气象因子与空气质量监测预报的关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气象因子与空气质量监测预报的关系

摘要从空气污染物浓度分布特征,对气象因子与污染物浓度进行相关性分析,建立污染物浓度的预报线性回归方程,并对回归方程预报效果进行历史资料检验。

关键词气象因子;空气质量;监测;预报

随着我国的经济发展,人民生活水平的提高,空气环境质量越来越引起人们的关注,空气质量的预报已成为城市居民新的需求。近年来,石河子市东、西、南、北4个热电厂的建成投运,给城市空气质量构成了巨大的压力。石河子市环境监测站2003年6月安装了环境空气质量自动监测系统,开始对城市环境空气质量进行自动监测。笔者利用该站2005~2006年2a的空气质量监测数据,对主要污染物二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物(PM10)的浓度分布特征进行分析,以及石河子气象站所对应时间的气象资料,找出与污染物浓度相关性好的气象因子,做出多元线性回归方程;然后在微型计算机上输入第2天气象因子的预报值,计算出第2天二氧化硫、二氧化氮、可吸入颗粒物预报值,做出空气质量监测预报。

1污染物浓度分布特征

从2a资料中发现二氧化硫日平均最大值为0.132mg/m3,最小值0.002mg/m3,最大值是最小值的66倍;二氧化氮最大值0.056mg/m3,最小值0.001mg/m3,最大值是最小值的56倍;可吸入颗粒物最大值0.712mg/m3,最小值0.013mg/m3,最大值是最小值的55倍。由此可知,污染物浓度变化非常之大。经测算,2005~2006年石河子市空气综合污染指数均为1.28,按环境空气分级标准属清洁级,环境质量状况良好。

1.1污染物浓度分布

目前我国空气质量监测常规项目有二氧化硫、二氧化氮、可吸入颗粒物的浓度,图1~3是2005~2006年石河子市二氧化硫、二氧化氮、可吸入颗粒物浓度月平均值分布曲线,3条曲线都可以近似为具有单峰单谷曲线。二氧化硫和可吸入颗粒物曲线走向较一致,冬季浓度比夏季高,最高值出现在1月和12月,极值分别为0.056mg/m3和0.118mg/m3;最低值出现在6月和7月,分别为0.011mg/m3和0.046 mg/m3。三种污染物月平均最高值和最低值的比分别是二氧化硫为5.1倍、二氧化氮为4.7倍、可吸入颗粒物为2.6倍,其中可吸入颗粒物为首要污染

物。

图4、图5分别是2006年7月1日和12月1日石河子市二氧化硫、二氧化氮、可吸入颗粒物0时至23时浓度日分布图示。从图中可以看出:二氧化硫日分布在夏季有1个峰值,出现在时间14时,对应值为0.060mg/m3,其余时间浓度轻低,最大值是最小值的10倍;二氧化硫日分布的冬季较零乱,没有一定的规律,最高值为0.056mg/m3,最大值是最小值的3.1倍。二氧化氮日分布在夏季较零乱,没有一定的规律,最高值为0.036mg/m3,最大值是最小值的9倍;二氧化氮日分布在冬季较均衡,最高值为0.015mg/m3,最大值是最小值的1.4倍。可吸入颗粒物在夏季有2个明显的峰值,分别在凌晨1时和上午10时,峰值分别为0.078mg/m3和0.102mg/m3,极值是最小值的3.6倍;可吸入颗粒物在夏季最高值为0.092mg/m3,分布较为均匀,最大值是最小值的1.8倍,且较浓度夏季明显偏高,主要是由于采暖期锅炉燃煤造成。

1.2影响因素

空气污染超标现象集中出现在冬季采暖期和春季,在这种天气条件下易受以下因素的影响而加重污染程度。

(1)湿度的影响。当寒冷季节、气温较低、湿度较大时,水蒸气容易以尘微粒和气溶胶为凝结核形成雾,使污染物粒子变重而下沉,生成沉积和沉降或聚集在低层大气中,阻碍烟气的扩散,加重空气的污染,使大气能见度降低。

(2)逆温的影响。逆温层是一个十分稳定的层次,它的存在像个盖子似的阻碍污染物向上扩散。逆温往往伴随着小风或无风状态,污染物不易扩散、稀释,从而使近地面的污染物浓度增加。逆温层常出现在冬、秋季,强度最大、持续时间最长,且在一天当中,夜间逆温强度最大。

(3)燃煤影响。冬季空气污染较重,其原因主要是冬季为燃煤开放期,燃煤量增大,烟尘和二氧化硫等污染物排放量随之增大,造成污染加重。

(4)沙(浮)尘天气影响。春季多发生大风天气,降水量少,冰雪融化后,黄土裸露,植物尚未进入完叶期,阻风能力弱,造成沙尘和地面扬尘污染。根据气象资料,扬沙、沙尘暴、浮尘天气主要集中在4~5月,2005年4月4日石河子垦区发生了一次沙尘天气,沙尘波及到市区,导致4月可吸入颗粒物、降尘均超标。造成此次浮尘天气的主要原因是开春后天气明显升温,地面干燥、裸露,加之风力的影响,尘土飞扬,形成浮尘污染。

2气象因子与污染物浓度的相关性分析

污染物浓度除了受排放量的变化影响之外,另一主要影响因素就是气象因子的变化。多元回归方法关键点是寻找与污染浓度相关性好的气象因子且气象因子之间相关性要小。污染物浓度取日平均值,气象因子也取日平均值。风向是矢量,风速是标量,把东定义为X轴正向、西定义为Y轴正向,把每个时次10min平均风速按10min平均风向分解为X轴(VX)利Y轴(VY)两个方向上的分量,再进行日平均,这样就把风向风速化为标量。Td-T850为8时地面气温减850hPa 气温的差值。资料进行上述处理后计算相关性系数。对相关系数r做显著性检验,在显著水平α=0.05时,γ0.05=0.07,当|r|≥0.07可认为相关。气象因子间相关系数大于0.5可认为相关性好,取便于预报的因子。经过上述步骤后,所选的气象因子与污染物浓度单相关系数见表1。

从表1可知:日最高气温与二氧化硫浓度呈负相关,与二氧化氮浓度呈正相关,与可吸入颗粒物浓度不相关。二氧化硫浓度与风速呈负相关与风向不相关;二氧化氮浓度与西南风呈正相关,与风速不相关;可吸入颗粒物浓度与风向不相关,与风速呈负相关。降水量与二氧化硫、可吸入颗粒物浓度呈负相关,与二氧化氮浓度呈正相关。Td-T850可以代表850hPa以下的层结稳定状况,表中二氧化氮浓度与其呈正相关,二氧化硫浓度和可吸入颗粒物浓度与其呈负相关。相对湿度与二氧化硫浓度和可吸入颗粒物浓度呈负相关性,与二氧化氮浓度不相关。

3污染物浓度的预报回归方程

在建立回归方程时,气象因子从表1中选取与其相关性较好的因子。当|r|≥0.1时,可认为相关性较好,此因子可选为预报因子。根据这一原则,建立各污染物浓度(P)方程如下:

SO2浓度P=0.095 85-0.000 47Th-0.004 84V-0.000 15RR-0.001 27△T-0.00040U;

NO2浓度P=0.027 51+0.000 41Th+0.000 93VX+0.001 02VY+0.000 07△T;

PM10浓度P=0.135 00-0.007 14V-0.000 48RR-0.002 43△T-0.000 27U。

4预报流程

相关文档
最新文档