12蛋白质生物合成-课件
第十三章蛋白质的生物合成(共91张PPT)
密码的通用性进一步证明各种生物进化自同一祖 先。
4. 方向性(direction):
• 指阅读mRNA模板上的三联体密码时, 只能沿5’→3’方向进行。
5. 摆动性(wobble):
转运氨基酸的tRNA的反密码需要通过碱基互补与 mRNA上的遗传密码反平行配对结合,但反密码与 密码之间常常不严格遵守碱基配对规律,称为摆
阶段。
一、多肽链合成的起始阶段
(一)原核生物翻译起始复合物形成
• 包括以下几个步骤:
➢核蛋白体大小亚基分离;
➢mRNA在小亚基定位结合;
➢起始氨基酰-tRNA的结合;
➢核蛋白体大亚基结合。
1. 核蛋白体大、小亚基分离: IF-1和IF-3与小亚基结合,促进核蛋白体大、小亚
基拆离,为新一轮合成作准备。
• 成肽是由转肽酶(transpeptidase)催化的 肽键形成过程。
• 在转肽酶的催化下,将P位上的tRNA所携带 的甲酰蛋氨酰基或肽酰基转移到A位上的氨 基酰tRNA上,与其-氨基缩合形成肽键。
• 此步骤需Mg2+,K+。
成肽反应过程
3. 转位(translocation):
• 延长因子EF-G有转位酶(translocase)活性,可 促进核蛋白体向mRNA的3´侧移动相当于一个密码 的距离,同时使肽酰基tRNA从A位移到P位。
氨基酰tRNA合成酶催化的反应
第一步:活化反应
氨基酸 +ATP-E → 氨基酰-AMP-E + PPi
第二步:连接反应
氨基酰-AMP-E +
tRNA
↓
氨基酰-tRNA +
有高度特 异性。
新版人教版高中生物基因指导蛋白质的合成 (共20张PPT)学习演示PPT课件
遗传信息、密码子、反密码子比较
DNA
mRNA
含义
脱氧核苷酸(碱
基对)的排列顺 序(4n种----n等于有
遗传效应的DNA分子 片段上碱基的对数)
mRNA中三个 连续碱基
(43=64种)
tRNA
tRNA上与密码 子互补配对的 碱基 (61种)
直接决定mRNA中 碱基排列顺序,间 接决定氨基酸的排 列顺序
种反密码子,但是一种反密码子只能对应
种氨基酸。
逆转录酶在基因工程中可用于合成目的基因。
3、生物的性状还受环境条件的影响,即生物的性状是基因和环境
条件共同作用的结果
下图为人体内基因对性状的控制过程,下列叙述正确的是(不定项选)( ACF)
A.图中②过程发生在细胞质中的核糖体上 B.镰刀型细胞贫血症致病的根本原因是血红蛋白分子结构的改变 C.人体衰老引起白发的主要原因是图中的酪氨酸酶的活性下降 D.血红蛋白属于一种分泌蛋白,其合成除了与上图①②过程有关 ,还与高尔基
体和内质网的加工运输有关 E.基因1和基因2不可能同时出现于人体的同一个细胞中 F.①过程需要RNA聚合酶催化, ②过程需要tRNA协助 G. ③④过程的结果存在差异的根本原因是血红蛋白结构的不同 H.过程①②④表明基因通过控制蛋白质的结构控制生物所有的性状 • ①过程是以DNA的两条链为模板,四种核苷酸为原料合成 J. ②过程只需要mRNA 、氨基酸、核糖体、酶、ATP即可完成
主要在细胞核(其次线粒体、叶绿体)
一个 mRNA 上结合多 个核糖体,顺次合成多 条相同的多肽链
(子碱4)基图中配DN对A片段由50。A0对-碱T基、组(DT成N,-AAA+-、DT占NC碱A-基)G总、数的G34-%C,该ACD-NUA片(、D段N复TA制-2-AR次、,N共AC需)-游G离、的胞G嘧-啶AG脱--(氧UCR核、N苷AU酸--R分AN、AC) -G、
大学生物化学课件蛋白质的生物合成
核糖体结合的分子伴侣
非核糖体结合性分子伴侣— 热休克蛋白 伴侣蛋白
(1)热休克蛋白(heat shock protein, HSP ):
属于应激反应性蛋白,高温应激可诱导该蛋白 合成增加。
在大肠杆菌中包括HSP70, HSP40和GrpE三族
Peptidyl site (P Site)
E位
Aminoacyl site (A Site)
mRNA
肽链合成需要酶类和蛋白质因子
• 蛋白质因子: • (1)起始因子 • 原核生物 IF; 真核生物 eIF • (2)延长因子 • 原核生物 EF; 真核生物 eEF • (3)释放因子 • 原核生物 RF; 真核生物 eRF
第二节 蛋白质生物合成的过程
翻译过程从阅读框架的5’-AUG开始,按mRNA 模板三联体密码的顺序延长肽链,直至终止密码 出现。
整个翻译过程可分为三个阶段:
起始(initiation)
延长(elongation)
终止(termination)
一、肽键合成的起始(Initiation)
多肽链合成后需要逐步折叠成天然空间构象才成为有 功能的蛋白质。
时间: 新生肽链N端在核蛋白体上一出现,肽链的折叠
即开始,折叠在肽链合成中、合成后完成。
细胞中大多数天然蛋白质折叠都不是自动完 成,而需要其他酶、蛋白质辅助 :
•
分子伴侣
•
蛋白二硫键异构酶
•
肽-脯氨酰顺反异构酶
1.分子伴侣*(molecular chaperon)
需要:
转位酶(原核生物中是EFG,真核生物中是eEF-2), GTP 结果:
高中生物竞赛蛋白质的生物合成课件
将给(P)位上的肽酰基转移给受(P)位上的 氨基酰tRNA,形成肽键。具有GTPase活性, 水解GTP,获得能量。具有起始因子、延长 因子及释放因子的结合部位。
四、起始因子
这是一些与多肽链合成起动有关的 蛋白因子。原核生物中存在3种起动因子, 分别称为IF1-3。在真核生物中存在9种 起动因子(eIF)。其作用主要是促进核 蛋白体小亚基与起动tRNA及模板mRNA结 合。
Most identity elements are in the acceptor stem & anticodon loop.
anticodon loop
Aminoacyl-tRNA Synthetases arose
early in evolution. The earliest
aaRSs probably recognized tRNAs
Some amino acids are specified by 2 or more codons.
Synonyms (multiple codons for the same amino acid) in most cases differ only in the 3rd base. Similar codons tend to code for similar amino acids.
GCG Ala GAG Glu
G UGU Cys UGC Cys UGA Stop UGG Trp CGU Arg CGC Arg CGA Arg CGG Arg AGU Ser AGC Ser AGA Arg AGG Arg GGU Gly GGC Gly GGA Gly GGG Gly
3rd base
CCC Pro CAC His
人教版高一生物必修二说课课件 41 蛋白质的合成共21张PPT
虽是动手“贴”过程,但“动”的却不仅仅是手,在此过程中学生对转录的 场所、条件、原料、模板、产物有了更深刻的理解。而且培养了合作与交 流的能力!
教学背景
教学目标
(三)自主探究——转录的过程
“动眼”看过程
教法
学法
教学过程
“动手”贴过程
“动嘴”说过程 “动脑”填过程
“说”过程中会“说”出很多错误或不足,趁机引导学生自我纠正, 使学生达到不仅“知其然”还能“知其所以然”的较高层次的认知境界! 此过程能锻炼学生的语言表达能力、逻辑思维能力。
与教材的桥梁,激发学生的学习动机,培养其求知兴趣 。
教学背景
教学目标
(二)自主探究——RNA相关知识
教法
学法
设计思路: 1、学生动手合作拼出RNA的基本组成单位; 2、相互讨论归纳出DNA和RNA的不同,完成学案内容; 3、通过阅读教材,了解RNA种类及功能,为转录和翻译过程的学习埋下伏笔。
教学过程
感恩的心
感谢教研室提供机会 感谢生物组老师们给我宝贵的指导 感谢学生们的积极配合 感谢亲人们背后的默默支持 感谢各位专家和同仁们的批评指正
结语
谢谢大家!
教法
学法
教学过程
“动眼”看过程 “动手”贴过程 “动嘴”说过程 “动脑”填过程
DNA转录RNA
通过动画展示转录全过程,将抽象的内容形象化、直观化,有 助于学生从整体上初步了解转录的全过程。
教学背景
教学目标
(三)自主探究——转录的过程
“动眼”看过程
教法
学法
教学过程
“动手”贴过程 “动嘴”说过程 “动脑”填过程
是由学习者自身基于自己的经验背景而建构起来的,要让学生获得知识,必须让学生主动探究体验。 所以对于该知识点的教学,我采取充分调动学生的多种感觉器官参与到学习过程中,既安排了自主学
生化-第12章-蛋白质的生物合成(20150512)
2.方向性(direction) 起始密码子总是位于编码区5′-末端, 而终止密码子位于3′-末端,每个密码子的 三个核苷酸也是按照5′→3′方向阅读,不能 倒读。
5′ 读码方向 3′
N
肽链延伸方向
C
3.简并性(degeneracy) 遗传密码中,除色氨酸和甲硫氨酸 仅有一个密码子外,其余氨基酸均有2
参与核糖体循环的起始因子
原核生物蛋白质合成起始阶段
• • • • 起始三元复合物的形成; mRNA在小亚基定位结合; 起始氨基酰-tRNA定位在P位; 起始复合物的形成。
1.起始三元复合物的形成
2.mRNA在小亚基定位结合
SD序列(Shine-Dalgarno sequence) : 在mRNA起始密码子的上游8~13个核苷酸处有一 段4~9个核苷酸组成的富含嘌呤核苷酸的序列,以 AGGA为核心,它可与核糖体小亚基中的16S rRNA 3′-端富含嘧啶的序列(UCCU)互补。
二、肽链合成的起始
指mRNA和起始氨基酰-tRNA与核蛋白体共 同构成起始复合物 。这一过程需要起始因子 (IF)、GTP和镁离子参与。 起始氨基酰-tRNA的表示方法:tRNAiMet
真核生物: Met-tRNAiMet
原核生物: fMet-tRNAifMet
甲硫氨酸 甲酰甲硫氨酰
原核生物中的起始因子有3种: IF1直接结合到小亚基A位,阻止tRNA过早与A 位结合; IF2具有GTP酶活性,催化fMet-tRNAifMet结合 至小亚基,并阻止其它负载tRNA与小亚基结合。 IF3结合于小亚基E位,阻止小亚基与大亚基的 结合,并促进fMet-tRNAifMet结合至核糖体的P位。
NH2 A1 A2A3A4……Anp……………….Amp…………….Aup……………COOH
动物生物化学课件:蛋白质的生物合成
蛋白质的生物合成
将mRNA分子中 4 种核苷酸序列 编码的遗传信息,通过遗传密码破译的 方式解读为蛋白质一级结构中20种氨基 酸的排列顺序过程,称为蛋白质的生物 合成或翻译。
参与蛋白质生物合成的物质 蛋白质生物合成的过程
第一节 参与蛋白质生物合成的物质
参与蛋白质合成的物质
• 原料:20种氨基酸 • 模板:mRNA • 运载体:tRNA • 场所:核蛋白体(rRNA与蛋白质构成) • 蛋白质因子:
生物功能
占据A位防止结合其他tRNA 促进起始tRNA与小亚基结合 促进大、小亚基分离,提高P位对结合起始tRNA的 敏感性 促进起始tRNA与小亚基结合 最先结合小亚基促进大、小亚基分离 eIF-4F复合物成分,有解螺旋酶活性,促进mRNA 结合小亚基 结合mRNA,促进mRNA扫描定位起始tRNA eIF-4F复合物成分,结合mRNA5`-帽子 eIF-4F复合物成分,结合eIF-4E和PAB
➢ tRNA凭借自身的反密码子与mRNA链上的密码 子相识别,按照mRNA链上的密码子所决定的氨 基酸顺序将所带氨基酸转运到核糖体的特定部位。
一种氨基酸可以有一种以上tRNA作为 运载工具。通常把携带相同氨基酸而反密 码子不同的一组tRNA称为同功tRNA.
氨基酰tRNA----氨基酸的活化形式。 表示为: tRNAPhe
对应同一种氨基酸的不同密码子,称 为同义密码子。同义密码子使用频率不同.
在蛋白质中出现频率越多的氨基酸, 其密码子的数量越多。
4.密码子使用频率不同
• 在蛋白质合成时,对简并密码子的使用频率是 不同的。
• 如UUU和UUC都为苯丙氨酸编码,但在高表 达的蛋白质中使用UUC的频率明显高于UUU。
5. 密码子与反密码子配对的不严格性
蛋白质的生物合成PPT课件
第一步
氨PPi
基
E-AMP
酸
的 氨酰腺苷酸
活 第二步
AMP
E化
AA
E
tRNA
AA
E
AA
E
tRNA
AA
3-氨酰-tRNA
tRNA
E
活化反应方程式:
氨基酸 + ATP
酶/ Mg2+
氨酰AMP-酶 + PPI
氨酰AMP-酶
氨酰tRNA + AMP + 酶
tRNA
一个氨基酸活化需要消耗2个高能磷酸键
氨酰- tRNA合成酶特点 专一性:对氨基酸有极高的专一性,每种
中心法则总结了生物体内遗传信息的流动规律,揭示遗传的分 子基础,不仅使人们对细胞的生长、发育、遗传、变异等生 命现象有了更深刻的认识,而且以这方面的理论和技术为基 础发展了基因工程,给人类的生产和生活带来了深刻的革命 。
遗 DNA
传
信
息
流
mRNA
动
示
核糖体
意
图
tRNA
第一节 RNA在蛋白质生物 合成中的重要功能
tRNA的功能
(一)被特定的氨酰- tRNA合成酶识别, 使tRNA接受正确的活化氨基酸。
(二)识别mRNA链上的密码子。
(三)在蛋白质合成过程中,tRNA起着 连结生长的多肽链与核糖体的作用。
(一)、接受正确的活化氨基酸
氨基酸 + ATP
酶/ Mg2+
氨酰AMP-酶 + PPi
氨酰AMP-酶
tRNA
合成蛋白质 ③ 被蛋白质合成的起始因子所识别,从
而促进蛋白质的合成。
AAAAAAA-OH
蛋白质生物合成PPT课件演示教学.ppt
缬 丙 酪 甘
缬 丙 丝 精
3. 简并性(degeneracy)
1. 核糖体大小亚基分离; 2. 核糖体小亚基结合于mRNA的起始密码子附近; 3. fMet-tRNAfMet结合在核糖体P位 ; 4. 核糖体大亚基结合形成起始复合物。
一、翻译起始复合物的装配启动肽链合成
(a)起始复合物的装配过程;(b)rRNA识别mRNA的核糖体结合位点,保证翻译起始在起始密码子处
密码子(codon)
起始密码子和终止密码子:
遗传密码表
遗传密码的特点
1. 方向性(directional)
翻译时遗传密码的阅读方向是5→3,即读码从mRNA的起始密码子AUG开始,按5→3的方向逐一阅读,直至终止密码子。
N
C
肽链延伸方向
5
3
读码方向
2. 连续性(non-punctuated)
23S-rRNA 5S-rRNA
18S-rRNA
28S-rRNA 5.8S-rRNA 5S-rRNA
蛋白质
rpS 21种
rpL 36种
rpS 33种
rpL 49种
不同细胞核蛋白体的组成
核蛋白体的组成
核糖体在翻译中的功能部位
四、肽链生物合成需要酶类和 蛋白质因子
氨基酰-tRNA合成酶(aminoacyltRNA synthetase),催化氨基酸的活化; 转肽酶(peptidase),催化核蛋白体P位上的肽酰基转移至A位氨基酰-tRNA的氨基上,使酰基与氨基结合形成肽键;并受释放因子的作用后发生变构,表现出酯酶的水解活性,使P位上的肽链与tRNA分离; 转位酶(translocase),催化核蛋白体向mRNA3’-端移动一个密码子的距离,使下一个密码子定位于A位。
生物化学第十二章-蛋白质的生物合成
第十二章蛋白质的生物合成一、蛋白质生物合成体系:生物体内的各种蛋白质都是生物体利用约20种氨基酸为原料自行合成的。
蛋白质的生物合成过程,就是将DNA传递给mRNA的遗传信息,再具体的解译为蛋白质中氨基酸排列顺序的过程,这一过程被称为翻译(translation)。
参与蛋白质生物合成的各种因素构成了蛋白质合成体系,该体系包括:1.mRNA:作为指导蛋白质生物合成的模板。
mRNA中每三个相邻的核苷酸组成三联体,代表一个氨基酸的信息,此三联体就称为密码。
共有64种不同的密码。
遗传密码具有以下特点:①连续性;②简并性;③通用性;④方向性;⑤摆动性;⑥起始密码:AUG;终止密码:UAA、UAG、UGA。
2.tRNA:在氨基酸tRNA合成酶催化下,特定的tRNA可与相应的氨基酸结合,生成氨基酰tRNA,从而携带氨基酸参与蛋白质的生物合成。
tRNA反密码环中部的三个核苷酸构成三联体,可以识别mRNA上相应的密码,此三联体就称为反密码。
反密码对密码的识别,通常也是根据碱基互补原则,即A—U,G—C配对。
但反密码的第一个核苷酸与第三核苷酸之间的配对,并不严格遵循碱基互补原则,这种配对称为不稳定配对。
能够识别mRNA中5′端起动密码AUG的tRNA称为起动tRNA。
在原核生物中,起动tRNA是tRNAfmet;而在真核生物中,起动tRNA是tRNAmet。
3.rRNA和核蛋白体:原核生物中的核蛋白体大小为70S,可分为30S小亚基和50S大亚基。
真核生物中的核蛋白体大小为80S,也分为40S小亚基和60S大亚基。
核蛋白体的大、小亚基分别有不同的功能:⑴小亚基:可与mRNA、GTP和起动tRNA结合。
⑵大亚基:①具有两个不同的tRNA结合点。
A位——受位或氨酰基位,可与新进入的氨基酰tRNA 结合;P位——给位或肽酰基位,可与延伸中的肽酰基tRNA结合。
②具有转肽酶活性。
在蛋白质生物合成过程中,常常由若干核蛋白体结合在同一mRNA分子上,同时进行翻译。
12-蛋白质的生物合成-12
蛋白质的生物合成过程
蛋白质生物合成是一个复杂而重要的生命活动,它在细胞中有粗细的 结构基础,进行得十分迅速有效,是依靠分子水平上的严密组织和准确 控制进行的。 蛋白质合成不仅要有合成的场所,而且还必须有mRNA、tRNA、 20种氨基酸原料和一些蛋白质因子及酶。Mg、K+离子等参与,并由 ATP、GTP提供能量,合成中mRNA是编码2合成蛋白质的模板,tRNA 是识别密码子,转运相应氨基酸的工具。核糖体则是蛋白质的装配机, 它不仅组织了mRNA和rRNA的相互识别,将遗传密码翻译成蛋白质的 氨基酸顺序,并且控制了多肽链的形成,下面看看真核细胞中蛋白质合 成的主要步骤,是怎样在细胞内超微结构水平上进行的。
任何生物的核糖体都是由大、小两个亚基组成。1968年 已在体外对大肠杆菌小亚基进行了自我装配研究,加入 16s rRNA和21种蛋白质,即可形成有天然活性的30s小亚 基。
原核(70S) : 55种蛋白质 50S(大亚基) 23S,5S RNAS+ 34种蛋白质 30S(小亚基) 16S RNA + 21种蛋白质 真核(80S) : 78种蛋白质 60S(大亚基) 28S,5.8S,5SRNA+ 45种蛋白质 40S(小亚基) 33种蛋白质,+ 18SRNA
tRNA tRNA是氨基酸的运载工具 tRNA在蛋白质生物合成过程中起关键作用。mRNA 推带的遗传信息被翻译成蛋白质一级结构,但是mRNA分 子与氨基酸分子之间并无直接的对应关系。这就需要经过 第三者“介绍”,而tRNA分子就充当这个角色。
tRNA分子中富含稀有 碱基和修饰碱基,tRNA分 子3'端均为CCA序列,氨 基酸分子通过共价键与A结 合,此处的结构也叫氨基 酸臂。每种氨基酸都有2-6 种各自特异的tRNA,它们 之间的特异性是靠氨基酰 tRNA合成酶来识别的。
蛋白质的生物合成(共74张PPT)
tRNASu3+Tyr反密码子为CUA,能识别变异 产生的终止密码子UAG。
三、氨酰-tRNA合成酶
❖ 氨基酸在掺入肽链前,必须活化生成氨酰tRNA,获得足够的能量。
❖ 活化反应由各种氨酰-tRNA合成酶(AARS) 催化。
A.氨酰-tRNA
氨基酰-tRNA合成酶
氨基酸 + tRNA
❖ 包括:氨酰-tRNA与核糖体结合,转肽 与肽键形成和转位三个步骤。
肽链合成的延长因子
(一) 进位
Tu GTsTP
Tu GDP
Ts
GTP
5'
AUG
3'
目录
Ts 移走GDP,并与Tu 结合生成Tu-Ts复合体, 然后GTP替换Ts,生 成有活性的Tu-GTP
Poly(U) Poly(C) Poly(A) Poly(G)
poly(Phe) peptide
无细胞抽取物
poly(Pro) peptide poly(Lys) peptide poly(Gly) peptide
•核糖体 •各种tRNA •氨基酸 •AARS
•ATP, GTP
+ mRNA = 蛋白质
氨基酰- tRNA
ATP
AMP+PPi
B. 氨酰-tRNA合成酶特点
a、专一性:
•对氨基酸有极高的专一性,每种氨基酸都有专 一的酶,只作用于L-氨基酸,不作用于D-氨基酸。
•对tRNA具有极高专一性:一种AARS只能识别装
载同一种氨基酸的一组同工受体(tRNA分子)
b、校对作用:
• AARS具有底物结合位点(包括tRNA、氨 基酸和ATP结合位点)和水解位点。
5'
动物医学《基础生物化学-蛋白质的生物合成-翻译》课件
SD 序列
A purine-rich Shine-Dalgarno sequence and a AUG codon marks the start site of polypeptide synthesis on bacterial mRNA molecules.
AMP + E
氨基酰-tRNA表示方法:Ser-tRNASer
tRNA与酶结合的模型
tRNA
ATP 氨基酰-tRNA合成酶
氨基酰-tRNA合成酶的特点
氨基酰-tRNA合成酶具有高度特异性, 能够专一识别底物氨基酸和tRNA,保 证了翻译的准确无误。
催化氨基酰-tRNA脱酰基,具有校正活 化过程中可能发生的错误 。
第三步:核糖体大亚基结 合,起始复合物形成
30S复合物释放IF3后,与大亚基结合; IF2结合的GTP被水解,IF1、IF2均脱离。 50S大亚基与30S小亚基、模板mRNA以及
起始fMet-tRNAfMet构成起始复合体。
E
IF-1 IF-1
E
真核细胞的合成起始
起始氨基酸是Met,由特殊的tRNA携带 为Met-tRNAi
P位
A位
二肽酰-tRNA
(fMet成为N末端)
A位
A位成肽后,P位留下空载tRNA
③ 移位
无负荷的tRNA由E位点释放; 肽酰tRNA从A位移到P位; EF-G有转位酶活性,可结合并水解 1
分子GTP,促进核糖体向mRNA的3' 侧移动。
进 位
转肽 移 位
4. 肽链合成的终止
氨基酸进位,肽链形成和延伸,核糖体沿着mRNA的 5’——3’ 方向移位,循环往复,新合成的肽链由N端向 着C端不断延长,直至mRNA上出现终止密码,就没有 氨基酰-tRNA再进入A位点,肽链的合成终止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缬
丙
酪
甘
缬
丙
丝
精
缬
脯
苏
天冬
3. 简并性
AUG
UAA UAG
UGA
4. 通用性
从简单的病毒到高等的人类,几乎使 用同一套遗传密码,因此,遗传密码表中 的这套“通用密码”基本上适用于生物界 的所有物种,具有通用性。
密Hale Waihona Puke 的通用性进一步证明各种生物进 化自同一祖先。
5. 摆动性
反密码子与密码子之间的配对有时并不严格 遵守常见的碱基配对规律,这种现象称为摆动配 对。例如:*次黄嘌呤(insosine,I)常出现于 反密码子第一位,是最常见的摆动现象。
N-甲酰甲硫氨酸(fmet)的合成
第三节 肽链的生物合成过程
The Biosynthesis Process of Peptide Chain
翻译过程分为三个阶段 一、翻译的起始 二、翻译的延长 三、翻译的终止
以原核生物为例
一、翻译的起始
翻译起始是把带有甲酰甲硫氨酸的起始tRNA连同 mRNA结合到核蛋白体上,生成翻译起始复合物 (translational initiation complex),此过程需要多种起始 因子的参与。
第一步反应
氨基酸 +ATP-E
氨基酰-AMP-E + PPi
第二步反应
氨基酰-AMP-E + tRNA 氨基酰-tRNA + AMP + E
▪ 氨基酰-tRNA的表示方法:
Ala-tRNAAla Ser-tRNASer Met-tRNAMet
(二)起始肽链合成的氨基酰-tRNA
真核生物: Met-tRNAiMet 原核生物: fMet-tRNAifMet
(exit site)
目录
三、tRNA是氨基酸的运载工具及蛋白质 生物合成的适配器
氨基酸臂
反密码环
四、蛋白质生物合成需要酶类、 蛋白质因子等
(一)重要的酶类
➢ 氨基酰-tRNA合成酶 ➢ 转肽酶 ➢ 转位酶
(二)蛋白质因子
➢ 起始因子(initiation factor,IF)
➢ 延长因子(elongation factor,EF)
tRNA反密码子 第1位碱基
mRNA密码子 第3位碱基
I
U
G AC
U, C, A A, G U, C U G
摆 动 配 对
321
U
123
二、核蛋白体是肽链合成的场所
70S
80S
30S
40S
50S
60S
原核生物翻译过程中核蛋白体结构模式:
P位:肽酰位 (peptidyl site) A位:氨基酰位 (aminoacyl site) E位:排出位
EF-Ts EF-G
RF-1 RF-2 RF-3
调节亚基
有转位酶活性,促进mRNA-肽酰-tRNA由A位移至 P位,促进tRNA卸载与释放
特异识别UAA、UAG,诱导转肽酶转变为酯酶
特异识别UAA、UGA,诱导转肽酶转变为酯酶
可与核蛋白体其他部位结合,有GTP酶活性,能介 导RF-1及RF-2与核蛋白体的相互作用
* 遗传密码的特点
(一)方向性 (directional) (二)连续性( non-punctuated ) (三)简并性(degeneracy) (四)摆动性(wobble) (五)通用性(universal)
1. 方向性
翻译时遗传密码的阅读方向是5’→3’,即读 码从mRNA的起始密码子AUG开始,按5’→3’ 的方向逐一阅读,直至终止密码子。
➢ 释放因子(release factor,RF)
参与原核生物翻译的各种蛋白质因子及其生物学功能
种类 起始因子
延长因子
释放因子
生物学功能
IF-1 占据A位防止结合其他tRNA
IF-2 促进起始tRNA与小亚基结合
IF-3 促进大小亚基分离,提高P位对结合起始tRNA的敏 感性
EF-Tu 促进氨基酰-tRNA进入A位,结合并分解GTP
一、mRNA是蛋白质生物合成的直接模板
mRNA的基本结构
Start of genetic message Cap
5
5’-端非翻译区 开放阅读框架
End
Tail
3
3’-端非翻译区
从mRNA 5-端起始密码子AUG到3-端终止密 码子之间的核苷酸序列,称为开放阅读框架 (open reading frame, ORF)。
12蛋白质生物合成
精品
*翻译(translation)指以新生的mRNA 为模板,把核酸中由A、G、C、U四种 符号组成的遗传信息,破译为蛋白质分 子中20种氨基酸排列顺序。
第一节 蛋白质生物合成体系
Protein Biosynthesis System
*蛋白质生物合成体系
• 模板: mRNA • 原料:20种编码氨基酸 • 氨基酸运载体:tRNA • 场所:核蛋白体 • 酶:氨基酰-tRNA合成酶、 转肽酶 • 蛋白质因子:IF、EF、 RF • 能量(ATP、GTP) • 无机离子(Mg2+、K+)
第二节 氨基酸的活化
Activation of Amino Acids
一、 氨基酸活化形成氨基酰-tRNA
Mg2+
氨基酸+ATP+tRNA
氨基酰-tRNA+AMP+ppi
氨基酰-tRNA合成酶
氨基酰-tRNA合成酶具有绝对专一性,对氨基酸、tRNA 两种底物都能高度特异性地识别。
氨基酰-tRNA合成酶具有校正活性。
原核生物起始复合物的生成
1. 核蛋白体亚基的分离
2. mRNA在核蛋白体小亚基上就位
3. fmet-tRNAf的结合
➢原核生物的多顺反子
5 PPP
3
➢真核生物的单顺反子
5 mG - PPP
蛋白质
AAA … 3
蛋白质
非编码序列
核蛋白体结合位点
编码序列 起始密码子 终止密码子
遗传密码
➢密码子(codon) 开放阅读框架内每3个碱基组成的三联体,决
定一个氨基酸,称为遗传密码。
➢起始密码子和终止密码子: 起始密码子(initiation codon):AUG 终止密码子(termination codon) :UAA、UAG、UGA
读码方向
5′
3′
N
C
肽链延伸方向
2. 连续性 编码蛋白质氨基酸序列的各个三联体密
码连续阅读,密码子及密码子的各碱基之间 既无间隔也无交叉。
5’…….A U G G C A G U A C A U …… U A A 3’
Met Ala Val His
终止密码
基因损伤引起mRNA阅读框架内的碱基发生插入 或缺失,可能导致框移突变(frameshift mutation)。