小升初六年级数学提优每日一练第15期·计算之定义新运算(2)(含解析、答案)
小学数学六年级奥数《定义新运算(二)》练习题(含答案)
![小学数学六年级奥数《定义新运算(二)》练习题(含答案)](https://img.taocdn.com/s3/m/c4730eb6227916888586d75f.png)
小学数学六年级奥数《定义新运算(二)》练习题(含答案)一、填空题1.规定:a ※b =(b+a )×b ,那么(2※3)※5= .2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= .3.定义运算“△”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的和记为a △b .例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= .4.已知a ,b 是任意有理数,我们规定: a ⊕b = a +b -1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 .5.x 为正数,<x >表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 .6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x = .7.如果1※4=1234,2※3=234,7※2=78,那么4※5= .8.我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.请计算:=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛••25.210623799343.03323625.026176.0 .9.规定一种新运算“※”: a ※b =)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x = .10.对于任意有理数x , y ,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x (m ≠0),则m 的数值是 .○ △ △ ○二、解答题11.设a ,b 为自然数,定义a △b ab b a -+=22.(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4).12.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a -b ,如果a <b ,则定义a ※b= b - a .(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a ※b= b ※a ;②(a ※b )※c= a ※(b ※c ).13.设a ,b 是两个非零的数,定义a ※b ab b a +=. (1)计算(2※3)※4与2※(3※4).(2)如果已知a 是一个自然数,且a ※3=2,试求出a 的值.14.定义运算“⊙”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的差记为a ⊙b . 比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c 整除a 和b ,则c 也整除a ⊙b ;如果c 整除a 和a ⊙b ,则c 也整除b ;(3)已知6⊙x =27,求x 的值.———————————————答 案——————————————————————1. 100.因为2※3=(3+2)×3=15,所以(2※3)※5=15※5=(5+15)×5=100.2. 8.依题意,得305)2(=⨯-a ,解得8=a .3. 42.18△12=(18,12)+[18,12]=6+36=42.4. 98.原式]1313[4)]253()186[(4⊕⊗=-⨯⊕-+⊗=982254254]11313[4=-⨯=⊗=-+⊗=5. 11.<19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个.<93>为不超过的质数,共24个,易知<1>=0,所以原式=<<19>+<93>>=<8+24>=<32>=11.6. 6.x ⊙5-5⊙x=(3 x -2×5)-(3×5-2 x )=5 x -25,由5 x -25=5,解得x=6.7. 45678.8. 21. 因为•6.0○322617=○322617=,0.625△853323=△853323=, •3.0△319934=△319934=,106237○10623725.2=○4949=, 所以,原式2149318532=++=.9. 2.令x ※3=y ,则y ※4=421200,又4212002726252413532244⨯⨯⨯=⨯⨯⨯=,所以y=24,即x ※3=24.又24=432323⨯⨯=⨯,故x =2.10. 4.由题设的等式x ※y=cxy by ax -+及x ※m=x (m ≠0),得000=⋅⋅-+⋅m c bm a ,所以bm=0,又m ≠0,故b=0.因此x ※y=ax -cxy.由1※2=3,2※3=4,得⎩⎨⎧=-=-46232c a c a 解得a =5,c =1. 所以x ※y =5x -xy ,令x =1,y=m 得5-m=1,故m =4.11. (1)原式()()62585834342222=⨯-++⨯-+=;(2)原式()323222⨯-+=△4=7△4=37474722=⨯-+;(3)原式()525222⨯-+=△()19434322=⨯-+△132831319131922=⨯-+=.12. (1)原式=(4-3)※9=1※9=9-1=8;(2)因为表示a ※b 表示较大数与较小数的差,显然a ※b= b ※a 成立,即这个运算满是交换律,但一般来说并不满足结合律,例如:(3※4)※9=8,而3※(4※9)=3※(9-4)=3※5=5-3=2.13. (1)按照定义有2※36132332=+=,3※412253443=+=. 于是(2※3)※4613=※4=3127451324241361344613=+=+. 2※(3※4)=2※60012012425252421225122521225=+=+=. (2)由已知得233=+aa ① 若a ≥6,则3a ≥2,从而233>+a a 与①矛盾.因此a ≤5,对a =1,2,3,4,5这5个可能的值,一一代入①式中检查知,只有a =3符合要求.14. (1)为求12⊙21,先求出12与21的最小公倍数和最大公约数分别为84,3,因此12⊙21=84-3=81,同样道理5⊙15=15-5=10.(2)如果c 整除a 和b ,那么c 是a 和b 的公约数,则c 整除a ,b 的最大公约数,显然c 也整除a ,b 最小公倍数,所以c 整除最小公倍数与最大公约的差,即c 整除a ⊙b .如果c 整除a 和a ⊙b ,由c 整除a 推知c 整除a ,b 的最小公倍数,再由c 整除a ⊙b 推知, c 整除a ,b 的最大公约数,而这个最大公约数整除b ,所以 c 整除b .(3)由于运算“⊙”没有直接的表达式,解这个方程有一些困难,我们设法逐步缩小探索范围.因为6与x 的最小公倍数不小于27+1=28,不大于27+6=33,而28到33之间,只有30是6的倍数,可见6和x 的最小公倍数是30,因此它们的最大公约数是30-27=3.由“两个数的最小公倍数与最大公约数的积=这两个数的积”,得到x30.⨯63⨯=所以15x.=。
定义新运算题目及答案解析-小学奥数
![定义新运算题目及答案解析-小学奥数](https://img.taocdn.com/s3/m/a6edd7f65f0e7cd1852536d8.png)
专题定义新运算知识点1直接运算型【基础训练】1、【★】设a, b都表示两个不同的数,规定:a4b=2x让3XR表示a的2倍加上b的3倍的和.(1)求4△ 7的值.(2)求24 3的值.【答案】(1) 29; (2) 13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7, 4A 7=2X4+ 3X7=29(2)方法同上,即a=2, b=3, 2A3=2X2+ 3X3=13.2、【设a、b都表示两个不同的数,规定:aVb=aXk (a+b) . (1)求5V6V7的值. (2)求7、( 5V4)的值.【答案】107; 59【解析】(1)按照从左往右的顺序计算,①先算5V6=5X6- (5+6) =30—11=19,②再算19▽ 7=19X7— ( 19+7) =133-26=107,所以5V6V7=107.(2)有括号的要先算括号里面的,①先算5V4=5X4— (5+4) =20 —9=11,②再算7V 11=7X 11 —( 7+11) =77- 18=59,所以7N (5V4) =59.3、x,y表示两个数,规定新运算我"及"C如下:x^ry=2 X x+3 X,yxO y=6 X xX1y)求10^r2 的值.(2)求4。
25的值.【答案】26; 600【解析】(1)原式=2X1计3X2=26 (2)原式=6X 4X25=600【拓展提升】1、【★★★】规定:aD b=a- (a+ 1) + (a+2) +…+ (a+ b—1),其中a、b表示自然数.求1口10的值.【答案】5050【解析】1口100=1+2+3+- + 100= ( 1 + 100) X 100+2=50502、【★★★]已知x、y是任意有理数.我们规定:x☆y=x + y—1, xOy=xX于2. (1)求10^9.(2)求7。
8.(3)求4O:(6^8) ☆ (305)]的值.【答案】18; 54; 98【解析】(1) 10+9=10 + 9—1=18; (2) 708=7X*2=54(3)先算小括号里面的6+8和305, 6^8=6 + 8-1=13, 3。
六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)
![六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)](https://img.taocdn.com/s3/m/2ffeea2ff242336c1fb95e37.png)
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【答案】1.648 2.112、65 3.193.25【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【答案】1.36 2.902 3.412【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,7*4=7+77+777+7777=8638210*2=210+210210=2104203*3=3+33+333,……那么4*4=________。
定义新运算题目及答案解析-小学奥数
![定义新运算题目及答案解析-小学奥数](https://img.taocdn.com/s3/m/a890d5889ec3d5bbfd0a74e6.png)
专题定义新运算知识点1 直接运算型【基础训练】1、【★】设a,b都表示两个不同的数,规定:a△b=2×a+3×b,表示a的2倍加上b的3倍的和.(1)求4△7的值.(2)求2△3的值.【答案】(1)29;(2)13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7,4△7=2×4+3×7=29;(2)方法同上,即a=2,b=3,2△3=2×2+3×3=13.2、【★★】设a、b都表示两个不同的数,规定:a▽b=a×b-(a+b).(1)求5▽6▽7的值.(2)求7▽(5▽4)的值.【答案】107;59【解析】(1)按照从左往右的顺序计算,①先算5▽6=5×6-(5+6)=30-11=19,②再算19▽7=19×7-(19+7)=133-26=107,所以5▽6▽7=107.(2)有括号的要先算括号里面的,①先算5▽4=5×4-(5+4)=20-9=11,②再算7▽11=7×11-(7+11)=77-18=59,所以7▽(5▽4)=59.3、【★★】x,y表示两个数,规定新运算“☆”及“○”如下:x☆y=2×x+3×y,x○y=6×x×y.(1)求10☆2的值.(2)求4○25的值.【答案】26;600【解析】(1)原式=2×10+3×2=26;(2)原式=6×4×25=600【拓展提升】1、【★★★】规定:a□b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数.求1□100的值.【答案】5050【解析】1□100=1+2+3+…+100=(1+100)×100÷2=50502、【★★★】已知x、y是任意有理数.我们规定:x☆y=x+y-1,x○y=x×y-2.(1)求10☆9.(2)求7○8.(3)求4○[(6☆8)☆(3○5)]的值.【答案】18;54;98【解析】(1)10☆9=10+9-1=18;(2)7○8=7×8-2=54(3)先算小括号里面的6☆8和3○5,6☆8=6+8-1=13,3○5=3×5-2=13.再计算中括号里面的13☆13=13+13-1=25.最后计算4○25=4×25-2=98.知识点2 反解未知型【拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x×y+2A,已知3□4=16.(1)求常数A是多少?(2)求3□(4□5)【答案】2;76【解析】(1)建立方程,3×4+2A=16,解得A=2.(2)先算括号里面的,①4□5=4×5+2×2=20+4=24,②再算3□24=3×24+2×2=72+4=762、【★★★★】规定:()()()121a b a a a a b ∆=+++++++-,其中a 、b 表示自然数. 已知1465x ∆∆=(),求x .【答案】x=2【解析】先求1△4=1+2+3+4=10,再算x △10=65,那么x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,即10x+45=65,解得x=2知识点3 总结规律型【拓展提升】1、【★★★】已知:13123*=⨯⨯,242345*=⨯⨯⨯,4545678*=⨯⨯⨯⨯,…(1)求33*的值.(2)求25*的值.【答案】60;7202、【★★★】已知:12111∇=+,23222222∇=++,444444444444∇=+++,……(1)求73∇的值 。
小学数学《定义新运算》练习题(含答案)
![小学数学《定义新运算》练习题(含答案)](https://img.taocdn.com/s3/m/5c617f43102de2bd97058806.png)
小学数学《定义新运算》练习题(含答案)(一) 直接运算型【例1】 (★★)定义运算“⊕”如下:()2a b a b ⊕=+÷(1) 计算2007⊕2009,2006⊕2008(2) 计算1⊕5⊕9,1⊕(5⊕9),分析:(1)2007⊕2009=(2007+2009)÷2=2008;2006⊕2008=(2006+2008)÷2=2007(2)1⊕5⊕9=(1+5)÷2⊕9=3⊕9=(3+9)÷2=61⊕(5⊕9)=1⊕(5+9)÷2=1⊕7=(1+7)÷2=4;【例2】 (★★★)n*b 表示n 的3倍减去b 的2倍,例如3*2=3×3-2×2=5.根据以上的规定,10*6应等于_____.分析:根据新运算“*”的规定:10*6=10×3-6×2=18.[巩固] 设a △b =a ×a -2×b ,那么,5△6=______,5△2=_____.分析:(1)5△6=5×5-2×6=13(2)5△2=5×5-2×2=21【例3】 (★★★)我们规定:a c b d =ad -bc ,例如:23 14=2×4-1×3=8-3=5. 求45 610的值.分析:45 610=4×10-5×6=40-30=10[前铺]如果用|A,B|表示A 与B 中较大数与较小数之差,求:(1)|2+3,2×3|;(2)||3,5|,3|分析:(1)|2+3,2×3|=|5,6|=6-5=1(2)||3,5|,3|=|5-3,3|=|2,3|=3-2=1【例4】 (★★★南京市第二届“兴趣杯”少年数学邀请赛决赛)设m 、n 是两个数,规定:m*n =4×n-(m +n)÷2,这里“×,+,一,÷”是通常的四则运算符号,括号的作用也是通常的含义,“*”是新的运算符号. 计算:3*(4*6)= _____.分析:4*6=4×6-(4+6)÷2=19,3*19=4×19-(3+19)÷2=65.[巩固] 规定:a ▽b =(a +b )÷2+2×a ,则3▽(6▽8)是多少?.分析:6▽8=(6+8)÷2+2×6=19,3▽19=(3+19)÷2+2×3=17,所以3▽(6▽8)=17.【例5】 (★★★★奥数网题库)定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =(a+b)÷2,如果a +b 是奇数,则a ☆b =(a+b-1)÷2.求:(1)(1 999☆2 000)☆(2 001☆2 002);(2)1 998☆(2 000☆2 002)☆2 004.分析:(1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数, 所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (3) 因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以 1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001[巩固] 定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =(a+b)÷3,如果a +b 除以3余数为1,则a*b =(a+b-1)÷3,如果a +b 除以3余数为2,则a*b =(a+b-2)÷3.求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891【例6】 (★★★北京市第十一届“迎春杯”赛)如果 3*2=3+33=362*3=2+22+222=2461*4=1+11+111+1111=1234那么4*5=( ).分析:4*5=4+44+444+4444+44444=49380[巩固]规定: 6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234.求7*5.分析:7*5=7+77+777+7777+77777=86415【例7】 (★★★★奥数网题库)定义新运算“!”如下:对于认识自然数n ,n !=n ×(n -1)×(n -2)×……×3×2×1.(1) 求3!,4!,5!;(2) 证明:3×(6!)+24×(5!)=7!分析:(1)3!=3×2×1=6;4!=4×3×2×1=24;5!=5×4×3×2×1=120;(2)证明:3×(6!)+24×(5!)=3×(6!)+4×6×(5!)=3×(6!)+4×(6!)=7×(6!)=7![拓展] 对自然数m ,n (n ≥m ),规定m n P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120.(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[总结] 这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.(二)反求未知数【例8】 (★★★★奥数网题库)假设A*B 表示A 的3倍减去B 的2倍,即A*B =3A -2B.已知w*(4*1)=7,求w*4的值.分析:4*1=3×4-2×1=10,所以w*(4*1)=w*10=3×w -10×2=7,所以w =9.那么w*4= 9*4=3×9-4×2=19.[前铺]对于数 a , b , c , d ,规定〈a , b , c ,d 〉=2ab-c +d.已知〈1,3,5,x 〉=7,求x 的值.分析:<1,3, 5,x >=2×1×3-5+x =1+x=7,x=6【例9】(★★★★奥数网题库)对于两个数a、b,a△b表示a+b-1.计算:(1)(7△8)△6(2)(6△A)△A=84,求A.分析:(1)7△8=7+8-1=14,14△6=14+6-1=19;(2)6△A=6+A-1=5+A,(5+A)△A=5+A+A-1=2×A+4=84,所以A=40.[拓展]如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,那么当( a△2)△3=12时, a等于几?分析:(a△2)△3=[(a-2)×2]△3=(2a-4)△3=(2a-4-2)×3=6a-18,由6a-18=12,解得a=5【例10】(★★★★第八届“祖冲之杯”数学邀请赛)对整数A、B、C,规定符号等于A×B+B×C-C÷A,例如:=3×5+5×6-6÷3=15+30-2=43,已知:=28,那么A=_______.分析:2A+4A-4÷2=28,即 6A=30,A=5[总结] 这类题型给出的运算式中含有一个或多个未知数,我们不能直接根据运算式计算,首先,我们应该根据给出的运算等式将未知数求出来,再进行运算.(三)其他常见类型【例11】(★★★★★南京市首届“兴趣杯”少年数学邀请赛)小明来到红毛族探险,看到下面几个红毛族的算式:8×8=8,9×9×9=5,9×3=3, (93+8)×7=837.老师告诉他,红毛族算术中所用的符号“+、一、×、÷、( )、=”与我们算术中的意义相同,进位也是十进制,只是每个数字虽然与我们写法相同,但代表的数却不同. 请你按红毛族的算术规则,完成下面算式:89×57=______ .分析: 由红毛族算式“8×8=8 ”知“8”是1,“9×9×9=5”可知“9”是2,“5”是8.由“9×3=3”知“3”是0.“7”是5.于是可知“89×57”是12×85=1020即“8393”.[前铺]a、b、c代表一位数,规定a×a=a,b×b×b=c,b×d=d,问a+b+c+d=?分析:由a×a=a可知a=1,由b×b×b=c,可知b=2,c=8,由b×d=d可知,d=0,所以a+b+c+d=1+2+8+0=11【例12】(★★★第九届“祖冲之杯”数学邀请赛)下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A 值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,A×B=C ,所以当输入A值是2008,输入B值是4时,C=A×B=2008×4=8032[拓展]如果运算器输出的是下面的规律,“?”应填什么呢?分析:通过观察,15÷3=5=4+1,28÷7=4=3+1,60÷15=4=3+1,所以,第四列的?处应填(7+1)×8=64,第五列的?处应填:52÷13-1=4-1=31.(例1)a、b是自然数,规定:a△b=a×5+b÷3,求8△9的值.分析:8△9=8×5+9÷3=432.a*b表示a的3倍减去b的一半,例如,1*2=1×3-2÷2=2,根据这个规定,计算:(1)10*6 (2)7*(2*4).分析:10*6=10×3-6÷2=27,7*(2*4)=7*(2×3-4÷2)=7*4=7×3-4÷2=193.(例5)定:A※B=B×B+A,计算(2※3)※(4※1)的值.分析:2※3=3×3+2=11,4※1=1×1+4=5,11※5=5×5+11=36,所以最后结果(2※3)※(4※1)=36.4.(例4)如果a◇b=a×b-(a+b),已知(3◇4)◇x=19,求x的值.分析:3◇4=3×4-(3+4)=5,5◇x=19,5×x-(5+x)=19,4x-5=19,4x=24,x=6.5.(例12)右下图是一个运算器的示意图,A、B是输入的两上数据,C是输出的结果,右下表是输入A、B数据后,运算器输出C的对应值,请你据此判断,当输入A值是2008,输入B值是4时,运算器输出的C值是_____.分析:通过观察,A÷B×2=C ,所以当输入A值是2008,输入B值是4时,C=A÷B=2008÷4×2=1004。
小升初专练-计算问题-定义新运算通用版(含答案)
![小升初专练-计算问题-定义新运算通用版(含答案)](https://img.taocdn.com/s3/m/a64178742a160b4e767f5acfa1c7aa00b52a9d09.png)
小升初专练-计算问题-定义新运算【知识点归纳】定义新运算是指用一个符号和已知运算表达式表示一种新的运算.注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算.(3)新定义的算式中,有括号的,要先算括号里面的.【常考题型】例1:规定:a△b=3a-2b.已知x△(4△1)=7,那么x△5=( )A、7B、17C、9D、19分析:根据所给出是等式,知道a△b等于3与a的积减去2与b的积,由此用此方法计算4△1的值,再求出x的值,进而求出x△5的值.解:4△1=3×4-2×1,=10,x△(4△1)=7,x△10=7,3x-2×10=7,3x-20=7,3x=20+7,3x=27,x=27÷3,x=9;x△5=9△5,=3×9-2×5,=27-10,=17,故选:B.点评:解答此题的关键是,根据所给出的等式找出新的运算方法,再根据新的运算方法解决问题.【经典题型】例2:定义新运算aVb=a+b-1,aWb=ab-1,若xV (xW4)=30,那么这个式子中x 的值为( )A 、4.3B 、3.2C 、6.4D 、12.8分析:由所给算式得出新运算方法为:aVb 等于两个数的和减去1,aWb 等于两个数的乘积减去1,据此计算xV (xW4)=30即可解出x 的值.解:xV (xW4)=30,xV (x ×4-1)=30,xV (4x-1)=30,x+4x-1-1=30,5x-2=30,5x=32,x=32÷5,x=6.4.故选:C .点评:解决本题的关键是找出新运算方法,根据这个方法计算.【解题方法点拨】(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算.(3)新定义的算式中,有括号的,要先算括号里面的.一.选择题1.、表示两个数,规定新运算“※”及“△”如下:※,△,则※△ A .441B .812C .8822.规定一种新运算“”, ,例如,那么 A .2B .C .D .83.规定※,则5※,同理可得:3※ A .24B .30C .26D .404.我们规定一种运算“”; ,,,,如x y x 65y x y =+x 3y xy =(45)6(=)**b b a b a a a a a ==⨯⨯⨯⋯⋯⨯ 个23*239==*1(4(2=)18116a (2)b a b =⨯+25(22)20=⨯+=8(=)⊕2123=⨯⨯⊕3234=⨯⨯⊕4345=⨯⨯⊕5456=⨯⨯⊕果,那么 A .B .C .D .5.对于两个数、,规定,求 A .15B .30C .25D .106.我们规定运算:,,并且满足运算律,那么仿照上述规定计算: A .11B .C .4D .7.规定一种新运算,则 A .7B .12C .D .8.假设◎一,已知◎◎,那么◎ A .19B .7C .9二.填空题9.有这样一种运算,规定※,若2※,则 .10.如果规定符号“△”为选择两数中的较大数,“”为选择两数中较小数,例如:3△,,那么△△ 11.规定一种新运算,★,若★,那么的值是 .12.假设★,如:1★,则2★ .13.设表示的3倍减去的2倍,已知,则 .14.如果表示,那么 15.规定运算符号表示:,那么 .16.如果定义,,,,那么,0,1, .三.判断题17.假设,那么. 四.计算题18.设、表示两个数,规定.111677A -=⨯⊕⊕⊕(A =)23351647A B *2A B A B =⨯÷5*6()25(52)3-=--=-4(3)(43)12⨯-=-⨯=-2552-=-+3(6)7(⨯-+=)11-4-11*11a b a b a b⨯=+11*(34=)127712A 3B A =2B X (41)7=X 4(=)a ()b a a b =⨯+44x =x = 55=533= [(63) 5][6(3⨯ 5)]=.m 53n m n =+x 937=x a ()b a b a =+÷2(12)13=+÷=3=&x y x y &(4&1)7a =a =&a b ()2a b +÷5&(4&8)=.&&321x y x y =++2&(0.14&1)9 §(a b c (3))10a c d c d a b+⨯+=+§(28)=*4()2a b a a b =⨯-+÷4*611=a b *0.010.01a b a b =÷-⨯求:19.△表示一种运算符号,其意义是△,计算△△7.20.定义新运算:△,计算:△△21.五.应用题21.对于数、,我们定义一种新运算,由这种运算得到的数,我们称之为“吉祥数”,记为,这时,叫做吉祥数对,如(1)若,则,,等于多少?(2)已知,,,求的值六.解答题22.定义一种新运算;,其中和为任意两个不为0的数,为常数,比如:。
小学六年级【小升初】数学《列式计算和定义新运算专题课》含答案
![小学六年级【小升初】数学《列式计算和定义新运算专题课》含答案](https://img.taocdn.com/s3/m/aeb3608fa76e58fafab003d9.png)
7.列式计算和定义新运算知识要点梳理一、列式计算 1.文字式题的意义用语言文字表达,由数学术语和数字编成的数学题目,叫文字式题。
解答文字式题时,通常要列综合算式进行计算。
因此,解答文字式题的关键是正确列出算式。
2.文字式题的叙述形式(1)根据四则运算的意义叙述的题。
如“两个加数的和是65,一个加数是25.8,求另一个加数是多少?”;“9个2.25是多少?”等。
(2)根据算式各部分名称叙述的题。
如“除数是57,被除数是4.5,商是多少?” (3)根据算式直读法叙述的题。
如“1112减去34,差是多少?”;“45除以9等于多少?”(4)根据两数问的多少、倍数关系叙述的题。
如“比60多108的数是多少?”;“48的9倍是 多少?”(5)进行综合叙述的题。
如“6.72除以48与0.5的积,商是多少?” 3.解答文字式题的一般步骤(1)反复读题,弄清题意,找出题中所叙述的条件和问题。
(2)分析题目中有哪几种运算,确定先算什么,再算什么,最后算什么。
(3)根据题意列出算式。
(需要先求和或差时,必须添上小括号) (4)按照四则混合运算的顺序细心计算,并求出得数。
(5)进行检测。
(不必写出答句) 二、定义新运算解决定义新运算此类题目的方法是认真审题,读懂题意,这些新运算符号本身并不重要,重要的是寻找这些符号在特定条件下所规定的某种运算顺序,然后按照新定义的运算规则,把已知的数代人,转化成基本的运算。
考点精讲分析典例精讲考点1 文字型列式计算【例1】(1)0.15除以38的商加上5,再乘以14,积是多少?(2)一个数的58比0.4的倒数多3.5,求这个数。
【精析】(1)此题考查学生对运算顺序的把握,先除后加再乘,就可以算出结果。
(2)此题考查学生付运算顺序的把握,要分析题中的运算关系,先找出可以算的部分,再利用运算各部分量之间关系进行逆推。
【答案】(1)(0.15÷38+5)×14 =(25+5)×14=275×14=2720 (2)(1÷0.4+3.5)÷58=(52+72)÷58 =6÷58=485【归纳总结】解决此类题关键是能够准确的判断运算顺序,本题可以通过“商加上”和“再乘”等字眼得出先除后加再乘的顺序,列综合算式时需要括号时要依次添上小括号,中括号和大括号,最后的脱式计算要细心。
定义新运算题目及答案解析-小学奥数
![定义新运算题目及答案解析-小学奥数](https://img.taocdn.com/s3/m/8d0002b603d276a20029bd64783e0912a2167c3b.png)
定义新运算题目及答案解析-小学奥数答案】A=5,x=2,y=7解析】将已知条件代入式子得:12+2A=16,解得A=2.再将A代入式子得:x×y+4=3×4+2A=14,解得x=2,y=7.知识点3多步运算型基础训练】1、【★★】设x、y都表示两个不同的数,规定:x△y=x+y,x○y=x×y.(1)求2△3○4的值.2)求5○3△8的值.答案】(1)14;(2)55解析】(1)先算3○4=12,再算2△12=14;(2)先算5○3=15,再算15△8=55.2、【★★★】设a、b都表示两个不同的数,规定:a△b=a+b+3,a○b=a×b+2.(1)求3△4○5的值.2)求2○5△7的值.答案】(1)29;(2)39解析】(1)先算4○5=20,再算3△20=29;(2)先算2○5=10,再算10△7=39.拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x+y,x◇y=x+y+2xy.已知3□a=10,a◇4=28,求a 的值.答案】a=2解析】将已知条件代入式子得:3+a=10,解得a=7.再将a 代入式子得:7◇4=7+4+2×7×4=56,解得7+2×a+8=28,解得a=2.1、求常数A的值和3□(4□5)的结果常数A的值可以通过建立方程解得,即3×4+2A=16,解得A=2.对于3□(4□5),需要先计算括号里面的值,即4□5=4×5+2×2=20+4=24.然后再计算3□24,即3×24+2×2=72+4=76.2、求x的值根据题目所给的规定,a b a a1a2…(a+b-1),其中a、b表示自然数。
已知x(14)65,需要先计算1△4=1+2+3+4=10,然后计算x△10=65.根据等式x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,可以得到10x+45=65,解得x=2.拓展提升:1、求33的值和25的值根据规定,a b a!(a+b-1),其中a、b表示自然数。
数学小升初培优训练第三讲《定义新运算》
![数学小升初培优训练第三讲《定义新运算》](https://img.taocdn.com/s3/m/7430f0eb87c24028905fc383.png)
数学小升初培优训练第三讲《定义新运算》[同步巩固演练]1、 a*b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①②①10*6 ②7*(2*1)2、定义新运算为a ○-b=ba 1+, ①求2○-(3○-4) ②若x ○-4=1.35,则x=? 3、设P ,Q 表示两个数,且P*Q=2QP ⨯,求3*(6*8) 4、规定“*”为一种运算,它满足a*b=ba ab+,求,1992*(1992*1992)5、现定义两种运算“⊕”和“⊗”,对于任意两个整数a 、b 规定:a ⊕b=a+b-1,a ⊗b=a×b -1,那么4⊗[(6⊕8)⊕(3⊗5)]等于多少? 6、定义运算“*”,对于任何数a 和b,有a 和b,有a*b=2b a +比如,当a=2,b=4时,2*4=242+=3(1) 计算1996*1998,1998*1996; (2) 计算1997*7*1,1997*(7*1); (3) 运算“*”有交换律吗? (4) 运算“*”有结合律吗? 7、对任意整数 a,b,规定a △b=2a+b,若有a △2a △3a △4a △5a △6a △7a △8a △9a=3039,求整数a.8、规定运算a*b=43a-54b,求算式23*(48*47)的值. 9、“*”表示一种运算符号,它的含义是:x*y=xy 1+))(1(1A y x ++.已知:2*1=32,求1998*1999的值.[能力拓展平台]1、 假设一种运算符号“*”,x*y 表示把x 和y 加起来被4除,即x*y=(x+y )÷4.(1) 求13*17的值; (2) 求2*(3*5)的值; (3) 求a*16=10中a 的值.2、 设a*b 表示a 的3倍减去b 的2倍即a*b=3a-2b.(1) 计算:(35*54)*43; (2) 已知x*(4*1)=7,求x. 3、 a*b 表示a 的3倍减去b 的21,即:a*b=3a -2b,根据以上的规定,10*6应等于多 少?4、 如果2△3=2+3+4=9,5△4=5+6+7+8=26,按此规则计算.(1)7△4;(2)1△x=15;(3)x △3=12.5、 我们规定:符号。
定义新运算(六年级)
![定义新运算(六年级)](https://img.taocdn.com/s3/m/91ab59e86294dd88d0d26b79.png)
定义新运算【知识要点】“新运算”:就是用*、[△]、☆、⊙等多种符号,按照一定的关系,临时规定的一种新的运算程序.【例题】例1 a 、b 是自然数,规定a ▲b =155a b ⨯-⨯,则5▲10 10▲5(填“=”或“≠”).例 2.A 、B 表示两个数,A ※B =3A B+,则10※(6※9)= .例3.规定x [△]y =y x yx ⨯+,则(3[△]2)[△](4[△]10)= .例4 规定2,yx y x y x y x +=⊕⨯=⊗,则()[]3331⊗⊕⊗=例5 现定义两种运算:“⊕”、“⊗”,对于任意整数、b ,1,a b a b ⊕=+-1a b a b ⊗=⨯+,则4[(68)(85)]⊕⊕⊗⊕= .例6 如果定义新运算“*”,使得5*2=51+52=30,4*3=41+42+43=84,那么2*7的值是多少?例7 对于数,,,a b c d ,规定,,,2a b c d ab c d <>=-+.已知7,5,3,1=〉〈x ,求x 的值.【练习】1.如果规定152a b a b *=⨯-⨯,其中a 、b 是自然数,那么: (1)10*6= ; (2)6*10= .2.设32a b a b ∇=⨯-⨯,则43135∇⎪⎭⎫ ⎝⎛∇= .3.A.B 是两个数,规定3□4=3×4×5×6=360,2□3=2×3×4=24.求4□3 ,1□2□3六年级4. 规定()b a b a b a +-⨯=∆,则()()5823∆∆∆的值是多少?5.规定:符号∆为选择两个数中较大的数的运算,O 为选择两个数中较小的数的运算.例如:353,553=O =∆,则()[]()[]735537∆O ⨯∆O 的值是多少6.规定()()b a a a b b a ⨯⨯+⨯+⨯-=∇ 211(a 、b 为自然数且a<b),求()()5354∇+∇的值。
小升初数学专题训练—“小升初计算专题之定义新运算(全国通用)
![小升初数学专题训练—“小升初计算专题之定义新运算(全国通用)](https://img.taocdn.com/s3/m/1165a29a336c1eb91a375deb.png)
定义新运算【知识要点】加、减、乘、除这四种运算的意义和法则我们很熟悉。
但重点中学在招生命题中除了考查四种混合运算的基本能力外,还要考查一些定义的其他的运算,一般占分在8~10分之间,特别是在2011年的小升初考试中,开始加大考察力度。
解定义新运算题的方法是认真审题、读懂题意、深刻理解新定义运算符号的含义,排除干扰条件,按照新定义运算的关系把新运算符号去掉,把问题转化成已有的数学知识。
【例题精讲】例1 P 、Q 表示数,P*Q 表示2P Q +,求3*(6*8)的值。
例2 如果A B A B B A ⊗=+,那么(32)(23)⊗-⊗=_____。
例3 定义“∆”,a b a b a b+∆=⨯,()234=______∆∆。
例 4 规定x y Axy ∆=、()2÷x y x y ∇=+,且()()133133=∆∇∆∇。
则()133_______∆∇=。
例5 对于数a 、b 、c 、d 规定()2b c d d a ab c =-、、、,已知 ()1232,,,x =,则x ______=。
例6 若规定112332234××*=,112344778910=*⨯⨯⨯,那么114325*+=_____.*—例7 对于任意的两个自然数a和b ,规定新的运算:()()()121a b a a a a b*=⨯+⨯+⨯⋅⋅⋅⨯+-,如果()323660x**=,则x_____=。
例8 如图是一个运算器的示意图,A、B是输入的两个数据,C是输出的结果。
下表为输入A、B数据后,运算器输出C的对应值。
请你据此判断,当输入A值1999,输入B值是9时,运算器输出的C值是___________。
六年级数学计算专题(七)定义新运算练习试卷简介全卷共5题,全部为选择题,共100分。
整套试卷立足基础,又有一定思考性。
虽然只是30分钟的小测试,但包含了不少小升初考试中经常见到试题类型。
不仅在知识上和能力上有不同方面及不同程度考查,而且在测试的过程中也能够发现整张试卷题目对学生能力考查深度的不断提升。
2023-2024部编版小升初专题——新定义运算(讲义)苏教版六年级下册数学
![2023-2024部编版小升初专题——新定义运算(讲义)苏教版六年级下册数学](https://img.taocdn.com/s3/m/733c1d51b94ae45c3b3567ec102de2bd9605de3b.png)
学生姓名:年级: X6 科目:数学授课日期: 2023 年月日上课时间:时 00 分~时 00 分合计: 2 小时授课章节新定义运算教学目标1、熟悉定义新运算的意义,熟悉定义新运算的类型;2、掌握新旧转化的方法;3、培养学生在寻找正确解题方法的同时,不断地开拓解题思路。
重点难点【教学重点】理解新定义运算的含义【教学难点】能够举一反三,掌握新运算新旧换新的方法教学方法︻六步1 对1 教学法︼一、【回顾】(学生讲,教师纠正)□完成□未完成完成评价:□优□良□中□差二、【作业】(作业难点讲解)□完成□未完成完成评价:□优□良□中□差三、【提优】(拓展或新课讲解)□完成□未完成完成评价:□优□良□中□差四、【习惯】(坚持培养习惯)□粘贴错题本□艾宾浩斯记忆本□语文积累□5R三色笔记□审题八字诀□草稿纸的使用□圈划预习法□一拖三记忆学习法五、【检测】( 出门考 )□完成□未完成完成评价:□优□良□中□差六、【反馈】( 3+1+X )□已反馈□未反馈教师备注学生签字:(课后)教师签字:(课后)主管审核签字:盖章一、夯实基础我们都知道四则运算包括加、减、乘、除,我们接触到的运算符号也无外乎“+”、“-”、“×”、“÷”。
而在升学考试中,经常会出现一些崭新的题目,这种题目中又出现了新的运算符号,如:⊙、⊙、◎……并赋予它们一种新的运算方法。
这种运算符号本身并不重要,重要的是在题目中,各种运算符号规定了某种运算以及运算顺序。
这种运算非常有趣,同学们,你们想了解吗?这一节我们就来学习定义新运算。
二、典型例题例1.(1)a◎b=a+b,求95的值。
(2)定义新运算“⊙ ”,m⊙n=m÷n×2.5。
求:⊙ 60.4⊙0.4的值是多少?⊙ 351⊙0.3的值是多少?分析(1):本题中的新运算符号“◎”表示的是求“◎”前后两个数的和,也就是求9与5的和是多少。
解(1):9◎5=9+5=14分析(2):本题中新运算“⊙”的含义是求“⊙”前后两个数的商的2.5倍是多少。
(完整版)六年级奥数定义新运算及答案(2)
![(完整版)六年级奥数定义新运算及答案(2)](https://img.taocdn.com/s3/m/5aa09201cc22bcd126ff0cdd.png)
定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
第三节定义新运算答案
![第三节定义新运算答案](https://img.taocdn.com/s3/m/b0c69406767f5acfa0c7cd1c.png)
第三节:定义新运算大兴四中 黄伟 定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
定义新运算是一种特别设计的计算形式,它使用一些特殊的运算符号,这是与四则运算中的加减乘除符号是不一样的。
新定义的算式中有括号的,要先算括号里的。
但它在没有转化前,是不适合于各种运算的。
现在小学六年级奥数中体现,解题方法较简单。
解答定义新运算,关键是要正确地理解新定义运算的算式含义。
然后严格按照新定义运算的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
热身:1. 规定图形a b c --,图形表示运算x z yw --+.+(直接写出答案).例1. 对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定:(a ,b )★(c ,d )=bc -ad .例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)= ;(2)若有理数对(-3,2x -1)★(1,x +1)=7,则x = ;(3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值.解:(1)﹣5……………………..2分(2)1 ……………………..4分(3)∵等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数∴(2x ﹣1)k ﹣(﹣3)(x ﹢k )=5﹢2k∴(2k ﹢3)x =5∴523x k =+ ∵k 是整数∴2k +3=±1或±5∴k =1,﹣1,﹣2,﹣4……………………..7分例2.对于两个不相等的有理数a ,b ,我们规定符号max{,}a b 表示a ,b 中的较大值, 如max{2,3}2-=,max{1,0}0-=.请解答下列问题:(1)max{1,1}25--= ;(2)如果max{,}2x x x =-,求x 的取值范围;(3)如果max{,}2521x x x =---,求x 的值.28.解:(1)1-. ………………………………… 1分(2)∵max{,}2x x x =-,∴2x x >-. ………………………………… 2分 ∴1x >.∴x 的取值范围是1x >. ………………………………… 3分(3)由题意,得 2x x ≠-.①若2x x >-,即1x >时,max{,}2x x x =-,11x x -=-.∵max{,}2521x x x =---,∴2(1)5x x =--.解得7x = 符合题意. ………………………………… 5分 ②若2x x <-,即1x <时,max{,}22x x x =--,1(1)1x x x -=--=-.∵max{,}2521x x x =---,∴22(1)5x x -=--.解得5x =- 符合题意.综上所述,7x =或5x =-. ………………………………… 6分例3.本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:m a 与n a (0a ≠,m 、n 都是正整数)叫做同底数幂,同底数幂除法记作m n a a ÷.运算法则如下:;=1;1.m n m n m n m n m n n m m n a a a a a m n a a m n a a a --⎧⎪>÷=⎪÷=÷=⎨⎪⎪<÷=⎩当时,当时,当时, 根据“同底数幂除法”的运算法则,回答下列问题:(1)填空:521122⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭,3544÷= . (2)如果13-413327x x -÷=,求出x 的值.(3)如果()()2+2+6111x x x x -÷-=,请直接写出x 的值. 解:(1)填空:521122⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭18,3544÷=116;……………………………………2分 (2)由题意,得()3413x x ---=……………………………………………………3分 解得: 3.x = ……………………………………………………………………5分∴ 3.x =(3)4x =,0x =,2x =,…………………………………………………8分例4.对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=3(35)123-⨯---=.(1)求(2)-⊙132的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n = (用含m ,n 的式子表示).例5:用“△”定义新运算:对于任意有理数a ,b ,当a ≤b 时,都有2a b a b ∆=;当a >b 时,都有2a b ab ∆=.那么, 2△6 = , 2()3-△(3)-= .。
六年级【小升初】小学数学专题课程《列式计算和定义新运算》(含答案)
![六年级【小升初】小学数学专题课程《列式计算和定义新运算》(含答案)](https://img.taocdn.com/s3/m/7f15e6cb6394dd88d0d233d4b14e852458fb39b7.png)
六年级【小升初】小学数学专题课程《列式计算和定义新运算》(含答案)7.列式计算和定义新运算知识要点梳理一、列式计算1.文字式题的意义用语言文字表达,由数学术语和数字编成的数学题目,叫文字式题。
解答文字式题时,通常要列综合算式进行计算。
因此,解答文字式题的关键是正确列出算式。
2.文字式题的叙述形式(1)根据四则运算的意义叙述的题。
如“两个加数的和是65,一个加数是25.8,求另一个加数是多少?”;“9个2.25是多少?”等。
(2)根据算式各部分名称叙述的题。
如“除数是,被除数是4.5,商是多少?”(3)根据算式直读法叙述的题。
如“减去,差是多少?”;“45除以9等于多少?”(4)根据两数问的多少、倍数关系叙述的题。
如“比60多108的数是多少?”;“48的9倍是多少?”(5)进行综合叙述的题。
如“6.72除以48与0.5的积,商是多少?”3.解答文字式题的一般步骤(1)反复读题,弄清题意,找出题中所叙述的条件和问题。
(2)分析题目中有哪几种运算,确定先算什么,再算什么,最后算什么。
(3)根据题意列出算式。
(需要先求和或差时,必须添上小括号)(4)按照四则混合运算的顺序细心计算,并求出得数。
(5)进行检测。
(不必写出答句)二、定义新运算解决定义新运算此类题目的方法是认真审题,读懂题意,这些新运算符号本身并不重要,重要的是寻找这些符号在特定条件下所规定的某种运算顺序,然后按照新定义的运算规则,把已知的数代人,转化成基本的运算。
考点精讲分析典例精讲考点1 文字型列式计算【例1】(1)0.15除以的商加上5,再乘以,积是多少?(2)一个数的比0.4的倒数多3.5,求这个数。
【精析】(1)此题考查学生对运算顺序的把握,先除后加再乘,就可以算出结果。
(2)此题考查学生付运算顺序的把握,要分析题中的运算关系,先找出可以算的部分,再利用运算各部分量之间关系进行逆推。
【答案】(1)(2)【归纳总结】解决此类题关键是能够准确的判断运算顺序,本题可以通过“商加上”和“再乘”等字眼得出先除后加再乘的顺序,列综合算式时需要括号时要依次添上小括号,中括号和大括号,最后的脱式计算要细心。
定义新运算附答案
![定义新运算附答案](https://img.taocdn.com/s3/m/fbce7361b307e87100f69611.png)
定义新运算附答案我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?解:① 6 ⊕2=6×2+6+2=20,2 ⊕6=2×6+2+6=20.②(1 ⊕2)⊕3=(1×2+1+2)⊕3=5 ⊕3=5×3+5+3=231 ⊕(2 ⊕3)=1 ⊕(2×3+2+3)=1 ⊕11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕b=a×b+a+bb ⊕a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕b=b ⊕a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕b)⊕c=(a×b+a+b)⊕c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕b)⊕c=a ⊕(b ⊕c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律: a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、 n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n 时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.m=1n =2 m=2 n =23(舍去)m=3 n =1课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果 x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+⋯+9)=10x + 45 因此有10x + 45=65,解出x=2.。
小升初数学专题训练小升初计算专题之定义新运算
![小升初数学专题训练小升初计算专题之定义新运算](https://img.taocdn.com/s3/m/edde8c68680203d8cf2f241f.png)
小升初数学专题训练小升初计算专题之定义新运算定义新运算【知识要点】加、减、乘、除这四种运算的意义和法那么我们很熟习。
但重点中学在招生命题中除了考察四种混合运算的基天分力外,还要考察一些定义的其他的运算,普通占分在8~10分之间,特别是在2021年的小升初考试中,末尾加大调查力度。
解定义新运算题的方法是仔细审题、读懂题意、深入了解新定义运算符号的含义,扫除搅扰条件,依照新定义运算的关系把新运算符号去掉,把效果转化成已有的数学知识。
【例题精讲】例1 P 、Q 表示数,P*Q 表示2P Q +,求3*〔6*8〕的值。
例2 假设A B A B B A ⊗=+,那么(32)(23)⊗-⊗=_____。
例3 定义〝∆〞,a b a b a b +∆=⨯,()234=______∆∆。
例 4 规则x y Axy ∆=、()2÷x y x y ∇=+,且()()133133=∆∇∆∇。
那么()133_______∆∇=。
例 5 关于数a 、b 、c 、d 规则()2b c d d a ab c=-、、、, ()1232,,,x =,那么x ______=。
例6 假定规则112332234××*=,112344778910=*⨯⨯⨯,那么114325*+=_____.*— 例7 关于恣意的两个自然数a 和b ,规则新的运算:()()()121a b a a a a b *=⨯+⨯+⨯⋅⋅⋅⨯+-,假设()323660x **=,那么x _____=。
例8 如图是一个运算器的表示图,A 、B 是输入的两个数据,C 是输入的结果。
下表为输入A 、B 数据后,运算器输入C 的对应值。
请你据此判别,当输入A 值2021,输入B 值是9时,运算器输入的C 值是___________。
六年级数学计算专题(七)定义新运算练习试卷简介:全卷共5题,全部为选择题,共100分。
整套试卷立足基础,又有一定思索性。