(优选)线性规划问题基本概念和基本理论
线性规划
线性规划问题建模求解实例分析
产品甲 产品乙 产品丙 工时限制 单件铸造工时(小时) 单件机加工工时(小时) 单件装配工时(小时) 自产铸件成本(元/件) 外协铸件成本(元/件) 机加工成本(元/件) 装配成本(元/件) 产品售价(元/件) 5 6 3 3 5 2 3 23 10 4 2 5 6 1 2 18 7 8 2 4 3 2 16 8000 12000 10000
应用EXCEL工具求解线性规划问题
三、线性规划问题解的表现
EXCEL建模求解,其解的结果在“规划 求解结果”对话框中提示: 1、唯一最优解为“找到一个解”
2、无穷多最优解为“满足条件有多个解”
3、无解为“未找到可行解”
线性规划问题建模求解实例分析
(一)生产计划问题 例1:某工厂生产甲、乙、丙三种产品,都要经过铸造、 机加工(包括本场和外包的)和装配三个车间。甲、乙 两种产品的铸件可以外包协作,也可自行生产,但 产品丙必须在本厂铸造才能保证质量。数据见表。 问:公司为了获得最大利润,甲、乙、丙三种产品 应各生产多少件?甲、乙两种产品的铸件应由本公 司铸造和由外包协作各多少件?
方案。一般要求其非负。
约束条件:反映所给问题的客观限制及完成任务的
具体要求,一般表示为一组决策变量的线性等式或
不等式。
目标函数:问题所要达到的目标。一般表示为决策
变量的线性函数,取最大值或最小值。
线性规划问题基本理论及方法
建模步骤:
确定决策变量:根据决策问题,确定 找出约束条件:找出所有的限制条件,写出其
2
n
(, ) b2
…
a x a x ... a x (, )b x , x , x ,...,x 0
线性规划知识点总结
线性规划知识点总结标题:线性规划知识点总结引言概述:线性规划是运筹学中的一种最基本的数学规划方法,广泛应用于生产、运输、金融等领域。
通过线性规划,可以优化资源分配,最大化利润或者最小化成本。
本文将对线性规划的基本概念、线性规划模型、解决方法、应用领域和优缺点进行总结。
一、基本概念1.1 线性规划的定义:线性规划是一种数学优化方法,其目标是在一组线性约束条件下,找到使目标函数取得最大值或者最小值的决策变量的取值。
1.2 决策变量和目标函数:线性规划中,决策变量是需要确定的未知数,而目标函数则是需要优化的目标,通常是最大化利润或者最小化成本。
1.3 约束条件:线性规划模型中的约束条件是对决策变量的限制,可以是等式约束或者不等式约束,用来限制决策变量的取值范围。
二、线性规划模型2.1 标准形式和非标准形式:线性规划模型可以分为标准形式和非标准形式,标准形式要求目标函数是最小化形式,约束条件是等式约束;非标准形式则没有这些限制。
2.2 线性规划的矩阵形式:线性规划可以用矩阵形式表示,目标函数和约束条件可以用矩阵的乘法来表示,这样可以简化问题的求解过程。
2.3 整数规划和混合整数规划:在实际应用中,有时需要考虑变量的取值只能是整数的情况,这时就需要用到整数规划或者混合整数规划。
三、解决方法3.1 单纯形法:单纯形法是解决线性规划问题的经典方法,通过不断挪移顶点来找到最优解,是一种高效的求解方法。
3.2 对偶理论:对偶理论是线性规划的重要理论基础,通过对原问题的对偶问题进行求解,可以得到原问题的最优解。
3.3 整数规划的分支定界法:对于整数规划问题,可以采用分支定界法来求解,通过不断分支和剪枝来逐步逼近最优解。
四、应用领域4.1 生产计划优化:线性规划可以用来优化生产计划,确定最佳生产量和资源分配,以最大化利润或者最小化成本。
4.2 运输网络优化:在物流领域,线性规划可以用来优化运输网络,确定最佳的运输路径和运输量,以提高运输效率。
线性规划的理论与实例分析
线性规划的理论与实例分析线性规划(Linear Programming,简称LP)是一种重要的运筹学工具,常常被应用于生产、物流、金融等领域中的优化问题。
本文将从理论和实例两个角度,介绍线性规划的基本概念、模型及求解方法。
一、线性规划的基本概念线性规划的基本概念包括决策变量、目标函数、约束条件等。
(一)决策变量决策变量是指影响问题结果的变量,通常用x1、x2、 (x)表示。
例如,生产线上的机器数量、产品的产量等都是决策变量。
(二)目标函数目标函数是指要最大化或最小化的某个指标,通常用z表示。
例如,最小化成本、最大化利润等都是目标函数。
(三)约束条件约束条件是指在问题求解中要满足的条件。
例如,不超过机器限制数量、满足生产需求等都是约束条件。
通常用不等式或等式形式表示。
二、线性规划的模型线性规划的一般形式可表示为:最大化或最小化目标函数:Z = c1x1 + c2x2 + … + cnxn约束条件:a11x1 + a12x2 + … + a1nxn ≤ b1a21x1 + a22x2 + … + a2nxn ≤ b2……am1x1 + am2x2 + … + amnxn ≤bm或x1, x2, … , xn ≥ 0 (非负性约束条件)其中,c1、c2、…、cn为各决策变量的系数,a11、a12、…、amn为各约束条件中各决策变量的系数,b1、b2、…、bm为约束条件的值,x1、x2、…、xn为决策变量,非负性约束条件也称为非负约束。
三、线性规划的求解方法线性规划有多种求解方法,这里主要介绍两种:单纯性法和对偶理论。
(一)单纯性法单纯性法是线性规划的一种基本算法,其实质是在各约束条件限制下寻找目标函数最大或最小值。
单纯性法基于以下两个原则:①某个极值点必定满足目标函数的所有约束条件;②各个变量所形成的可行解区域有限,且该区域的可行解点数有限。
单纯性法的具体过程如下:Step 1 建立初始单纯形表将约束条件转化为标准形式,即将约束条件化为”≤“的形式,并加入人工变量,得到初始单纯形表。
线性规划知识点总结
线性规划知识点总结一、概述线性规划(Linear Programming,简称LP)是一种数学优化方法,用于解决线性约束下的最优化问题。
它的基本思想是通过线性目标函数和线性约束条件,找到使目标函数取得最大(或最小)值的变量取值。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为z = c1x1 + c2x2 + ... + cnxn,其中c1, c2, ..., cn为常数,x1,x2, ..., xn为决策变量。
2. 决策变量:决策变量是问题中需要决策的变量,用于表示问题的解。
决策变量通常用x1, x2, ..., xn表示。
3. 约束条件:约束条件是对决策变量的限制条件,用于限定解的可行域。
约束条件通常表示为a11x1 + a12x2 + ... + a1nxn ≤ b1, a21x1 + a22x2 + ... + a2nxn ≤ b2, ..., am1x1 + am2x2 + ... + amnxn ≤ bm,其中a11, a12, ..., amn为常数,b1, b2, ..., bm为常数。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最大(或最小)值的解称为最优解。
三、线性规划的解法线性规划问题可以通过以下几种方法求解:1. 图形法:对于二维线性规划问题,可以通过绘制约束条件的直线和目标函数的等高线图,找到最优解。
2. 单纯形法:单纯形法是一种迭代算法,通过不断移动到更优的解来寻找最优解。
它从一个可行解开始,每次迭代都朝着更优的方向移动,直到找到最优解或证明问题无解。
3. 对偶理论:线性规划问题可以通过对偶理论转化为对偶问题,并通过求解对偶问题来获得原始问题的最优解。
4. 整数线性规划:当决策变量需要取整数值时,问题称为整数线性规划。
整数线性规划问题通常比线性规划问题更难求解,可以使用分支定界法等方法进行求解。
线性规划
转化 建模
线性规划 问题
三 个 转 化
四个步骤
作 答
最优解
图解法
求解线性规划问题的基本方法
单纯形法(Simple Method)是求解线性规划求解的主要方法,该法
由丹塞(Dantzig)于1947年提出,后经多次改进而成,是求解线性规
划问题的实用算法。由前面的叙述可知,如果线性规划问题的最优
解存在,则必定可以在其可行解集合的顶点(极点)中找到。因此,
第二章
线性规划
(Linear Programming)
图
数学规划分类
线性规划基本理论
• 线性规划(Linear Programming) 研究的问题主要 有两个方面: ①确定一项任务,如何统筹安排,以尽量做到用最 少的资源来完成它; ②如何利用一定量的人力、物力和财力等资源来完 成最多的任务。 • 目前被广泛应用于军事、工农业生产、交通运输、 工程计算、环境保护、经济管理、教育、商业和 社会科学等许多方面,成为领导决策和提高工作效 果的一种重要手段。
寻求一个最优解就是在其可行解集合的诸极点中搜索最优点。
单纯形法实质上是一个迭代过程,该迭代即是从可行解集合的一
个极点移到另一个邻近的极点,直到判定某一极点为最优解为止。
单纯形法的基本思想是根据问题,从一个基本可行解出发,逐步 改进目标函数的取值,直到求得最优基本可行解。
求得一个基本可行解
查该基本可行解是否为最优解。
0
图解法
5x+4y=20
两个变量的线性规划有最优解,则必能在可行域凸多边形的顶点中找到
例
某工厂制造两种产品p1、p2。需要三种原料M1、M2、 M3,已知生产1kg产品p1需消耗原材料M1 9kg、M2 4kg、 M3 3kg;生产1kg产品p2需消耗原材料M1 4kg、M2 5kg、M3 10kg。产品p1每千克的利润是700元,产品p2 每千克的利润是1200元。但这个工厂每天能够使用的原 材料为M1 360kg、M2 200kg、M3 300kg。问每天制造 多少产品p1、p2,才能使工厂的利润最大?
第二章线性规划及单纯形法总结
第一章
工厂需要的原棉存放在三个仓库中,现将原棉运往工 厂以满足工厂生产的需求。已知原棉运到各个工厂的单位 运费如表所示。问使总运费最小的运输方案?
仓库\工厂
1 2 3 需求
1
2 2 3 40
2
1 2 4 15
3
3 4 2 35
库存
50 30 10
2.线性规划数学模型
解:设xij为i 仓库运到 j工厂的原棉数量(i =1,2,3
1.线性规划介绍
第一章
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
第一章
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
第一章
j =1,2,3)
minZ= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33 x11 +x12+x13 x21+x22+x23 x31+x32+x33 50 30 10 40
st.
x11 +x21+x31 =
x12 +x22+x32 =
x13 +x23+x33 = xij 0
15
35
2.线性规划数学模型
第一章
练习4 连续投资10万元 A:从第1年到第4年每年初投资,次年末回收本利1.15; B:第3年初投资,到第5年末回收本利1.25,最大投资4万元; C:第2年初投资,到第5年末回收本利1.40,最大投资3万元; D:每年初投资,每年末回收本利1.11。 求:使5年末总资本最大的投资方案。 分析: A 1 x1A 2 x2A x2C x1D x2D x3D x4D x5D 3 x3A 4 x4A 5
第4章线性规划
f ( X ) 5 x1 4 x 2 4 x1 x 2 60 x1 x 2 24 x1 0 x2 0
(1) ( 2) ( 3) ( 4) ( 5)
例题21: • 首先由(4),(5)二式(x1≥ 0、x2 ≥ 0)知, 其解
在第一象限所在的范围,所以在画图时将第二、
产品Ⅰ 产品Ⅱ 资源总量
设 备(台时)
原料A(公斤) 原料B(公斤)
1
4 0
2
0 4
8
16 12
利 润(百元)
2
3
线性规划范例
• 例B. 任务分配问题
表2
产品
1 23
2 21
3 19
4 17
某公司拟生产4种产品, 可分配给下属的3个工厂 生产,由于工厂的地理位 置和设备不同,每个工厂 生产每种产品的成本不相 同,加工能力也不相同。 有关数据分别由表2和表3 给出。公司应如何给下属 各工厂分配任务,才能在 保证完成每种产品的任务 的条件下,使得公司所花 费的成本最少?
例 : x2 0 y 0, y x2
对于无限制变量的处理:同时引进两个非负变量, 然后用它们的差代替无限制变量。
例 : x2无限制 x2 y1 y2 y1 , y2 0
例题20: 将下述线性规划问题化为标准形
m i n s .t . f ( X ) x1 2 x 2 3 x 3 2 x1 x 2 x 3 9 3 x1 x 2 2 x 3 4 3 x1 2 x 2 3 x 3 6 x1 0, x 2 0, x 3无限制
含量限制 原 A B C 加工费(元/kg) 料 纱线1 ≥60% 无 ≤20% 1.5 纱线2 ≥15% ≥10% ≤60% 1.2 纱线3 无 无 50% 0.9 (元/kg) 6 4.5 3 (kg/月) 2000 2500 1200 原料成本 原料限量
线性规划的标准型和基本概念
(2)若线性规划问题的最优解存在,它一定可以在 可行域的某一个顶点上得到;
(3)若在两个顶点上同时得到最优解,则该两点连 线上的所有点都是最优解,即LP有无穷多最优解;
(4)若可行域非空有界,则一定有最优解。
24
线性规划的标准形式
标准线性规划模型
minZ 3x1 2x2
st. -2x1 x 2 2
x1-3x2 3
x1 0,x2 0
x2 -2x1+x2=2
4
3 2
-▽Z=(3,2)
minZ 3x1 2x2
-2x1 x 2 2
x1-3x2 3
x1 0,x2 0
Z=
Z x1
,Z x 2
=(-3,-2)
x1-3x2=3
有限资源的合理配置有两类问题 如何合理的使用有限的资源,使生产经营的效益达到最大; 在生产或经营的任务确定的条件下,合理的组织生产,安排经 营活动,使所消耗的资源数最少。
例1,某制药厂生产甲、乙两种药品,生产这两种药品要消耗某种维生 素。生产每吨药品所需要的维生素量,所占用的设备时间,以及该厂每 周可提供的资源总量如下表所示:
j=1
j=1
其中 x为n+k非负剩余变量。
(3) 右端项为负
约束两端乘以(-1) (4) 非负变量与符号不受限制的变量
若 xi的符号不受限制,则可引进非负变量xi1,xi2,令 xi = xi1-xi2,这样就可以使线性规划里所有的变量都转化为有非负限 制的变量。
例7,将下述线性规划问题化为标准型
线性规划的一般数学模型
线性规划模型的特征: (1)用一组决策变量x1,x2,…xn表示某一方案,且在一般情况下,
线性规划
x12 x13
线性规划的典型实例
运输问题
数学模型
10x11 min f s.t. x11 x12 x 21 x 22 x11 x 21 x12 x13 x ij x 22 x 23 0 (i 1, 2; j 12x12 9x13 x13 35 x 23 55 26 38 26 1, 2, 3) 8x 21 11x 22 13x 23
基本解不是线性规划问题的解,而是仅满足约束方程组的解
线性规划问题中解的概念
可行解、可行域
上面的分析仅考虑了约束方程组Ax=b,下面进一步考虑线性规划问题的非负 约束。我们称既满足约束方程组Ax=b,又满足非负约束x≥0的解为线性规划 问题的可行解,即可行解满足线性规划问题的所有约束。可行解的集合称为可 行域,记作:
下面将分步骤详细分析如何获得这个线性规划问题的解,同时介绍在这类问题 中的几个概念
线性规划问题中解的概念
基本解
如果线性规划问题的解存在,则它必定是满足Ax=b的有限多个“基本解”中 选出的,那么我们的第一个任务就是找出满足方程Ax=b的基本解 假设独立方程的个数为m个,故Ax=b的系数矩阵A的秩为m,于是A中必有m 个列向量是线性无关的,不妨假设A中的前m个列向量线性无关,则这m个列 向量可以构成矩阵A的m阶非奇异子矩阵,用矩阵B表示:
D x | Ax b, x 0
基本可行解
特别的,若线性规划问题的基本解能够满足线性规划问题中的非负约束,即:
xB B 1b 0
则称该解xB为基本可行解,简称基可行解,称B为可行基。基可行解的数量不 m 会超过 C n 个。显然,基本可行解一定是可行解,基可行解是可行域中一种特 殊的解
最优解
线性规划的数学模型和基本性质
1.线性规划介绍
美国科学院院士DANTZIG(丹齐克),1948年在 研究美国空军资源的优化配置时提出线性规划及其通用 解法 “单纯形法”。被称为线性规划之父。
线性规划之父的Dantzig (丹齐克)。据说,一次上课,Dantzig迟到 了,仰头看去,黑板上留了几个几个题目,他就抄了一下,回家后埋头 苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业 好像太难了,我所以现在才交,言下很是 惭愧。几天之后,他的老师 就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig很不解 , 后来 才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领 域的未解决的问题,他给出的那个解法也就是单纯形法。这个方法是上 个世纪前十位的算法。
s.t.
2.线性规划数学模型
线性规划问题应用 市场营销(广告预算和媒介选择,竞争性定价,新产品 开发,制定销售计划) 生产计划制定(合理下料,配料,“生产计划、库存、 劳力综合”) 库存管理(合理物资库存量,停车场大小,设备容量) 运输问题 财政、会计(预算,贷款,成本分析,投资,证券管理) 人事(人员分配,人才评价,工资和奖金的确定) 设备管理(维修计划,设备更新) 城市管理(供水,污水管理,服务系统设计、运用)
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
线性规划知识点总结
线性规划知识点总结线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在诸多领域中都有广泛的应用,如生产计划、物流调度、投资组合等。
本文将对线性规划的基本概念、模型建立、解法和应用进行详细总结。
一、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
它通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件:线性规划的约束条件是一组线性等式或不等式,限制了决策变量的取值范围。
约束条件通常表示为a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,其中a₁、a₂、...、aₙ为常数,b为常数。
3. 可行解:满足所有约束条件的决策变量取值组合称为可行解。
4. 最优解:在所有可行解中,使得目标函数取得最大值或最小值的解称为最优解。
二、模型建立1. 决策变量的确定:根据实际问题,确定需要优化的决策变量及其取值范围。
2. 目标函数的建立:根据问题要求,将目标转化为线性函数,并确定系数。
3. 约束条件的建立:根据问题中给出的限制条件,将其转化为线性等式或不等式,并确定系数。
4. 模型的完整表达:将目标函数和约束条件整合在一起,形成线性规划模型。
三、解法1. 图形法:对于二维或三维的线性规划问题,可以通过绘制约束条件的图形来找到最优解。
2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。
单纯形法是一种迭代算法,通过不断移动顶点来寻找最优解。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
整数规划问题通常比线性规划问题更难求解,可以使用分支定界法等算法进行求解。
四、应用1. 生产计划:线性规划可以帮助企业确定最佳的生产计划,使得生产成本最小化或利润最大化。
2. 物流调度:线性规划可以优化物流调度方案,使得运输成本最低或配送时间最短。
线性规划与计算复杂性简介(全部)
图的着色问题
给定一个无向图和k种颜色,图的着 色问题要求用这k种颜色为图的顶点 着色,使得相邻的顶点颜色不同且使 用的颜色数最少。这是一个NP完全 问题,因为验证一个给定的着色方案 是否满足条件可以在多项式时间内完 成,但找到最优的着色方案却是一个 难题。
06
线性规划与计算复杂性关系探讨
线性规划在计算复杂性中的地位
1
线性规划是计算复杂性理论中的重要问题之一, 其求解算法的复杂性直接影响了许多实际问题的 计算效率。
2
线性规划问题的求解算法在计算复杂性理论中具 有重要的理论价值,对于推动计算复杂性理论的 发展具有重要意义。
3
线性规划问题的求解算法也是评价计算复杂性理 论的重要指标之一,其求解效率的高低直接反映 了计算复杂性理论的水平。
线性规划与计算复杂性简介(全部)
• 线性规划基本概念 • 单纯形法求解线性规划 • 内点法求解线性规划 • 线性规划应用举例 • 计算复杂性理论简介 • 线性规划与计算复杂性关系探讨
01
线性规划基本概念
定义与特点
定义
线性规划是一种数学优化技术, 用于优化一组线性不等式约束下 的线性目标函数。
特点
目标函数和约束条件均为线性函 数;可行域为凸多边形或凸多面 体;最优解存在于可行域的顶点 上。
线性规划问题分类
有界与无界问题
01
根据可行域是否有界进行分类。
标准型与非标准型问题
02
根据目标函数和约束条件的形式进行分类。
整数规划与非整数规划
03
根据决策变量的取值范围进行分类。
标准形式与转化
标准形式
求解线性规划问题的复杂性分析
求解线性规划问题的算法通常包括多项式时间算法和指数 时间算法两类,其中多项式时间算法具有较高的计算效率, 而指数时间算法则具有较高的计算精度。
工程优化设计-线性及二次规划
⎡ −1 1 1 ⎢− 2 1 0 ⎢ ⎢ 4 1 0 ⎣ 0 1 0 0⎤ ⎡3⎤ 0⎥ x = ⎢ 2 ⎥ ⎥ ⎢ ⎥ ⎢16 ⎥ 1⎥ ⎦ ⎣ ⎦
p
x3 0 1 0 0
x4 0 0 1 0
x5 0 0 0 1
右端项 0 3 2 16
q
-2 4
1. cN中最负量为-3, 即选入分量p=2. 2. 计算bj/ajp:{3/1, 2/1, 16/1} -> min=2/1 -> 即选出分量 q=4.
线性规划与二次规划
(3)单纯形法的表计算形式—举例
线性规划与二次规划
xT=[xB xN]=[B-1b- B-1NxN, xN]
1.1 最优性检查
f(x) =cTx=cBTxB+cNTxN= cBT[B-1b-B-1NxN]+cNTxN =cBTB-1b+(cNT-cBTB-1N)xN x 这样, 如果cNT-cBTBk-1Nk≥0, 于是, xk是最优解. xk=[Bk-1b, 0]
f(xk)= cBTBk-1b, 当xk沿着xN>0方向变化时,其可行变化方向 为Dk=(-Bk-1Nk, I)T, 即x=xk+xNDk , 且f(x)=f(xk)+(cNT-cBTBk-1Nk)xN 这样, 如果cNT-cBTBk-1Nk≥0, 于是, xk是最优解. xN≥0使f(x)增加,
Skip
基变量 -f x3
2进, x2 4出
用消元法将x2变为基变量
x4 0 -1 1 -1 x5 0 0 0 1 右端项 0 1 2 14
第一章:线性规划基础
表1.5 效率表
工作 A 人员 甲 乙 丙 丁 X11 0.6 X21 0.7 X31 0.8 X41 0.7 X42 0.7 X32 1.0 X43 0.5 X22 0.4 X33 0.7 X44 0.4 B X12 0.2 X23 0.3 X34 0.3
s.t.
C X13 0.3
D X14 0.1 X24 0.2
6
三、合理下料问题建模:寻求最佳下料方式, 使余料最少. 合理下料问题建模:寻求最佳下料方式, 使余料最少. 有一批长度为180公分的钢管,需截成70 52和35公分三种管料 180公分的钢管 70、 公分三种管料。 例 有一批长度为180公分的钢管,需截成70、52和35公分三种管料。它们的需求量应分别不少于 100、150和100个 问应如何下料才能使钢管的余料为最少? 100、150和100个。问应如何下料才能使钢管的余料为最少? 解:
s.t.
5
二、人员分派问题建模: 合理分派人员, 使总效率最大. 人员分派问题建模: 合理分派人员, 使总效率最大. 设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 例:设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少) 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少)。 表示各人对各项工作所具有的工作效率。 表1.5表示各人对各项工作所具有的工作效率。
⑤
k •
ο •h • ο a ④ ③ 3 ο ② X1 ⑤
四、L.P. 的一般形式
Max(Min) Z = c1 · x1 + c2 · x2 + --- + cn · xn a11 · x1 + a12 · x2 + --- + a1n · xn ≤(≥, =) b1 a21 · x1 + a22 · x2 + --- + a2n · xn ≤(≥, =) b2 s.t. ------------------------------------------ ---- --am1 · x1 + am2 · x2 + --- + amn · xn ≤(≥, =) bm xj ≥ 0 , j=1, ~, n
4线性规划的基本理论
第四章 线性规划本章主要内容:线性规划的基本理论 线性规划的单纯形法 线性规划的对偶理论 线性规划的对偶单纯形法教学目的及要求:理解线性规划的基本理论;掌握线性规划的单纯形法;理解线性规划的对偶理论;掌握线性规划的对偶单纯形法。
教学重点:线性规划的单纯形法. 教学难点:线性规划的对偶单纯形法. 教学方法:启发式.教学手段:多媒体演示、演讲与板书相结合. 教学时间:6学时. 教学内容:§4.1 线性规划的基本理论考虑线性规划问题11min ;,1,2,,,0,1,2,,.nj j j n ij j i j j c x a x b i m x j n ==⎧⎪⎪⎪==⎨⎪⎪≥=⎪⎩∑∑s.t. (LP)或min ;,0.T c x Ax b x ⎧⎪=⎨⎪≥⎩s.t. 其中 121212(,,,),(,,,),(,,,),(),T T T n n m ij m n x x x x c c c c b b b b A a ⨯====A 称为约束矩阵,Ax b =称为约束方程组,0x ≥称为非负约束.假定:rank()A m =.定义 在(LP )中,满足约束方程组及非负约束的向量x 称为可行解或可行点;所有可行解的全体称为可行解集或可行域,记作K ,即{,0}K Ax b x ==≥.使目标函数在K 上取到最小值的可行解称为最优解;最优解对应的目标函数值称为最优值.定义 在(LP )中,约束矩阵A 的任意一个m 阶满秩子方阵B 称为基,B 中m 个线性无关的列向量称为基向量,x 中与B 的列对应的分量称为关于B 的基变量,其余的变量称为关于B 的非基变量.任取(LP )的一个基12(,,,)m j j j B p p p =,记12(,,,)m T B j j j x x x x =,若令关于B 的非基变量都取0,则约束方程Ax b =变为B Bx b =.由于B 是满秩方阵,因此B Bx b =有唯一解1B x B b -=.记121(,,,)m T j j j B b x x x -=,则由12,1,2,,,0,{1,2,,}{,,,}k k j j j m x x k m x j n j j j ===∀∈-所构成的n 维向量x 是Ax b =的一个解,称之为(LP )的关于B 的基本解.基本解满足约束方程组,但不一定满足非负约束,所以不一定是可行解.若10B b -≥,即基本解x 也是可行解,则称x 为(LP )的关于基B 的基本可行解,相应的基B 称为(LP )的可行基;当10B b ->时,称此基本可行解x 是非退化的,否则,称之为退化的.若一个(LP )的所有基本可行解都是非退化的,则称该(LP )是非退化的,否则,称它是退化的.例1 求下列线性规划问题的所有基本可行解.12123124min 44;4,2,0,1,2,3,4.j x x x x x x x x x j -⎧⎪-+=⎪⎨-++=⎪⎪≥=⎩s.t. 解 约束矩阵的4个列向量依次为12341110,,,1101p p p p -⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.全部基为113214323424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====对于1B ,1x 和3x 为基变量,2x 和4x 为非基变量.令2x =4x =0,有1314,2,x x x +=⎧⎨-=⎩ 得到关于1B 的基本解(1)(2,0,6,0)T x =-,它不是可行解.对于2B ,1x 和4x 为基变量,2x 和3x 为非基变量.令2x =3x =0,有1144,2,x x x =⎧⎨-+=⎩ 得到关于2B 的基本解(2)(4,0,0,6)T x =,它是一个非退化的基本可行解.同理,可求得关于345,,B B B 的基本解分别为(3)(4)(5)(0,2,6,0),(0,4,0,6),(0,0,4,2)T T T x x x ==-=,显然,(3)x 和(5)x 均是非退化的基本可行解,而(4)x 不是可行解.因此,该问题的所有基本可行解为(2)(3)(5),,x x x .此外,因为这些基本可行解都是非退化的,所以该问题是非退化的.定理1 设x 为(LP )的可行解,则x 为(LP )的基本可行解的充要条件是它的非零分量所对应的列向量线性无关.证明 不妨设x 的前r 个分量为正分量,即12(,,,,0,,0),0(1,2,,).T r j x x x x x j r =>=若x 是基本可行解,则取正值的变量12,,,r x x x 必定是基变量,而这些基变量对应的列向量12,,,r p p p 是基向量.故必定线性相关.反之,若12,,,r p p p 线性无关,则必有0r m ≤≤.当r m =时,12(,,,)r B p p p =就是一个基;当r m <时,一定可以从约束矩阵A 的后n r -个列向量中选出m r -个,不妨设为12,,,r r m p p p ++,使121(,,,,,,)r r m B p p p p p +=成为一个基.由于x 是可行解,因此1rj j j x p b ==∑,从而必有1mj j j x p b ==∑.由此可知x 是关于B 的基本可行解.定理2 x 是(LP )的基本可行解的充要条件是x 为(LP )的可行域的极点. 证明 由定理4.1.1和定理2.2.2知结论成立. 例2 求下列线性规划问题的可行域的极点.1212314min ;22,2,0,1,2,3,4.j x x x x x x x x j -⎧⎪++=⎪⎨+=⎪⎪≥=⎩s.t. 解 因为约束矩阵的4个列向量依次为12341210,,,1001p p p p ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.全部基为112213314424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====求得关于基12345,,,,B B B B B 的基本解分别为(1)(2)(3)(4)(5)(2,0,0,0),(2,0,0,0),(2,0,0,0),(0,1,0,2),(0,0,2,2)T T T T Tx x x x x =====显然,(1)(2)(3),,x x x 均为退化的基本可行解,(4)(5),x x 是非退化的基本可行解.可行域有三个极点:(2,0,0,0)T ,(0,1,0,2)T ,(0,0,2,2)T .定理3 若(LP )有可行解,则它必有基本可行解. 证明 由定理2.2.1及定理4.1.2知结论成立.定理4 若(LP )的可行域K 非空有界,则(LP )必存在最优解,且其中至少有一个基本可行解为最优解.证明 根据推论2.2.6,(LP )的任一可行解x 都可表示为(LP )的全部基本可行解12,,,k x x x 的凸组合,即1,ki i i x x x K λ==∀∈∑,其中10(1,2,,),1ki i i i k λλ=≥==∑.设s x 是使(LP )中目标函数值达到最小的基本可行解,即 1min T T s i i kc x c x ≤≤=,则11,kkTTT T i i i s s i i c x c x c x c x x K λλ===≥=∀∈∑∑.这表明,基本可行解s x 为(LP )的最优解.定理5 设(LP )的可行域K 无界,则(LP )存在最优解的充要条件是对K 的任一极方向d ,均有0T c d ≥.证明 根据定理2.2.10,(LP )的任一可行解x 都可写成11kli i j j i j x x d λμ===+∑∑,其中12,,,k x x x 为(LP )的全部基本可行解,12,,,l d d d 为K 的全部极方向,且10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑.于是,(LP )等价于下面以0(1,2,,)0(1,2,,)i j i k j l λμ≥=≥=和为决策变量的线性规划问题111min ()();1,0,1,2,,,0,1,2,,.k lT T i i j j i j k i i i j c x c d i k j l λμλλμ===⎧+⎪⎪⎪⎪=⎨⎪⎪≥=⎪≥=⎪⎩∑∑∑s.t. 由于j μ可以任意大,因此若存在某个j d ,使0T j c d <,则上述问题的目标函数无下界,从而不存在最优解,从而(LP )不存在最优解.若1,2,,j l ∀=,均有0T j c d ≥,设1min T T s i i kc x c x ≤≤=,则11()(),k lTTT T i i j j s i j c x c x c d c x x K λμ===+≥∀∈∑∑.所以基本可行解s x 是(LP )的最优解.推论6 若(LP )的可行域K 无界,且(LP )存在最优解,则至少存在一个基本可行解为最优解.证明 由定理4.1.5的证明过程可知结论成立. 定理7 设在(LP )的全部基本可行解12,,,k x x x 中,使目标函数值最小者为12,,,s i i i x x x ;在K 的全部极方向12,,,l d d d 中,满足0T j c d =者为12,,,t j j j d d d .若(LP )存在最优解,则x 为(LP )的最优解的充要条件是存在10(1,2,,),1,0(1,2,,)pp q si i j p p s q t λλμ=≥==≥=∑使11p p q q sti i j j p q x x d λμ===+∑∑. (*)证明 因为(LP )存在最优解,所以由定理4.1.4和推论4.1.6及其证明知,基本可行解12,,,s i i i x x x 是(LP )的最优解.设x 具有(*)式的形式,则由推论2.2.6和定理2.2.10知,x 为(LP )的可行解,从而由(*)式知,111p p q q stTTT T i i j j i p q c x c x c d c x λμ===+=∑∑因此,x 为(LP )的最优解.反之,设x 为(LP )的任一最优解,则x 为可行解,于是由推论2.2.6和定理2.2.10知,存在 10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑,使 11kli i j j i j x x d λμ===+∑∑. (**)根据定理1.1.5,有 0,1,2,,T j c d j l ≥=, 且由1i x 为最优解知1,1,2,,T T i i c x c x i k ≥=.从而由上述两式容易用反证法证明:若(**)式中某个0i λ>,则i x 必为(LP )的最优解;若(**)式中某个0j μ>,则必有0T j c d =。
运筹学第一章
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。
最优化理论和方法-第二章 线性规划基本理论和算法
其中 向量表示:
给定,变量是
定义标准形 有必要吗?
其中
给定,变量是
标准形的特征:极小化、等式约束、变量非负
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
例4. 化成标准形
等 价 于
最优化问题的等价表述指 两个问题的最优值相等、差一个常数、或者互为相反数, 由其中一个问题的最优解可以得到另一个的最优解。
cT
( x* )T
( 1, 1)
( 0, 0)
( 0, 1) (x1, 0), x1 ≥ 0 ( 1, 0) (0, x2), x2∈[0,1] (-1, -1) 没有 有限 解
解的几何特征
惟一的顶点 一条边 一条边 无(下)界
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
只要有 m 个单位列 e1 , e2 , … , em 即可,次序可以打乱!
◎ 规范形的系数的一种解释
yj B1aj aj y1ja1 y2 ja2 ymjam
规范形第 j 列的系数是用当前基表示 aj 时的系数!
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
线性规划问题解的几种情况
提示: 学习单纯形法之前,请务必学习并理解书上 p.19, 例2.2.1.
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
2.2 单纯形法
• 适用形式:标准形(基本可行解等价于极点) • 理论基础:线性规划的基本定理! • 基本思想:从约束集的某个极点/BFS开始,依次
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 若 f(x) 在 x* 可导,则 f `(x*;d) = [f (x*) ]Td .
2.2 凸集、凸函数和凸规划(续)
二、凸函数 2、凸函数的性质:
以下设 S Rn 为非空凸集,函数 f :SR 2)若f 凸,则 f 在 S 的内点集上连续;
注: f 在 S 上不一定连续。 例: f(x)=2(当x=1); f(x)=x2 (当x<1) .
一、凸集 1、凸集的概念:
定理:S是凸集S中任意有限点的凸组合属于S 多胞形 H(x(1) , x(2) , … , x(m) ):
由 x(1) , x(2) , … , x(m) 的所有凸组合构成。 单纯形:若多胞形 H(x(1) , x(2) , … , x(m) )满足,
x(2)-x(1) , x(3) -x(1) , … , x(m)- x(1) 线性无关。
3)设f 凸,则对任意方向方向导数存在。 4)设 S 是开集,f 在 S 上可微,则
二、凸函数 1、凸函数及水平集 定义: 设集合 S Rn 为凸集,函数 f :SR
若 x(1), x(2) S, ( 0 , 1 ) ,均有 f( x(1)+(1- ) x(2) ) ≤f(x(1))+(1- )f(x(2)) ,
则称 f(x) 为凸集 S 上的凸函数。 若进一步有上面不等式以严格不等式成立,则 称 f(x) 为凸集 S 上的严格凸函数。 当- f(x) 为凸函数(严格凸函数)时,则称 f(x) 为 凹函数(严格凹函数)。
二、凸函数 2、凸函数的性质:
1) 方向导数:设 S Rn 为非空凸集,函数 f :SR , 再设 x* S, d 为方向,使当 > 0 充分小时有 x*+d S, 如果 lim [ f(x*+ d )-f(x*) ] / 存在(包括 )
则称 f(x) 为在点沿方向的方向导数存在,记
f `(x*;d) = lim [ f(x*+ d )-f(x*) ] /
数? 2) f(x)= max{ f1(x) , f2 (x) } , g(x)= min{ f1(x) ,
f2 (x) }是否凸函数?
2.2 凸集、凸函数和凸规划(续)
二、凸函数 1、凸函数及水平集:
定义:设集合 S Rn ,函数 f :SR, R ,
称 S = { x S∣f(x) ≤ } 为 f(x) 在 S 上 的 水平集。
m
j =1
j =1,
那么称
m
j=1
j x(j)
为x(1),
x(2),
…
,
x(m)的
凸组合。
•
比较:
z
=
m
j=1j
x(j)
jR — 构成线性组合 —— 线性子空间 j≥0 , j >0 — 构成半正组合 —— 凸锥 j≥0 , j (续)
(优选)线性规划问题基本概 念和基本理论
2.1 数学规划模型的一般形式(续)
局部最优解: x*S, x* 的邻域 N(x*) ,使满足 f (x*)≤ f (x), x S N(x*) 。则称 x*为(f S)的局部
最优解,记 l .opt.(local optimum)
在上述定义中,当x x* 时有严格不等式成立,则 分别称 x* 为(f S)的严格全局最优解和严格局部最 优解。
f(x)
,f(x) : RnR
g(x) ≤ 0 , g(x) : RnRm
h(x) = 0 , h(x) : RnRl
当 f(x), gi(x) , hj(x)均为线性函数时,称线性 规划;若其中有非线性函数时,称非线性规划。
2.2 凸集、凸函数和凸规划
一、凸集
1、凸集的概念:
定义:设集合 S Rn,若x(1), x(2)S, [0,1], 必有 x(1)+(1- ) x(2) S ,则称 S 为凸集。
严格l .opt .
严格g .opt .
l .opt .
2.1 数学规划模型的一般形式(续)
函数形式: min
(fgh) s.t.
矩阵形式: min
(fgh) s.t.
f(x), gi(x) , hj(x) : RnR
f(x)
gi(x) ≤ 0 , i = 1,2,…,m hj(x) = 0 , j = 1,2,…,l
多胞形
单纯形
单纯形
2.2 凸集、凸函数和凸规划(续)
一、凸集 2、凸集的性质: 1) 凸集的交集是凸集;(并?) 2) 凸集的内点集是凸集;(逆命题是否成立?) 3) 凸集的闭包是凸集。 (逆命题是否成立?) 4) 分离与支撑: 凸集边界上任意点存在支撑超平面 两个互相不交的凸集之间存在分离超平面
支撑
强分离
分离
非正常 分离
2.2 凸集、凸函数和凸规划(续)
一、凸集 3、凸锥:
定义:C Rn, 若 x C, > 0 有 x C, 则称
C 是以 0 为顶点的锥。如果 C 还是凸集,则 称为凸锥。 集合 { 0 }、Rn 是凸锥。
0
命题:C是凸锥C中任意有限点的半正组合属于S
2.2 凸集、凸函数和凸规划(续)
严格凸函数
凸函数
严格凹函数
2.2 凸集、凸函数和凸规划(续)
二、凸函数 1、凸函数及水平集:
定理: f(x) 为凸集 S 上的凸函数 S 上任 意有限点的凸组合的函数值不大于各点函 数值的凸组合。
思考:设f1, f2是凸函数,
1) 设1, 2 > 0, 1f1+2f2 , 1f1 - 2f2是否凸函
规定:单点集 {x} 为凸集,空集为凸集。
注: x(1)+(1- ) x(2) = x(2)+(x(1)- x(2)) 是连接 x(1)与x(2)的线段 。
凸集
非凸集
非凸集
2.2 凸集、凸函数和凸规划(续)
一、凸集 1、凸集的概念:
例:证明集合 S = { x∣Ax = b } 是凸集。其
中,A为 mn矩阵,b为m维向量。 凸组合:设 x(1) , x(2) , … , x(m) Rn, j≥ 0
定理:设集合 S Rn 是凸集,函数 f :SR是
凸函数,则对 R ,S 是凸集。
注:
1) 水平集的概念相当于在地形图中,海拔高度不高于某一 数值的区域。
2) 上述定理的逆不真。
考虑分段函数f(x)=1(x≥0)或0(x<0),函数非凸,但
任意水平集是凸集。
2.2 凸集、凸函数和凸规划(续)