离子法除盐水处理工艺完整介绍

合集下载

离子交换除盐

离子交换除盐

a
b
图3.7.2 交换器中离子分布情况 (a)开始进水时 (b)交换器失效时
图3.7.3 强酸H型阳离子交 换 器典型出水曲线
7、阴离子交换器
阴离子交换实质上是阴树脂中的OH与酸性水(经过阳离子交换
Hale Waihona Puke 及除碳)中的负离子进行交换。所以在强碱性阴离子交换器内发生的
反应为:
1/2H2SO4 HNO3 1/2H2CO3 HCl 1/2H2SiO3 1/2SO4 NO3 +ROH→ R 1/2CO3 CI HSiO3
+ (CH3)3 N →
CI
CH CI 氯球 2
三甲基胺
CH2N (CH3)3
苯乙烯季胺盐阴树脂
2 离子交换树脂的命名
离子交换树脂产品型号是根据国家标准 GBl631—79《离子交 换树脂产品分类、命名及型号》而制定的。 离子交换树脂的全名称由分类名称、骨架(或基团)名称、基本 名称依次排列组成。基本名称为离子交换树脂。大孔型树脂在全名称
1/2Ca2+ 1/2Mg2+ + Na+ 1/2 SO42NO3- + RH → CI HCO3
-
1/2 Ca R 1/2 Mg Na
1/2 H2SO4 HNO3 HCI 1/2 H2CO3





阳离子交换器的出水是酸性水。但当交换器运行失效时,其出水中就会有其 它阳离子的泄漏,而在诸多的阳离子中,首先漏出的阳离子是Na+,故习惯 上称之为漏钠。当出水中的Na+超过一个给定的极限值时,阳离子交换器被 判失效,需停运再生后才能投入运行。 为什么阳交换器失效时,首先发生漏钠,而不是漏Ca2+或Mg2+离子?这是因为 水中各种阳离子与树脂中H+发生交换反应时,因树脂对各种阳离子的吸收有 选择性,故被树脂吸收的离子在交换器内有分层现象,根据树脂对被吸收离 子的选择性顺序,最上层是最易被吸收的 Ca2+,次层以Mg2+为主,下层就是Na+。 当交换器不断进水,随离子交换的不断进行,由于水中的Ca2+比Mg2+、 Na+与树脂的亲合力更大,更易被树脂吸收,所以水中的Ca2+离子可和已吸 收了Mg2+的树脂进行交换反应,使Ca型树脂层向下扩展,而被置换下来的 Mg2+一起与Na+型树脂发生交换,使Mg2+型树脂层下移而Na+的交换区域也逐 渐下移。在运行过程中,这三层不同型态的交换剂的高度在不断地向下扩展, 如图3.7.2所示。 阳床整个制水周期(运行开始到交换器失效这段时间)中电导率、钠离子浓度、 酸度变化可用图3.7.3表示。 开始通水正洗时随水的不断通入,水质越来越好。因而电导率、酸度、钠离 子快速下降(a点前)。在ab为稳定制水过程,b点后树脂开始失效。此时水 中钠增加,氢离子减少而氢氧根增加,使酸度下降,电导率下降。

高盐废水处理工艺流程

高盐废水处理工艺流程

高盐废水处理工艺流程
高盐废水是一种常见的工业废水,其处理工艺流程对于保护环境、节约资源至关重要。

下面将介绍一种高盐废水处理工艺流程,希望能对相关行业提供一定的参考。

首先,高盐废水处理工艺流程的第一步是预处理。

在预处理阶段,需要对废水进行初步的过滤和调节,以去除大颗粒杂质和调整水质参数,为后续处理工艺创造良好的条件。

接下来是膜分离工艺。

膜分离是一种高效的废水处理技术,通过膜的选择性通透性,可以有效地去除废水中的盐分和有机物,提高水质。

然后是离子交换工艺。

离子交换是一种常用的高盐废水处理方法,通过离子交换树脂的选择性吸附作用,可以将废水中的盐离子去除,从而达到净化水质的目的。

接着是蒸发结晶工艺。

对于高盐废水,蒸发结晶是一种有效的处理方法,通过蒸发浓缩废水中的盐分,最终得到盐类固体物质和相对清洁的水。

最后是终端处理工艺。

在终端处理阶段,需要对处理后的水质进行最后的调节和净化,确保废水处理达到排放标准,或者实现循环利用的目的。

综上所述,高盐废水处理工艺流程包括预处理、膜分离、离子交换、蒸发结晶和终端处理等环节,通过这些工艺的组合应用,可以有效地处理高盐废水,保护环境,节约资源。

希望这些内容能为相关行业提供一定的参考,推动高盐废水处理工艺的进步和应用。

脱盐水处理工艺

脱盐水处理工艺


系统脱盐率下降
系统回收率过高
如果未按预定的回收率运行, 可能会造成严重的后果。假定流量表不准,本来 浓水流量应为25m3/h,给水流量为100m3/h,结果浓水流量仅有12.5m3/h,这样 系统回收率由75%增至87.5%,浓缩系统由4 倍升为7 倍。浓水浓度越高, 结 垢倾向越大;同时,较低的浓水流速,降低水的紊动状态,增加浓差极化,这 又反过来增加结垢倾向。浓水浓度过高,会导致一种或几种难溶盐过饱和, 从 而在膜上结垢析出。
原水预处理
预处理目的:去除原水中各种悬浮物、胶体,以达到后续水处理设备的 进水要求。预处理效果的好坏直接影响设备的长周期的运行。 混凝-砂滤处理(水厂预处理) 原理:水中的悬浮物和胶体物质的粒径不同,沉降速度相差很大。大颗 粒悬浮物在重力作用下容易沉降,而微小粒径的以及胶体杂质能在水中 长期保持分散悬浮状态。为了除去水中微小粒径的悬浮物及胶体,需要 对原水进行混凝处理,通过在原水中投加絮凝剂,使之与水中悬浮物及 胶体生成较大絮凝体,快速沉降下来,然后通过后继过滤设施过滤去除 。水中的胶体是一些低分子物质的聚合体,小粒径、大比表面积。胶体 颗粒表面通常带有负电荷,混凝处理是向水中投加混凝剂(阳离子聚会 物),使胶体失稳而聚集在一起沉降下来,同样也吸附胶体,通过聚会 物的长链将胶体聚集在一起,在沉降过程中悬浮于水中的胶体颗粒因吸 附而随这些沉淀物一起沉降。
超滤
超滤是一种以膜两侧压差为推动力,以筛分原理为基础理论的溶液分离过程。在 压力的作用下超滤膜截留水中胶体颗粒,而水和小的溶质透过膜。
超滤
在超滤分离过程中,相对分子质量小于300~500 的溶质易透过膜, 有时膜孔径 既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但却仍有明显的分离 效果,主要是膜的化学性质。

除盐水处理工艺

除盐水处理工艺

除盐水处理工艺除盐水处理工艺介绍1 前言目前除盐水处理工艺主要有蒸馏法、离子交换法及膜分离法等,除盐水处理工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。

本文就除盐水处理工艺(离子交换法和RO膜分离法)对比介绍各自的特点:在70年到80年代末离子交换法在我国除盐水处理领域得到广泛应用。

离子交换法处理有以下特点:优点:◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低;◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。

缺点:◇由于离子交换床阀门众多,操作复杂烦琐;◇离子交换法自动化操作难度大,投资高;◇需要酸碱再生,再生废水必须经处理合格后排放,存在环境污染隐患;◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物◇在含盐量高的区域,运行成本高从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。

反渗透法处理有以下特点:优点:◇反渗透技术是当今较先进、稳定、有效的除盐技术;◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等◇原水含盐量较高时对运行成本影响不大◇缺点:◇预处理要求较高、初期投资较大本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。

2 除盐水处理工艺比较2.1离子交换法1)离子交换处理工艺流程:2)流程简介:原水首先进入无阀滤池进行预处理直流入过滤水槽,再通过过滤水泵送水至阳床上部,在床中与强酸阳树脂接触,树脂将Ca2+、Mg2+、Na+、K+、等阳离子从水中置换到树脂上,除去阳离子后的水从塔下流出并送入脱CO2塔上部,在塔内与塑料多面空心球接触形成水膜,HCO3-很快分解成CO2和H2O,通过风机将CO2从塔顶吹除,从而大大减轻阴床的负荷。

除盐水工艺处理

除盐水工艺处理
↑-------------------------------↓ 除碳器: 由于反渗透对二氧化碳等气体去除率低,所在在 RO 的产品水送到脱碳器是必要的,这 样可大大提高混床的使用周期。当然脱二氧化碳也可以脱气膜来实现。 精除盐 混床: 反渗透产水经混床内阳阴树脂进一步脱盐,去除残存的离子,出水电导率≤0.2μ s/cm, SiO2<0.01mg/l。混床运行周期长,所以一般设置为手动再生。再生废水也较少。 目前 实现精除盐过程还可以选用 EDI 技术,该技术可实现完全无再生废水产生,因此市场前看 好,但是由于预期投入较大,所以在国内应用实例不多。 反渗透法制取除盐水是一个物理过程,所以比离子交换法环保。同时处理过程简单,易 操作,自动程度化高,人工干预量小。同时系统的管理与维护简单。
江苏省振兴节水工程技术设备有限公司
江苏省振兴节水工程技术设备有限公司
反渗透(RO)主机: 反渗透(RO)主机是一级除盐的心脏部分,由渗透膜、膜壳和辅助阀门和仪器组成。 反渗透膜已发展到超低压、低污染的复合膜,单根膜脱盐率达 99.5%。在 RO 装置运行期间, 设间断自动快冲冲洗。在 RO 装置停运时,用产品水自动冲洗,挤排膜和不锈钢管道中的高 TDS 残水,使停运膜完全浸泡在淡水中,可以防止膜的自然渗透造成的膜损伤,去污除垢, 使装置和 RO 膜得到有效保养。经反渗透处理,原水中绝大部分无机盐、有机物、微生物、 细菌被截留。经反渗透处理的产品水可达到电导率<10μ s/cm,SiO2<0.2mg/l。 反渗透装置清洗: 在长期运行过程中,反渗透膜面上总会日积月累水中存在的各种污染物。从而使装置的 性能(产水量和脱盐率)下降,组件进、出口压差升高。为此,除日常启停装置前,进行低 压冲洗外,还需进行定期化学清洗。 化学清洗流程如下: 清洗水箱→清洗泵→清洗过滤器→反渗透装置

离子交换膜法脱盐的工艺流程

离子交换膜法脱盐的工艺流程

离子交换膜法脱盐的工艺流程一、概述离子交换膜法是一种常用于水处理和海水淡化领域的脱盐技术。

通过离子交换膜,将水中的盐离子与水分离,达到脱盐的目的。

下面将介绍离子交换膜法脱盐的工艺流程。

二、工艺流程离子交换膜法脱盐的工艺流程主要包括以下几个步骤:1. 进水与预处理首先,将需要脱盐的水通过进水管道引入系统。

为了保护离子交换膜和提高脱盐效率,需要进行一系列的预处理。

常用的预处理方法包括颗粒过滤、活性炭吸附、逆渗透预膜等。

2. 脱盐反应进水经过预处理后,进入脱盐反应器。

脱盐反应器中包含离子交换膜,水中的盐离子会与离子交换膜上的交换物质发生离子交换反应。

正离子将被吸附,负离子则通过膜孔径排出。

这样,水中的盐分浓度逐渐降低。

3. 监测与调节在脱盐反应过程中,需要对水质进行实时监测。

常见的监测参数包括进水浓度、出水浓度、水通量等。

通过监测数据,可以及时调节脱盐反应器的操作条件,保证脱盐效果。

4. 出水处理脱盐反应后,产生的脱盐水被称为“浓缩水”。

浓缩水中含有高浓度的盐分,需要进行进一步的处理。

常见的处理方法包括盐渣处理、逆渗透浓缩等。

处理后的脱盐水称为“纯净水”,可以作为饮用水或工业用水。

5. 冲洗与维护离子交换膜是脱盐工艺的关键部件,需要定期冲洗和维护,以保持其脱盐效率。

常见的维护方法包括化学清洗、物理冲洗等。

三、总结离子交换膜法脱盐工艺流程包括进水与预处理、脱盐反应、监测与调节、出水处理和冲洗与维护等步骤。

通过该工艺流程,可以有效地去除水中的盐分,获得纯净水。

在实际应用中,需要根据具体情况进行调整和优化,以达到最佳的脱盐效果。

离子交换除盐实验报告

离子交换除盐实验报告

离子交换除盐实验报告
实验目的,通过离子交换技术,去除水中的硬度离子,净化水质。

实验原理,离子交换是指利用离子交换树脂将水中的阳离子和阴离子与树脂上
的其他离子进行置换的过程。

在本实验中,我们将利用离子交换树脂去除水中的钙离子和镁离子,从而净化水质。

实验步骤:
1. 准备工作,将离子交换树脂充分浸泡在水中,使其充分膨胀。

2. 样品采集,取一定量的自来水样品,作为实验的原始水样。

3. 进行离子交换,将浸泡后的离子交换树脂装入离子交换柱中,将原始水样通
过离子交换柱进行处理,观察处理后的水质变化。

4. 检测水质,对处理前后的水样进行pH值、硬度等指标的检测,比较处理前
后的差异。

实验结果:
经过离子交换处理后,水样的硬度明显降低,pH值也有所变化。

经过对比分析,处理后的水质明显更加清洁、柔和,去除了原始水样中的大部分硬度离子。

实验结论:
离子交换技术可以有效去除水中的硬度离子,净化水质。

通过本次实验,我们
验证了离子交换技术的可行性,为水质净化提供了一种新的思路和方法。

实验注意事项:
1. 在进行离子交换实验时,要注意操作规范,避免离子交换树脂的污染和损坏。

2. 实验过程中要注意安全,避免接触到化学品和实验设备,以免造成伤害。

3. 实验后要对实验设备和离子交换树脂进行清洗和消毒,以保证下次实验的准确性和安全性。

通过本次实验,我们对离子交换除盐技术有了更深入的了解,相信在今后的水质净化工作中,离子交换技术将发挥重要作用。

工艺方法——脱盐水处理工艺

工艺方法——脱盐水处理工艺

工艺方法——脱盐水处理工艺工艺简介一、离子交换法我国自上个世纪50年代就开始使用离子交换树脂的技术进行脱盐水的处理,可以说积累了丰富的经验,经过这些年的不断发展进步逐步实现了由间歇式工艺、固定床工艺向离子交换工艺的转变。

其工艺流程主要是:首先通过过滤系统将废水进行预处理,然后将废水注入过滤水槽,接着让原水与强酸阳树脂发生反应,将原水中的阳离子如钙离子,钠离子,镁离子等去除,接着将原水中的碳酸氢根离子分解成二氧化碳和水,以此二氧化碳被排出了,这样阴离子的在后面的去除中就更加便利了。

最后将经过一系列处理后的水与强碱阴树脂反应,水中的阴离子被去除了。

在整个过程中,离子交换系统可以让阴阳树脂不断再生,从而使周期不断的交替进行,直至废水达到排放标准。

优势:(1)设备初期成本较低,工艺流程比较简单,同时又便于操作。

(2)这种方式通过采用阴、阳树脂与废水中的阴、阳离子发生置换反应达到脱盐的目的,有点类似于化学实验中强酸、强碱与水中的阴阳离子发生的反应。

(3)在进行脱盐处理时,如果废水中盐的含量相对较低的情况下,这种离子交换的方法可以达到非常理想的脱盐效果,有利于水资源的充分利用。

不足:(1)这种方法在脱盐处理过程中产生的废液含盐量极高,且由于其酸碱值远远超出污水排放的标准,如果随意排放不但会造成管道的腐蚀,又会造成土壤的污染。

(2)由于废水成分的复杂性,往往会造成树脂被废水中的有机物或者杂质污染的情况,如果出现这种情况不但处理困难而且还影响了工作的顺利展开。

(3)在生产过程中,由于各种因素的影响树脂难免会有损伤、破碎的情况,另外随着阴阳树脂的不断再生,使用年限必将缩短。

二、膜分离技术虽然我国很早就对膜分离技术展开研究了,但由于成本过高和专业技术不完善膜分离技术一直没有得到广泛的应用。

目前在脱盐水处理中最常见的膜分离技术主要是反渗透法,其工艺流程主要是:首先将原水通过过滤器进行过滤,这样大大降低了浑浊的程度,除去了其中的大量杂质,然后利用活性炭吸收水中的有机高分子,难溶胶体以近一步去除水中的难溶物,以便达到反渗透用水的进水标准。

水的离子交换除盐(共68张PPT)

水的离子交换除盐(共68张PPT)
〔1〕求该水质的含盐量、硬度、碱度各为多少毫摩尔每升? 〔2〕假设对上述水质进行一级复床除盐处理,H型阳离子交换器的直径为2米,内装强酸
阳离子交换树脂层高度为2米,交换器出水平均酸度为1.5mmol/L,交换器出力为50t/h ,交换器运行20小时后失效,求该交换器中交换挤的工作交换容量是多少?
为便于树脂粒度的粒度比较,采用了有致粒径和均匀系数两项指标。有 效粒径是指颗粒总量的10%通过而90%保存的筛孔径;均匀系数是指通过 60%球粒的筛孔孔径与通过10%球粒的筛孔孔径的比值。均匀系数反映树 脂粒度的分布情况,其值愈大表示粒度分布愈均匀。
(2)密度
• 湿真密度=湿树脂质量/颗粒本身总体积
4、计算离子交换器中装载树脂所需湿树脂的重量时,要使用〔

〕密度。
〔A〕干真; 〔B〕湿真; 〔C〕湿视; 〔D〕真实
4.2 一级复床除盐
4.2.1 一级复床除盐原理 4.2.2 阳离子交换 4.2.3 阴离子交换
4.2 一级复床除盐
一级化学除盐系统由阳离子交换器、除碳器和阴离子交换器所 组成,其组合方式分为单元制和母管制。
(CJ-CC)V VR
对于阳离子交换树脂的工作交换容量:
(JD进+SD出)V
QG=
VR
Eg. 某电厂原水分析结果如下:Ca2+=30mg/L,Mg2+=6 mg/L,Na+=23 mg/L ,Fe2+=27.9 mg/L,HCO-3=122 mg/L,Cl-=35.5 mg/L,SO42--=24 mg/L ,HSiO-3=38.5 mg/L。〔提示:原子量Ca=40,Mg=24,Na=23,Fe=55.8, H=1,C=12,O=16,Cl-=35.5,S=32,Si=28)

离子交换除盐水技术研究

离子交换除盐水技术研究

离子交换除盐水技术研究摘要本文主要是对离子交换除盐水的原理、过程进行简单介绍,重点总结了该技术在实际运行中的技巧和方法,采用树脂激活技术恢复树脂活性,效果良好。

关键字离子交换;除盐水;树脂激活技术在众多以生产聚氯乙烯、氯碱产品为主的综合性化工企业中,除盐水是其生产过程中的重要材料,到目前为止,离子交换法是化工生产中最为常用的制备方法之一。

1 离子交换除盐原理离子交换除盐采用的是离子交换反应原理,即在离子交换除盐过程中,原水经过阳离子交换器、阴离子交换器,进行离子交换,去除水中的阴、阳离子,得到除盐水。

长时间运行后,离子交换树脂达到交换饱和,失效,树脂从酸(碱)型转变成了盐型,此时可以用相应的酸碱使失效的树脂再生,恢复其交换能力。

2 运行过程离子交换法除盐水过程主要分成三部分:水质预处理、离子交换和酸碱再生,整个工艺的核心是离子交换,在树脂的选择上要综合考虑原水水质、产水指标等各种因素,一般阴离子交换器采用大孔型弱碱性的苯乙烯系阴离子交换树脂(D301)和强碱性的苯乙烯系阴离子交换树脂(201X7),阳离子交换器采用大孔型弱酸性的丙烯酸系阳离子交换树脂(D113)和强酸性的苯乙烯系阳离子交换树脂(001X7)。

3 除盐技术中的技巧和方法3.1 进水温度的控制水温的变化对强性树脂影响较小,对弱性树脂有明显的影响。

高温能够加快离子的运动、降低树脂外水膜的厚度,利于进行交换反应。

然而,高温还会降低树脂对离子的吸附强度,甚至影响树脂寿命,因此,进水温度控制在20~40℃为宜。

3.2 树脂再生技巧树脂再生十分重要,主要存在两方面的影响,一是影响后续运行时的工作交换容量、出水水质,二是再生剂的使用量决定着该系统的经济效益。

对再生效果能够造成的影响因素很多,通常而言主要是再生液的浓度、用量和流速。

从理论公式入手,得知再生剂的有效量等于交换剂的总工作交换容量。

但是,实际应用中并非如此,再生剂不可能被完全利用,即其利用率不可能达到100%,一般约30%~50%,因此,实际应用的再生剂量比理论量大两到三倍。

离子交换除盐简介

离子交换除盐简介

离子交换器运行过程
再生:打开空气门和进水门,后将一定浓度的再生液送入交换器内,由 再生装置将再生液均匀分布到整个树脂层,并将交换器内的空气经气管 排出,空气排净后关闭空气门打开排水门,此时再生液流过树脂层,并 与失效的阳离子(或者阴离子)树脂发生离子交换反应,使失效的树脂 再生,再生过程废液从排水门排出。 正洗:待树脂再生后的废液基本排完,树脂中仍有残留的再生剂和再生 产物,必须将其洗除,交换器方能投入运行,正洗时清水沿运行线路进 入交换器、排水门、排入地沟。正洗开始时排出废液中仍然有再生剂和 再生产物,随着正洗的进行,出水中两者含量逐渐减少,除盐交换反应 开始发生,排水基本符合水质标准时关闭排水门结束正洗,开始进行下 一周期的运行。
阳离子交换树脂:交换基团能解离出阳 离子的,如能解离出H+的,缩写:RH(强 酸性或弱酸性)
阴离子交换树脂:交换基团能解离的离 子是阴离子型的,如能解离出OH-的,缩写: ROH(强碱性或弱碱性)
溶胀性:树脂由干态变湿态体积会发生变 化
机械强度:良好的机械抗压缩性和很低的 脆性
耐热性:依种类而不同,一般RH:100℃ 左右;ROH:60~80℃
其体内再生法,其步骤为:反洗分层、再生和正洗。
混床运行过程
① 反洗分层:由于阳、阴树脂比重的不同,当混床树脂反洗时,在水流 作用下树脂会自动会层,阳、阴树脂的比重差越大,分层越迅速、彻底。
② 再生:混床中阳、阴树脂分层后,就可以对上层的阴树脂和下层的阳 树脂分别进行再生,亦可同时进行再生。 再生阴树脂时,碱液从上部的进碱 管进入,通过失效的阴树脂层,使失效树脂再生,其废液由混床中部排液装 置排出。再生阳树脂时,酸液从下面通过底部配水装置进入失效树脂层,使 失效的阳树脂再生,其废液从混床中部的排液装置排出。

除盐水工艺流程

除盐水工艺流程

除盐水工艺流程
盐水处理工艺流程是指对含盐水进行处理的一系列工艺步骤,旨在去除水中的盐分,使水得到净化和提纯。

盐水处理工艺流程在工业生产和生活用水中起着重要作用,能够有效解决盐水对设备和人体健康的影响。

下面将介绍一种常见的盐水处理工艺流程。

首先,盐水处理工艺流程的第一步是预处理。

在这一步中,需要对盐水进行初步的过滤和去除悬浮物的工作。

这可以通过沉淀、过滤等方式进行,目的是减少后续处理过程中的杂质含量,提高处理效率。

接着,第二步是膜分离技术。

膜分离技术是目前较为先进的盐水处理方法之一,主要包括反渗透、纳滤等技术。

通过膜分离,可以有效去除水中的盐分和微生物,得到相对纯净的水。

第三步是离子交换技术。

离子交换是一种通过树脂或其他介质将水中的离子与固定在固体表面上的离子进行交换的方法,可以有效去除水中的阳离子和阴离子,提高水的纯度。

最后,盐水处理工艺流程的最后一步是消毒和净化。

在这一步
中,需要对处理后的水进行消毒和净化处理,以确保水质符合相关标准,可以安全使用。

总的来说,盐水处理工艺流程是一个复杂的过程,需要多种技术手段的综合运用。

通过预处理、膜分离、离子交换和消毒净化等步骤,可以将含盐水处理成为适合工业生产和生活用水的纯净水。

这些工艺步骤的运用,不仅可以提高水资源的利用率,还可以保障人们的健康和生产的顺利进行。

盐水处理工艺流程的不断完善和创新,将为水资源的可持续利用和环境保护作出重要贡献。

高盐废水处理工艺流程

高盐废水处理工艺流程

高盐废水是指含有较高浓度盐类的废水,处理高盐废水需要采用特定的工艺流程来降低盐浓度和净化水质。

以下是常见的高盐废水处理工艺流程:预处理:高盐废水通常含有悬浮固体和沉淀物,因此首先进行预处理以去除悬浮物和固体颗粒。

常用的预处理方法包括筛网过滤、沉淀池或沉淀槽沉淀等。

逆渗透(RO):逆渗透是高盐废水处理中常用的膜分离技术。

通过逆渗透膜的选择性渗透作用,将水中的溶解盐分和其他杂质分离出来,产生低盐水。

逆渗透膜一般具有较小的孔径,可以有效过滤掉盐类离子和其他溶解物质。

离子交换(IX):离子交换是一种将废水中的离子通过离子交换树脂吸附和交换的过程。

树脂具有特定的化学性质,可以选择性地吸附和去除特定的离子,如钠离子、钙离子和镁离子等。

蒸发结晶(ME):蒸发结晶是通过蒸发废水中的水分,使盐类溶解度超过饱和度而结晶沉淀。

这种方法适用于高盐废水中含有大量结晶盐的情况,如氯化钠、硫酸钠等。

蒸发结晶可以使废水的体积大幅度减少,并得到高纯度的盐产品。

气浮和沉淀:气浮和沉淀是常用的物理处理方法,通过气体细小气泡的作用使废水中的悬浮颗粒和部分溶解物质浮起并聚集,形成浮渣,然后通过沉淀槽或沉淀池沉淀和分离出来。

膜分离:除了逆渗透,其他膜分离技术如超滤和微滤也可以用于去除高盐废水中的悬浮物和颗粒。

离子选择性电极(ISE):离子选择性电极是一种基于电化学原理的测量方法,可以测定废水中特定离子的浓度。

通过对离子浓度的监测,可以控制和调节高盐废水处理过程中的操作参数。

需要根据具体的高盐废水的成分和特点选择合适的处理工艺流程。

在实际应用中,可能需要结合多种工艺方法,根据废水的水质要求和处理成本进行优化设计和操作。

同时,为了确保处理过程的稳定性和效果,需要定期监测和维护处理设备。

除盐水处理工艺

除盐水处理工艺
该过程主要包括加热器、加药装置、多介质过滤器、活性炭 过滤器、保安滤器等设备。
换热器:
由于反渗透装置产水量随水温变化较大(一般温度每变化一
度,反渗透膜元件产水量变化2.5%),因而为保证冬季系统供 水量,本工艺配置一台换热器。
石英砂过滤器:
配制石英砂过滤器,用于截留水中的悬浮物和胶体杂质,降
低反渗透进水浊度,过滤器一般出水浊度w1NTU当出水大于
再生系统
酸、碱贮槽和计量泵及混合器共同完成再生过程供液、计量
的作用。
整个工艺过程比较烦琐的是阳床、阴床和混床再生时要多次 倒换阀门,而且一般每天或间隔一天就需再生, 所以操作难度大, 通常须配置经验丰富的操作人员。 若采用自动控制,则控制点多、 阀门要求高,投资很大。同时酸碱耗量大,再生废水也多。另外 由于树脂对非极性的大分子没有去除能力,所以制水过程中可能
水池,中间水泵将水送入阴床,在床中与强碱阴树脂接触,树脂 将水中SO2-、Cl-、NO-等阴离子置换到树脂上,水中的阴离子被 除去。经一级除盐后的水再进入混床除去少量残存阳、阴离子和
Si03,经混床处理制得合格的的除盐水。
交换过程中,阳床、阴床和混床因交换剂饱合而失效,这时 由再生系统对阳床、阴床和混床进行再生。再生结束进入下一周 期,再生废水经处理合格后外排。
2除盐水处理工艺比较
2.1离子交换法
1)离子交换处理工艺流程:
2)流程简介:
原水首先进入无阀滤池进行预处理直流入过滤水槽,再通过
过滤水泵送水至阳床上部,在床中与强酸阳树脂接触,树脂将Cf、Mg+、Na+、X、等阳离子从水中置换到树脂上,除去阳离子 后的水从塔下流出并送入脱CQ塔上部,在塔内与塑料多面空心 球接触形成水膜,HCO很快分解成CQ和H0,通过风机将CO从塔顶吹除,从而大大减轻阴床的负荷。脱除CO的水进入中间

除盐水处理工艺

除盐水处理工艺

除盐水处理工艺除盐水处理工艺介绍1 前言目前除盐水处理工艺主要有蒸馏法、离子交换法及膜分离法等,除盐水处理工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。

本文就除盐水处理工艺(离子交换法和RO膜分离法)对比介绍各自的特点:在70年到80年代末离子交换法在我国除盐水处理领域得到广泛应用。

离子交换法处理有以下特点:优点:◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低;◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。

缺点:◇由于离子交换床阀门众多,操作复杂烦琐;◇离子交换法自动化操作难度大,投资高;◇需要酸碱再生,再生废水必须经处理合格后排放,存在环境污染隐患;◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物◇在含盐量高的区域,运行成本高从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。

反渗透法处理有以下特点:优点:◇反渗透技术是当今较先进、稳定、有效的除盐技术;◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等◇原水含盐量较高时对运行成本影响不大◇缺点:◇预处理要求较高、初期投资较大本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。

2 除盐水处理工艺比较2.1离子交换法1)离子交换处理工艺流程:2)流程简介:原水首先进入无阀滤池进行预处理直流入过滤水槽,再通过过滤水泵送水至阳床上部,在床中与强酸阳树脂接触,树脂将Ca2+、Mg2+、Na+、K+、等阳离子从水中置换到树脂上,除去阳离子后的水从塔下流出并送入脱CO2塔上部,在塔内与塑料多面空心球接触形成水膜,HCO3-很快分解成CO2和H2O,通过风机将CO2从塔顶吹除,从而大大减轻阴床的负荷。

除盐水处理工艺

除盐水处理工艺

除盐水处理工艺除盐水处理工艺介绍1 前言目前除盐水处理工艺主要有蒸馏法、离子交换法及膜分离法等,除盐水处理工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。

本文就除盐水处理工艺(离子交换法和RO膜分离法)对比介绍各自的特点:在70年到80年代末离子交换法在我国除盐水处理领域得到广泛应用。

离子交换法处理有以下特点:优点:◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低;◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。

缺点:◇由于离子交换床阀门众多,操作复杂烦琐;◇离子交换法自动化操作难度大,投资高;◇需要酸碱再生,再生废水必须经处理合格后排放,存在环境污染隐患;◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物◇在含盐量高的区域,运行成本高从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。

反渗透法处理有以下特点:优点:◇反渗透技术是当今较先进、稳定、有效的除盐技术;◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等◇原水含盐量较高时对运行成本影响不大◇缺点:◇预处理要求较高、初期投资较大本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。

2 除盐水处理工艺比较2.1离子交换法1)离子交换处理工艺流程:2)流程简介:原水首先进入无阀滤池进行预处理直流入过滤水槽,再通过过滤水泵送水至阳床上部,在床中与强酸阳树脂接触,树脂将Ca2+、Mg2+、Na+、K+、等阳离子从水中置换到树脂上,除去阳离子后的水从塔下流出并送入脱CO2塔上部,在塔内与塑料多面空心球接触形成水膜,HCO3-很快分解成CO2和H2O,通过风机将CO2从塔顶吹除,从而大大减轻阴床的负荷。

离子法除盐水处理工艺完整介绍

离子法除盐水处理工艺完整介绍

离子法除盐水第一章水质概述第一节天然水及其分类一、水源水是地面上分布最广的物质,几乎占据着地球表面的四分之三,构成了海洋、江河、湖泊以及积雪和冰川,此外,地层中还存在着大量的地下水,大气中也存在着相当数量的水蒸气。

地面水主要来自雨水,地下水主要来自地面水,而雨水又来自地面水和地下水的蒸发。

因此,水在自然界中是不断循环的。

水分子(H2O)是由两个氢原子和一个氧原子组成,可是大自然中很纯的水是没有的,因为水是一种溶解能力很强的溶剂,能溶解大气中、地表面和地下岩层里的许多物质,此外还有一些不溶于水的物质和水混合在一起。

水是工业部门不可缺少的物质,由于工业部门的不同,对水的质量的要求也不同,在火力发电厂中,由于对水的质量要求很高,因此对水需要净化处理。

电厂用水的水源主要有两种,一种是地表水,另一种是地下水。

地表水是指流动或静止在陆地表面的水,主要是指江河、湖泊和水库水。

海水虽然属于地表水,但由于其特殊的水质,另作介绍。

天然水中的杂质要有氧和二氧化碳天然水中的杂质是多种多样的,这些杂质按照其颗粒大小可分为悬浮物、胶体和溶解物质三大类。

悬浮物:颗粒直径约在10-4毫米以上的微粒,这类物质在水中是不稳定的,很容易除去。

水发生浑浊现象,都是由此类物质造成的。

胶体:颗粒直径约在10-610-4毫米之间的微粒,是许多分子和离子的集合体,有明显的表面活性,常常因吸附大量离子而带电,不易下沉。

溶解物质:颗粒直径约在10-6毫米以上的微粒,大都为离子和一些溶解气体。

呈离子状态的杂质主要有阳离子(钠离子、钾离子、钙离子2+、镁离子2+),阴离子(氯离子-、硫酸根42-、碳酸氢根3-);溶解气体主。

水质指标二、水中的溶解物质悬浮物的表示方法:悬浮物的量可以用重量方法来测定(将水中悬浮物过滤、烘干后称量),通常用透明度或浑浊度(浊度)来代替。

溶解盐类的表示方法:1.含盐量:表示水中所含盐类的总和。

2.蒸发残渣:表示水中不挥发物质的量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离子法除盐水第一章水质概述第一节天然水及其分类一、水源水是地面上分布最广的物质,几乎占据着地球表面的四分之三,构成了海洋、江河、湖泊以及积雪和冰川,此外,地层中还存在着大量的地下水,大气中也存在着相当数量的水蒸气。

地面水主要来自雨水,地下水主要来自地面水,而雨水又来自地面水和地下水的蒸发。

因此,水在自然界中是不断循环的。

水分子(H2O)是由两个氢原子和一个氧原子组成,可是大自然中很纯的水是没有的,因为水是一种溶解能力很强的溶剂,能溶解大气中、地表面和地下岩层里的许多物质,此外还有一些不溶于水的物质和水混合在一起。

水是工业部门不可缺少的物质,由于工业部门的不同,对水的质量的要求也不同,在火力发电厂中,由于对水的质量要求很高,因此对水需要净化处理。

电厂用水的水源主要有两种,一种是地表水,另一种是地下水。

地表水是指流动或静止在陆地表面的水,主要是指江河、湖泊和水库水。

海水虽然属于地表水,但由于其特殊的水质,另作介绍。

天然水中的杂质要有氧和二氧化碳天然水中的杂质是多种多样的,这些杂质按照其颗粒大小可分为悬浮物、胶体和溶解物质三大类。

悬浮物:颗粒直径约在10-4毫米以上的微粒,这类物质在水中是不稳定的,很容易除去。

水发生浑浊现象,都是由此类物质造成的。

胶体:颗粒直径约在10-610-4毫米之间的微粒,是许多分子和离子的集合体,有明显的表面活性,常常因吸附大量离子而带电,不易下沉。

溶解物质:颗粒直径约在10-6毫米以上的微粒,大都为离子和一些溶解气体。

呈离子状态的杂质主要有阳离子(钠离子、钾离子、钙离子2+、镁离子2+),阴离子(氯离子-、硫酸根42-、碳酸氢根3-);溶解气体主。

水质指标二、水中的溶解物质悬浮物的表示方法:悬浮物的量可以用重量方法来测定(将水中悬浮物过滤、烘干后称量),通常用透明度或浑浊度(浊度)来代替。

溶解盐类的表示方法:1.含盐量:表示水中所含盐类的总和。

2.蒸发残渣:表示水中不挥发物质的量。

3.灼烧残渣:将蒸发残渣在800℃时灼烧而得。

4.电导率:表示水导电能力大小的指标。

5.硬度的表示方法:硬度是用来表示水中某些容易形成垢类以及洗涤时容易消耗肥皂得一类物质。

对于天然水来说,主要指钙、镁离子。

硬度按照水中存在得阴离子情况。

划分为碳酸盐硬度和非碳酸盐硬度两类。

6.碱度和酸度:碱度表示水中含 -、32-、3-量以及其它一些弱酸盐类量得总和。

碱度表示方法可分为甲基橙碱度和酚酞碱度两种。

酸度表示水中能与强酸起中和作用的物质的量。

有机物的表示方法:通常用耗氧量来表示。

溶解物质是指颗粒直径小于10-6的微粒,它们大都以离子或溶解气体状态存在于水中,现概述如下。

(1)离子态杂质。

天然水中含有的离子种类甚多,但在一般的情况下,它们总是一些常见的离子。

如按含量多少来分,可以将这些离子归纳为表1-2中的三类。

其中第一类杂质的含量为最多,是工业水处理中需要净化的主要离子。

天然水中离子态杂质来自水源经地层时溶解的某些矿物质。

列如石灰石(3)和石膏(4·2H2O)的溶解。

3在水中的溶解度虽然很小,但当水中含有游离态2时,3被转化为较易溶的(3)2而溶于水中。

其反应为322(3)2又如白云石(3·3)和菱镁矿(3),也会被含游离2的水溶解,其中3溶解反应可表示为322(3)2由于上述反应,所以天然水中都存在2+、2+、3-、42-。

在含盐量不大的水中,2+的浓度一般为2+的2550%,水中2+、2+是形成水垢的主要成分含钠的矿石在风化过程中易于分解,释放出,所以地表水和地下水中普遍含有。

因为钠盐的溶解度很高,在自然界中一般不存在的沉淀反应,所以在高含盐量水中,是主要阳离子。

天然水中的含量远低于,这是因为含钾的矿物比含钠的矿物抗风化能力大,所以比较难转移至天然水中。

由于在一般水中的含量不高,而且化学性质与相似,因为在水质分析中,常以()之和表示它们的含量,并取加权平均值25作为两者的摩尔质量。

天然水中都含有,这是因为水流经地层时,溶解了其中的氯化物。

所以几乎存在于所有的天然水中。

天然水中最常见的阳离子是2+、2+、、;阴离子是3-、42-、,某些地区的地下水中还含有较多的2+和2+。

(2)溶解气体。

天然水中常见的溶解气体有氧(O2)和二氧化碳(2),有时还有硫化氢(H2S)、二氧化硫(2)和氨(3)等。

天然水中O2的主要来源是大气中O2的溶解,因为空气中含有20.95%的氧,水与大气接触使水体具有自充氧的能力。

另外,水中藻类的光合作用也产生一部分的氧,但这种光合作用并不是水体中氧的主要来源,因为在白天靠这种光合作用产生的氧,又在夜间的新陈代谢过程中消耗了。

地下水因不与大气相接触,氧的含量一般低与地表水,天然水的氧含量一般在0~14之间。

天然水中2的主要来源为水中或泥土中有机物的分解和氧化,也有因地层深处进行的地质过程而生成的,其含量在几毫克/升至几百毫克/升之间。

地表水的2含量常不超过20~30,地下水的2含量较高,有时达到几百毫克/升。

天然水中2并非来自大气,而恰好相反,它会向大气中析出,以为大气中2的体积百分数只有0.030.04%,与之相反的溶解度仅为0.5~1.0。

水中O2和2的存在是使金属发生腐蚀的主要原因。

(3)微生物。

在天然水中还有许多微生物,其中属于植物界的有细菌类、藻类和真菌类;属于动物界的有鞭毛虫、病毒等原生动物。

另外,还有属于高等植物的苔类和属于后生动物的轮虫、涤虫等。

三、天然水的分类通常,天然水有两种分类方法,一种是按主要的水质指标,另一种是水中盐类的组成。

现分述如下:1.按主要水质指标天然水可以按其含盐量或硬度分类,因为这两种指标可以代表水受矿物质污染程度。

天然水按其含盐量分类如表1-3。

表1-3 按含盐量分类我国江河水大都属于低含盐量和中等含盐量水,地下水大部分是中等含盐量水。

天然水按其硬度分类如表1-4。

表1-4 按硬度分类根据此种分类,我国天然水的水质是由东南沿海的极软水,向西北经软水和中等硬度水而递增至硬水。

这里所谓软水是指天然水硬度较低,不是指经软化处理后所获得的软化水。

2.按水中盐类的组成分类为了研究问题方便起见,人为地将水中阴、阳离子结合起来,写成化合物的形式,这称为水中离子的假想结合。

这种表示方法的原理是,钙和镁的碳酸氢盐最易转化成沉淀物,所以令它们首先假想结合,其次是钙、镁的硫酸盐,而阳离子和以及阴离子都不易生成沉淀物。

因此它们以离子的形式存在于水中。

第二节电厂用水的类别及水质指标一、电厂用水的类别水在火力发电厂水汽循环系统中所经历的过程不同,水质常有较大的差别。

因此根据实用的需要,人们常给予这些水以不同的名称。

它们是原水、锅炉补给水、给水、锅炉水、锅炉排污水、凝结水、冷却水和疏水等。

现简述如下:(1)原水:也称为生水,是未经任何处理的天然水(如江河水、湖水、地下水等),它是电厂各种用水的水源。

(2)锅炉补给水:原水经过各种水处理工艺净化处理后,用来补充发电厂汽水损失的水称为锅炉补给水。

按其净化处理方法的不同,又可分为软化水和除盐水等。

(3)给水:送进锅炉的水称为给水。

给水主要是由凝结水和锅炉补给水组成。

(4)锅炉水:在锅炉本体的蒸发系统中流动着的水称为锅炉水,习惯上简称炉水。

(5)锅炉排污水:为了防止锅炉结垢和改善蒸汽品质,用排污的方法,排出一部分炉水,这部分排出的炉水称为锅炉排污水。

(6)凝结水:蒸汽在汽轮机中作功后,经冷却水冷却凝结成的水称为凝结水,它是锅炉给水的主要组成部分。

(7)冷却水:用作冷却介质的水为冷却水。

这里主要指用作冷却作功后的蒸汽的冷却水,如果该水循环使用,则称循环冷却水。

(8)疏水:进入加热器的蒸汽将给水加热后,这部分蒸汽冷却下来的水,以及机组停行时,蒸汽系统中的蒸汽冷凝下来的水,都称为疏水。

在水处理工艺过程中,还有所谓清水、软化水、除盐水及自用水等。

二、水质指标所谓水质是指水和其中杂质共同表现出的综合特性,而表示水中杂质个体成分或整体性质的项目,称为水质指标。

由于各种工业生产过程对水质的要求不同,所以采用的水质指标也有差别。

火力发电厂用水的水质指标有二类:一类是表示水中杂质离子的组成的成分指标,如2-等;另一类指标是表示某些化合物之和或表征某种性能,这些指标是由于技术2+、2+、、、4上的需要而专门制定的,故称为技术指标。

1.表征水中悬浮物及胶体的指标(1)悬浮固体。

悬浮固体是水样在规定的条件下,经过滤可除出的固体,单位为毫克/升()。

这项指标仅能表征水中颗粒较大的悬浮物,而不包括能穿透滤纸的颗粒小的悬浮物及胶体,所以有较大的局限性。

此法需要将水样过滤,滤出的悬浮物需经烘干和称量等手续,操作麻烦,不易用作现场的监督指标。

(2)浊度。

浊度是反映水中悬浮物和胶体含量的一个综合性指标,它是利用水中悬浮物和胶体颗粒对光的饿散射作用来表征其含量的一种指标,即表示水浑浊的程度。

浊度是通过专用仪器测定的,操作简便迅速。

由于标准水样配制方法不同,所使用的单位也不相同,目前以硫酸肼(N2H44)和六次甲基四胺[(2)6N4]配制成浑浊液为标准,与水样相比较,其单位用福马肼()表示。

(3)透明度。

透明度是利用水中悬浮物和胶体物质的透光性来表征其含量的另一中指标,即表示水透明程度的指标,单位为厘米()。

水的透明度与浊度成反比,水中悬浮物含量越高,其透明度越低。

由于它是通过人的眼睛观察水层厚度来确定水中悬浮物含量的,因此它带有人为的随意性。

2.表征水中溶解盐类的指标(1)含盐量。

含盐量是表示水中各种溶解盐类的总合,由水质全分析的结果,通过计算求出。

含盐量有两种表示方法:一是摩尔表示法,即将水中各种阳离子(或阴离子)均按带一个电荷的离子为基本单位,计算其含量(),然后将它们(阳离子或阴离子)相加;二是重量表示法,即将水中各种阴、阳离子的含量以为单位全部相加。

由于水质全分析比较麻烦,所以常用溶解固体近似表示,或用电导率衡量水中含盐量的多少。

(2)溶解固体。

溶解固体是将一定体积的过滤水样,经蒸干并在105~1100C下干燥至恒重所得到的蒸发残渣量,单位用毫克/升()表示。

它只能近似表示水中溶解盐类的含量,因为在这种操作条件下,水中的胶体及部分有机物与溶解盐类一样能穿过滤纸,许多物质的湿分和结晶水不能除尽,碳酸氢盐全部转换为碳酸盐。

(3)电导率。

表示水中离子导电能力大小的指标,称作电导率。

由于溶于水的盐类都能电离出具有导电能力的离,所以电导率是表征水中溶解盐类的一种代替指标。

水越纯净,含盐量越小。

电导率越小。

水的电导率的大小除了与水中离子含量有关外,还和离子的种类有关,单凭电导率不能计算水中含盐量。

在水中离子的组成比较稳定的情况下,可以根据试验求得电导率与含盐量的关系,将测得的电导率换算成含盐量。

相关文档
最新文档