非线性方程数值根% 调用格式(ex):x=gexian(@fun3,3,6,1e-3)% 2012-1-1function x=gexian(fun,a,b,tol)iter=1;xk1=a;xk2=b;while iter<500xk3=xk2-feval(fun,xk2)*(xk2-xk1)/(feval(fun,xk2)-feval(fun,xk1));if abs(feval(fun,xk3))<tolbreak;elsexk1=xk2;xk2=xk3;enditer=iter+1;endif iter==500fprintf('not successful!');x=NaN;elsex=xk3;end9.% 乘幂法求矩阵的按模最大特征值及其特征向量% 输入:A--要求的矩阵;v0--初始非零向量;tol--精度;% 输出:x--特征向量;lam--按模最大特征值% 调用格式(ex):[lam,x]=power(A,v0,1e-2)% 2012-1-1function [lam,x]=matrixpower(A,v0,tol)v1=A*v0;v2=A*v1;sum=0;p=0;for i=1:size(v1)if v1(i)~=0sum=sum+v2(i)/v1(i);p=p+1;endendlam0=sum/p;iter=2;vk1=v2;while iter<500vk2=A*vk1;sum=0;p=0;for i=1:size(vk1)if vk1(i)~=0sum=sum+vk2(i)/vk1(i);p=p+1;endendlam=sum/p;if abs(lam-lam0)<tolbreak;elselam0=lam;vk1=vk2;endendif iter==500fprintf('not successful!');lam=NaN;elsex=vk2;end9_2% 改进乘幂法求矩阵的按模最大特征值及其特征向量% 输入:A--要求的矩阵;v0--初始非零向量;tol--精度;% 输出:x--特征向量;lam--按模最大特征值% 调用格式(ex):[lam,x]=pMatrixPower(A,v0,1e-2)% Date:2012-1-2function [lam,x]=pMatrixPower(A,v0,tol)[ty,ti]=max(abs(v0));%返回v0中元素绝对值最大的元素值与下标,ti为下标lam0=v0(ti);u0=v0/lam0;iter=1;while iter<500v1=A*u0;[tv,ti]=max(abs(v1));lam1=v1(ti);u0=v1/lam1;if abs(lam0-lam1)<tolbreak;elselam0=lam1;iter=iter+1;endendif iter>=500fprintf('not successful!');lam=NaN;elselam=lam1;x=u0;end10.% 反幂法求矩阵的按模最小特征值及其特征向量% 输入:A--要求的矩阵;v0--初始非零向量;tol--精度;% 输出:x--特征向量;lam--按模最大特征值% 调用格式(ex):[lam,x]=invMatrixPower(A,v0,1e-2)% Date:2012-1-2function [lam,x]=invMatrixPower(A,v0,tol)[ty,ti]=max(abs(v0));lam0=v0(ti);u0=v0/lam0;iter=1;while iter<500v1=A\u0;[tv,ti]=max(abs(v1));lam1=v1(ti);u0=v1/lam1;if abs(1/lam0-1/lam1)<tolbreak;elselam0=lam1;iter=iter+1;endendif iter>=500fprintf('not successful!');lam=NaN;elselam=1/lam1;x=u0;end11.% 欧拉方法求解一阶常微分方程初值问题% 输入:fun--一阶常微分函数;a,b--求解区间;y0--函数在a点值y(a);n--所分区间数;% 输出:y--常微分方程在区间[a,b]上各点的数值解;% 调用格式(ex):y=odeEuler(@fun4,0,1,1,10)% Date:2012-1-2function y=odeEuler(fun,a,b,y0,n)h=(b-a)/n;y(1)=y0;x=a:h:b;for i=1:ny(i+1)=y(i)+h*feval(fun,x(i),y(i));end% 常微分方程fun4=0% Date:2012-1-2function re=fun4(x,y)re=y-2*x/y;12.% 改进欧拉公式(预估--校正)方法求解一阶常微分方程初值问题% 输入:fun--一阶常微分函数;a,b--求解区间;y0--函数在a点值y(a);n--所分区间数;% 输出:y--常微分方程在区间[a,b]上各点的数值解;% 调用格式(ex):y=pOdeEuler(@fun4,0,1,1,10)% Date:2012-1-2function y=pOdeEuler(fun,a,b,y0,n)h=(b-a)/n;y(1)=y0;x=a:h:b; for i=1:nyp=y(i)+h*feval(fun,x(i),y(i));yc=y(i)+h*feval(fun,x(i+1),yp);y(i+1)=0.5*(yp+yc);end13.% 梯形方法求解一阶常微分方程初值问题% 输入:fun--一阶常微分函数;a,b--求解区间;y0--函数在a点值y(a);n--所分区间数;% 输出:y--常微分方程在区间[a,b]上各点的数值解;% 调用格式(ex):y=trapezium(@fun4,0,1,1,10)% Date:2012-1-2function y=trapezium(fun,a,b,y0,n)h=(b-a)/n;y(1)=y0;x=a:h:b;tol=1e-6;for i=1:n%用不动点迭代的方法求解非线性方程:%y(i+1)=y(i)+h*feval(fun,x(i),y(i))/2+h*feval(fun,x(i),y(i+1))/2;iter=1;yy0=1+(i-1)*h;%迭代初始值while iter<500yy1=y(i)+h*feval(fun,x(i),y(i))/2+h*feval(fun,x(i)+h,yy0)/2;if abs(yy1-yy0)<tolbreak;elseyy0=yy1;iter=iter+1;endendif iter>=500printf('not successful!');y=NaN;return;elsey(i+1)=yy1;endend14.% 标准四阶四段龙格-库塔方法求解一阶常微分方程初值问题% 输入:fun--一阶常微分函数;a,b--求解区间;y0--函数在a点值y(a);n--所分区间数;% 输出:y--常微分方程在区间[a,b]上各点的数值解;% 调用格式(ex):y=longekuta(@fun4,0,1,1,10)% Date:2012-1-2function y=longekuta(fun,a,b,y0,n)h=(b-a)/n;y(1)=y0;for k=2:n+1x=a+(k-2)*h;k1=h*feval(fun,x,y(k-1));k2=h*feval(fun,x+h/2,y(k-1)+k1/2);k3=h*feval(fun,x+h/2,y(k-1)+k2/2);k4=h*feval(fun,x+h,y(k-1)+k3);y(k)=y(k-1)+(k1+2*k2+2*k3+k4)/6;end15.插值% 拉格朗日插值% 输入:x,y--插值数据点(x,y均为行向量);xh--要插值的点; % 输出:yh--插值结果;% 调用格式(ex):yh=lagrange(x,y,xh)% Date:2012-1-2function yh=lagrange(x,y,xh)n=length(x);m=length(xh);yh=zeros(1,m);c1=ones(n-1,1);c2=ones(1,m);for i=1:nxp=x([1:i-1 i+1:n]);yh=yh+y(i)*prod((c1*xh-xp'*c2)./(x(i)-xp'*c2));%prod对输入的一个向量返回其所有分量的乘积end%拉格朗日调用clear;clc;x=[11 12];y=[2.3979 2.4849];xh=11.75;yh=lagrange(x,y,xh)15_2% 牛顿插值% 输入:x,y--插值数据点(x,y均为行向量);xh--要插值的点; % 输出:yh--插值结果;% 调用格式(ex):yh=newtonPol(x,y,xh)% Date:2012-1-2function yh=newtonPol(x,y,xh)n=length(x);p(:,1)=x;p(:,2)=y;for j=3:n+1p(1:n+2-j,j)=diff(p(1:n+3-j,j-1))./(x(j-1:n)-x(1:n+2-j))';%求差商表endq=p(1,2:n+1)';%求牛顿法的系数--取第一行yh=0;m=1;yh=q(1);for i=2:nm=q(i);for j=2:im=m*(xh-x(j-1));%求牛顿法中各多项式值(xh-x0)…(xh-x n-1) endyh=yh+m;%求和end%牛顿插值调用clear;clc;x=[11 12 13];y=[2.3979 2.4849 2.5649];xh=11.75;yh=newtonPol(x,y,xh)。
同济大学数值分析matlab编程
同济⼤学数值分析matlab编程MATLAB 编程题库1.下⾯的数据表近似地满⾜函数21cx bax y ++=,请适当变换成为线性最⼩⼆乘问题,编程求最好的系数c b a ,,,并在同⼀个图上画出所有数据和函数图像.625.0718.0801.0823.0802.0687.0606.0356.0995.0628.0544.0008.0213.0362.0586.0931.0ii y x ----解:>> x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; >> y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; >> A= [x ones(8,1) -x.^2.*y]; >> z=A\y;>> a=z(1); b=z(2); c=z(3); >>xh=[-1:0.1:1]';>>yh=(a.*xh+b)./(1+c.*xh.^2); >>plot(x,y,'r+',xh,yh,'b*')2.若在Matlab ⼯作⽬录下已经有如下两个函数⽂件,写⼀个割线法程序,求出这两个函数精度为1010-的近似根,并写出调⽤⽅式:>> edit gexianfa.mfunction [x iter]=gexianfa(f,x0,x1,tol) iter=0;x=x1;while(abs(feval(f,x))>tol) iter=iter+1;x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end>> edit f.m function v=f(x) v=x.*log(x)-1;>> edit g.m function z=g(y) z=y.^5+y-1;>> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 =1.7632 iter1 = 6>> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 =0.7549 iter2 = 83.使⽤GS 迭代求解下述线性代数⽅程组:123123123521242103103x x x x x x x x x ì++=--++=í???-+=??解:>> edit gsdiedai.mfunction [x iter]=gsdiedai(A,x0,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); iter=0; x=x0;>> A=[5 2 1;-1 4 2;1 -3 10]; >> b=[-12 10 3]'; >>tol=1e-4; >>x0=[0 0 0]';>> [x iter]=gsdiedai(A,x0,b,tol); >>x x =-3.0910 1.2372 0.9802 >>iter iter = 64.⽤四阶Range-kutta ⽅法求解下述常微分⽅程初值问题(取步长h=0.01),(1)2x dy y e xy dx y ì??=++?í??=??解:>> edit ksf2.mfunction v=ksf2(x,y)v=y+exp(x)+x.*y; >> a=1;b=2;h=0.01; >> n=(b-a)./h; >> x=[1:0.01:2]; >>y(1)=2;>>for i=2:(n+1)k1=h*ksf2(x(i-1),y(i-1));k2=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k1); k3=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k2); k4=h*ksf2(x(i-1)+h,y(i-1)+k3); y(i)=y(i-1)+(k1+2*k2+2*k3+k4)./6; end >>y调⽤函数⽅法>> edit Rangekutta.mfunction [x y]=Rangekutta(f,a,b,h,y0) x=[a:h:b]; n=(b-a)/h; y(1)=y0; for i=2:(n+1)k1=h*(feval(f,x(i-1),y(i-1)));k2=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k1)); k3=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k2)); k4=h*(feval(f,x(i-1)+h,y(i-1)+k3)); y(i)=y(i-1)+ (k1+2*k2+2*k3+k4)./6; end>> [x y]=Rangekutta('ksf2',1,2,0.01,2); >>y5.取0.2h =,请编写Matlab 程序,分别⽤欧拉⽅法、改进欧拉⽅法在12x ≤≤上求解初值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、问题的描述及算法设计
(一)问题的描述
我所要做的课题是:对称矩阵的条件数的求解设计 1、求矩阵A 的二条件数
问题 A=⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡----210121012 2、设计内容:
1)采用幂法求出A 的 错误!未找到引用源。
. 2)采用反幂法求出A 的错误!未找到引用源。
.
3)计算A 的条件数 ⅡA Ⅱ2* ⅡA -1Ⅱ2=cond2(A )=错误!未找到引用源。
/错误!未找到引用源。
.(精度要求为10-6) 3、设计要求 1)求出ⅡA Ⅱ2。
2)并进行一定的理论分析。
(二)算法设计
1、幂法算法
(1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1. (2)计算
v )(k =Au )1(-k ,m k =max(v )(k ), u )(k = v )(k / m k
(3)若| m k = m 1-k |<ε,则停止计算(m k 作为绝对值最大特征值1λ,u )(k 作为相应的特征向量)否则置k=k+1,转(2) 2、反幂法算法
(1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1. (2)对A 作LU 分解,即A=LU
(3)解线性方程组 Ly )(k =u )1(-k ,Uv )(k =y )(k (4)计算
m k =max(v )(k ), u )(k = v )(k / m k
(5)若|m k =m 1-k |<ε,则停止计算(1/m k 作为绝对值最小特征值n λ,u )(k 作
为相应的特征向量);否则置k=k+1,转(3).
二、算法的流程图(一)幂法算法的流程图
(二)反幂法算法的流程图
三、算法的理论依据及其推导
(一)幂法算法的理论依据及推导
幂法是用来确定矩阵的主特征值的一种迭代方法,也即,绝对值最大的特征值。
稍微修改该方法,也可以用来确定其他特征值。
幂法的一个很有用的特性是它不仅可以生成特征值,而且可以生成相应的特征向量。
实际上,幂法经常用来求通过其他方法确定的特征值的特征向量。
1、幂法的迭代格式与收敛性质
设n 阶矩阵A 的特征值1λ,2λ,…,n λ是按绝对值大小编号的,x i (i=1,2,…,n)为对应i λ的特征向量,且1λ为单根,即
|1λ|>|2λ|≥…≥|n λ|
则计算最大特征值与特征向量的迭代格式为
v )(k =Au )1(-k ,m k =max(v )(k ), u )(k = v )(k / m k (1)
其中max(v )(k )表示向量v )(k 绝对值的最大分量。
2、对于幂法的定理
按式(1)计算出m k 和u )(k 满足 ∞
>-k lim m k =1λ, ∞
>-k lim u )(k =
)
max (11
x x
(二)反幂法算法的理论依据及推导
反幂法是用来计算绝对值最小的特征值忽然相应的特征向量的方法。
是对幂法的修改,可以给出更快的收敛性。
1、反幂法的迭代格式与收敛性质
设A 是非奇异矩阵,则零不是特征值,并设特征值为
|1λ|≥|2λ|≥…≥|1-n λ|>|n λ|
则按A 1-的特征值绝对值的大小排序,有 |
n
λ1
|>|
1
1
-n λ|≥…≥|
1
1
λ|
对A 1-实行幂法,就可得A 1-的绝对值最大的特征值1/n λ和相应的特征向量,即A 的绝对值最小的特征值和相应的特征向量。
由于用A 1-代替A 作幂法计算,因此该方法称为反幂法,反幂法的迭代格
式为 v )(k = A 1-u )1(-k ,m k =max(v )(k ), u )(k = v )(k / m k (2) 2、对于反幂法的定理
按式(2)计算出的m k 和u )(k 满足:
∞>-k lim m k =n
λ1
, ∞>-k lim u )(k =)max (n n x x
在式(2)中,需要用到A 1-,这给计算带来很大的不方便,因此,把(2)式的第一式改为求解线性方程组
A v )(k = u )1(-k (3) 但由于在反幂法中,每一步迭代都需求解线性方程组(3)式,迭代做了大量的重复计算,为了节省工作量,可事先把矩阵A 作LU 分解,即 A=LU 所以线性方程组(3)改为
Ly )(k =u )1(-k ,Uv )(k =y )
(k
四、相关的数值结果
(一)幂法程序的运行结果
m = 3.4142 u = -0.7071 index = 1
1.0000
-0.7071
(二)反幂法程序的运行结果
m 0 = 0.5858 u = 0.7071 index = 1 1.0000 0.7071
(三)矩阵A 的二条件数的结果
ⅡA Ⅱ2* ⅡA -1Ⅱ2=cond2(A )=m/ m 0=3.4142/0.5858=5.828269
五、数值计算结果的分析
求n阶方阵A的特征值和特征向量,是实际计算中常常碰到的问题。
对于n 阶矩阵A,若存在数λ和n维向量x满足
Ax=λx (1)
则称λ为矩阵A的特征值,x为相应的特征向量。
由线性代数知识可知,特征值是代数方程
|λI-A|=λn+a
λ1-n+…+a1-nλ+a n=0 (2)
1
的根。
从表面上看,矩阵特征值与特征向量的求解问题似乎很简单,只需求解方程(2)的根,就能得到特征值λ,再解齐次方程组
(λI-A)x=0 (3)的解,就可得到相应的特征向量。
上述方法对于n很小时是可以的。
但当n稍大时,计算工作量将以惊人的速度增大,并且由于计算带有误差,方程(2)未必是精确的特征方程,自然就不必说求解方程(2)与(3)的困难了。
本次实验所用的幂法和反幂法分别是求解最大特征值和最小特征值,并根据它们的结果求解二条件数。
幂法和反幂法的Matlab程序很好的解决了手算时所会遇到的麻烦。
通过实验我们可以看到,幂法程序可以用来计算矩阵绝对值最大的特征值及相应的特征向量。
幂法的缺点是开始的时候并不知道矩阵是否有单一的主特征值。
也不知道如何选择x
以保证它关于矩阵特征向量的表达中包含一个与主特
征值相关的非零特征向量。
反幂法程序可以用来计算矩阵绝对值最小的特征值及相应的特征向量,反幂法的收敛是线性的,它是对幂法的修改,可以给出更快的收敛性。
六、附件
(一) 幂法程序
/*幂法程序,函数名:pow.m*/
function[m,u,index]=pow(A,ep,N)
%A为矩阵;ep为精度要求;N为最大迭代次数;m为绝对值最大的特征值;u为对应最大特征值的特征向量。
N=100;
ep=1e-6;
n=length(A);u=ones(n,1);
index=0;k=0;m1=0;
while k<=N
v=A*u;[vmax,i]=max(abs(v));
m=v(i);u=v/m;
if abs(m-m1)<ep
index=1;break;
end
m1=m;k=k+1;
end
输入A=[2 -1 0;-1 2 -1;0 -1 2];
[m,u,index]=pow(A,1e-6)
(二) 反幂法程序
/*反幂法程序,函数名:pow_inv.m*/
,u,index]=pow_inv(A,ep,N)
function[m
%A为矩阵;ep为精度要求;N为最大迭代次数;m
为绝对值最小的特征值;
u为对应最小特征值的特征向量。
N=100;
ep=1e-6;
n=length(A);u=ones(n,1);
index=0;k=0;m1=0;
invA=inv(A);
while k<=N
v=invA*u;[vmax,i]=max(abs(v));
m
0=v(i);u=v/ m
;
if abs(m-m1)<ep
index=1;break; end
m1 m
;k=k+1; end
m
0=1/ m
;
输入A=[2 -1 0;-1 2 -1;0 -1 2]; [m
,u,index]=pow_inv(A,1e-6)
七、参考文献:
(1)薛毅.数值分析与实验.北京工业大学出版社.2005
(2)杜廷松等. 数值分析及实验.科学出版社,2006
(3)Richard L.Burden等. 数值分析(第七版)高等教育出版社,2005
数理系课程设计评分表
课程名称:
教师签名:
日期:
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。