数字信号处理器原理及应用PPT全套课件
合集下载
《数字信号处理》课件
特点
数字信号处理具有精度高、稳定性好、灵活性大、易于实现和可重复性好等优 点。它克服了模拟信号处理系统中的一些限制,如噪声、漂移和温度变化等。
数字信号处理的重要性
数字信号处理是现代通信、雷达、声 呐、语音、图像、控制、生物医学工 程等领域中不可或缺的关键技术之一 。
随着数字技术的不断发展,数字信号 处理的应用范围越来越广泛,已经成 为现代信息处理技术的重要支柱之一 。
04 数字信号变换技术
CHAPTER
离散余弦变换
总结词
离散余弦变换(DCT)是一种将离散信号变换到余弦函数基 的线性变换。
详细描述
DCT被广泛应用于图像和视频压缩标准,如JPEG和MPEG, 因为它能够有效地去除信号中的冗余,从而减小数据量。 DCT通过将信号分解为一系列余弦函数的和来工作,这些余 弦函数具有不同的大小和频率。
雷达信号处理
雷达目标检测
利用数字信号处理技术对雷达回 波数据进行处理和分析,实现雷 达目标检测和跟踪。
雷达测距和测速
通过数字信号处理技术,对雷达 回波数据进行处理和分析,实现 雷达测距和测速。
雷达干扰抑制
利用数字信号处理技术对雷达接 收到的干扰信号进行抑制和滤除 ,提高雷达的抗干扰能力。
谢谢
THANKS
《数字信号处理经典》ppt课 件
目录
CONTENTS
• 数字信号处理概述 • 数字信号处理基础知识 • 数字滤波器设计 • 数字信号变换技术 • 数字信号处理的应用实例
01 数字信号处理概述
CHAPTER
定义与特点
定义
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及信号的获 取、表示、变换、分析和综合的理论和技术。它以数字计算为基础,利用数字 计算机或其他数字硬件来实现信号处理的方法。
数字信号处理具有精度高、稳定性好、灵活性大、易于实现和可重复性好等优 点。它克服了模拟信号处理系统中的一些限制,如噪声、漂移和温度变化等。
数字信号处理的重要性
数字信号处理是现代通信、雷达、声 呐、语音、图像、控制、生物医学工 程等领域中不可或缺的关键技术之一 。
随着数字技术的不断发展,数字信号 处理的应用范围越来越广泛,已经成 为现代信息处理技术的重要支柱之一 。
04 数字信号变换技术
CHAPTER
离散余弦变换
总结词
离散余弦变换(DCT)是一种将离散信号变换到余弦函数基 的线性变换。
详细描述
DCT被广泛应用于图像和视频压缩标准,如JPEG和MPEG, 因为它能够有效地去除信号中的冗余,从而减小数据量。 DCT通过将信号分解为一系列余弦函数的和来工作,这些余 弦函数具有不同的大小和频率。
雷达信号处理
雷达目标检测
利用数字信号处理技术对雷达回 波数据进行处理和分析,实现雷 达目标检测和跟踪。
雷达测距和测速
通过数字信号处理技术,对雷达 回波数据进行处理和分析,实现 雷达测距和测速。
雷达干扰抑制
利用数字信号处理技术对雷达接 收到的干扰信号进行抑制和滤除 ,提高雷达的抗干扰能力。
谢谢
THANKS
《数字信号处理经典》ppt课 件
目录
CONTENTS
• 数字信号处理概述 • 数字信号处理基础知识 • 数字滤波器设计 • 数字信号变换技术 • 数字信号处理的应用实例
01 数字信号处理概述
CHAPTER
定义与特点
定义
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及信号的获 取、表示、变换、分析和综合的理论和技术。它以数字计算为基础,利用数字 计算机或其他数字硬件来实现信号处理的方法。
《DSP原理及应用》电子教案全套课件
第1章 绪论
1.1 数字信号处理概述 1.2 数字信号处理器概述
1.1 数字信号处理概述
1.1.1 数字信号处理系统的构成 1.1.2 数字信号处理的实现 1.1.3 数字信号处理的特点
返回首页
1.1.1 数字信号处理系统的构成
图1-1 典型的数字信号处理系统
返回本节
1.1.2 数字信号处理的实现
返回本节
图2-1 TMS320C54x DSP的内部硬件组成框图2
2.2 TMS320C54x的总线结构
TMS320C54x DSP采用先进的哈佛结构并具有八 组总线,其独立的程序总线和数据总线允许同时 读取指令和操作数,实现高度的并行操作。 采用各自分开的数据总线分别用于读数据和写数 据,允许CPU在同一个机器周期内进行两次读操 作数和一次写操作数。独立的程序总线和数据总 线允许CPU同时访问程序指令和数据。
返回首页
存储器 64 K字程序存储器、64 K字数据存储器以及64 K 字 I/O 空间。在 C548、C549、C5402、C5410 和 C5420中程序存储器可以扩展。
指令系统 单指令重复和块指令重复操作。 块存储器传送指令。 32位长操作数指令。 同时读入两个或3个操作数的指令。 并行存储和并行加载的算术指令。 条件存储指DSP芯片的主要特点
1.哈佛结构 2.多总线结构 3.指令系统的流水线操作 4.专用的硬件乘法器 5.特殊的DSP指令 6.快速的指令周期 7.硬件配置强
时钟 取指 译码 取操作数 执行 N N-1 N-2 N-3 N+1 N N-1 N-2 N+2 N+1 N N-1 N+3 N+2 N+1 N
1.1 数字信号处理概述 1.2 数字信号处理器概述
1.1 数字信号处理概述
1.1.1 数字信号处理系统的构成 1.1.2 数字信号处理的实现 1.1.3 数字信号处理的特点
返回首页
1.1.1 数字信号处理系统的构成
图1-1 典型的数字信号处理系统
返回本节
1.1.2 数字信号处理的实现
返回本节
图2-1 TMS320C54x DSP的内部硬件组成框图2
2.2 TMS320C54x的总线结构
TMS320C54x DSP采用先进的哈佛结构并具有八 组总线,其独立的程序总线和数据总线允许同时 读取指令和操作数,实现高度的并行操作。 采用各自分开的数据总线分别用于读数据和写数 据,允许CPU在同一个机器周期内进行两次读操 作数和一次写操作数。独立的程序总线和数据总 线允许CPU同时访问程序指令和数据。
返回首页
存储器 64 K字程序存储器、64 K字数据存储器以及64 K 字 I/O 空间。在 C548、C549、C5402、C5410 和 C5420中程序存储器可以扩展。
指令系统 单指令重复和块指令重复操作。 块存储器传送指令。 32位长操作数指令。 同时读入两个或3个操作数的指令。 并行存储和并行加载的算术指令。 条件存储指DSP芯片的主要特点
1.哈佛结构 2.多总线结构 3.指令系统的流水线操作 4.专用的硬件乘法器 5.特殊的DSP指令 6.快速的指令周期 7.硬件配置强
时钟 取指 译码 取操作数 执行 N N-1 N-2 N-3 N+1 N N-1 N-2 N+2 N+1 N N-1 N+3 N+2 N+1 N
《数字信号处理技术》PPT课件
为便于数学处理,对截断信号做周期延拓,得到虚拟的 无限长信号。
§14.4 信号的截断、能量泄露
周期延拓后的信号与真实信号是不同的,下面从数学的角 度来看这种处理带来的误差情况。
设有余弦信号x(t),用矩形窗函数w(t)与其相乘,得到截 断信号:y(t) =x(t)w(t)
将截断信号谱 XT(ω)与原始信号谱X(ω)相比较可知,它已 不是原来的两条谱线,而是两段振荡的连续谱. 原来集中在f0处
a) 多种多样的工业用计算机。
§14.1 数字信号处理概述
2) 计算机软硬件技术发展的有力推动
b) 灵活、方便的计算机虚拟仪器开发系统
§14.1 数字信号处理概述
案例:铁路机车FSK信号检测与分析
京广线计划提速到200公里/小时 合作任务:机车状态信号识别(频率解调)
§14.2 模数(A/D)和数模(D/A)
§14.3 采样定理
2 采样定理
A/D采样前的抗混迭滤波:
对象
物理信号
传 感 器
电信号
放 大 调 制
电信号
A/D 转换
数字信号
展开
放大
低通滤波 (0~Fs/2)
§14.3 采样定理
用计算机进行测试信号处理时,不可能对无限长的 信号进行测量和运算,而是取其有限的时间片段进行分析, 这个过程称信号截断。
1、数字信号处理的主要研究内容
数字信号处理主要研究用数字序列来表示测试信号,并 用数学公式和运算来对这些数字序列进行处理。内容包括数字 波形分析、幅值分析、频谱分析和数字滤波。
A
X(0)
X(1)
0
t
X(2)
E
1 N
X
i
X(3)
X(4)
§14.4 信号的截断、能量泄露
周期延拓后的信号与真实信号是不同的,下面从数学的角 度来看这种处理带来的误差情况。
设有余弦信号x(t),用矩形窗函数w(t)与其相乘,得到截 断信号:y(t) =x(t)w(t)
将截断信号谱 XT(ω)与原始信号谱X(ω)相比较可知,它已 不是原来的两条谱线,而是两段振荡的连续谱. 原来集中在f0处
a) 多种多样的工业用计算机。
§14.1 数字信号处理概述
2) 计算机软硬件技术发展的有力推动
b) 灵活、方便的计算机虚拟仪器开发系统
§14.1 数字信号处理概述
案例:铁路机车FSK信号检测与分析
京广线计划提速到200公里/小时 合作任务:机车状态信号识别(频率解调)
§14.2 模数(A/D)和数模(D/A)
§14.3 采样定理
2 采样定理
A/D采样前的抗混迭滤波:
对象
物理信号
传 感 器
电信号
放 大 调 制
电信号
A/D 转换
数字信号
展开
放大
低通滤波 (0~Fs/2)
§14.3 采样定理
用计算机进行测试信号处理时,不可能对无限长的 信号进行测量和运算,而是取其有限的时间片段进行分析, 这个过程称信号截断。
1、数字信号处理的主要研究内容
数字信号处理主要研究用数字序列来表示测试信号,并 用数学公式和运算来对这些数字序列进行处理。内容包括数字 波形分析、幅值分析、频谱分析和数字滤波。
A
X(0)
X(1)
0
t
X(2)
E
1 N
X
i
X(3)
X(4)
数字信号处理基础pptDSP第01章
例1-10 h(n)= anu(n) 该系统是因果系统,当0< |a| < 1时系统稳定
§1.4 N阶线性常系数差分方程
无限脉冲响应系统(IIR, Infinite Impulse Response)
M
N
y(n) bm x(n m) ak y(n k),ak、bm是常数
m0
k 1
ak有非零值
n的有效
有效
n的有效
区间范围 数据长度 区间范围
有效 数据长度
x(n) [0, M1]
M
h(n) [0, N1]
N
y(n) [0, MN2] MN1
[nxl, nxu]
[nhl, nhu]
[nxl nhl, nxu nhu]
nxunxl1
nhunhl1
nxu nhu nxlnhl1
x(n)={1, 2, 3},0 n 2, M = 3 h(n)={1, 2, 2, 1},0 n 3, N = 4 y(n)={1, 4, 9, 11, 8, 3},0 n 5,M N 1 = ulse Response)
M
y(n) bm x(n m)
m0
差分方程的求解方法 ➢时域方法
例1-8 T[ x1(n)] nx1(n) x1(n 1) 3 T[ x2 (n)] nx2 (n) x2 (n 1) 3 T[ax1(n) bx2 (n)] n[ax1(n) bx2 (n)] ax1(n 1) bx2 (n 1) 3
≠ aT[ x1(n)] bT[ x2 (n)] n[ax1(n) bx2(n)] ax1(n 1) bx2(n 1) 3(a b)
T[ax1(n) bx2 (n)] aT[ x1(n)] bT[ x2(n)]
《数字信号处理原理》PPT课件
•Digital signal and image filtering
•Cochlear implants
•Seismic analysis
•Antilock brakes
•Text recognition
•Signal and image compression
•Speech recognition
•Encryption
•Satellite image analysis
•Motor control
•Digital mapping
•Remote medical monitoring
•Cellular telephones
•Smart appliances
•Digital cameras
•Home security
Upper Saddle River, New Jersey 07458
All rights reserved.
FIGURE 1-4 Four frames from high-speed video sequence. “ Vision Research, Inc., Wayne, NJ., USA.
Joyce Van de Vegte Fundamentals of Digital Signal Processing
ppt课件
11
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Joyce Van de Vegte Fundamentals of Digital Signal Processing
数字信号处理器(DSP)原理与应用.ppt
数字信号处理的实现方法
实现方法 PC机 高级语言 编程 速度 中等 快 慢 应用场合 非嵌入式 非嵌入式 嵌入式 适应性 复杂算法 复杂算法 简单算法
Tianjin University
性价比 较好 中等 较好
PC机+高 速处理
单片机
硬件+ 专用指令
汇编语言 编程
通用DSP
专用DSP
专用指令
硬件+ 专用指令
•机器人视觉
•图像传输/压缩 •同态处理 •模式识别 •工作站
•动画/数字地图
Tianjin University
DSP芯片的主要应用领域
(1)信号处理
•频谱分析
(2)图像处理
•函数发生器
•模式匹配 •地震信号处理 •数字滤波 •锁相环
(3)仪器
(4)声音/语言 (5)控制 (6)军事应用 (7)电信 (8)无线电
MIPS(Million Instruction per second)是 一种评估DSP速度的一个指标。DSP运行频率也 是评估DSP的一个指标,他们二者之间的联系 需要考虑到DSP体系结构(是否多路并行结构、 是执行定点还是浮点运算)。
Tianjin University
价格 商业级 :一般应用;适用于实验室等环境较好 场合; 工业级 :可靠性好;适用于工业现场等环境恶 劣场合; 军品 :可靠性高;适用于各种恶劣场合; 航空级 :可靠性很高;适用于特殊场合;
Tianjin University
血压计
DSP系统基本构成
Tianjin University
输入
抗混叠 滤波 A/D DSP
平滑 滤波 D/A
输出
存储器
Tianjin University
《数字信号处理基础》课件
信号压缩等。
Z变换
Z变换的定义
Z变换是一种将离散时间信号转换为复数域信号的方法,通过将离 散时间信号转换为复数域中的函数,可以更好地分析信号的特性。
Z变换的性质
Z变换具有线性、时移、频域平移、复共轭等性质,这些性质在信 号处理中有着广泛的应用。
Z变换的应用
Z变换在信号处理中有着广泛的应用,如离散控制系统分析、数字滤 波器设计等。
自适应滤波器应用场景
广泛应用于噪声消除、回声消除、信 号预测等领域。
05 数字信号处理应用
音频处理
音频压缩
通过降低音频数据的冗余度,实 现音频文件的压缩,便于存储和
传输。
音频增强
利用数字信号处理技术,改善音频 质量,如降低噪音、增强语音等。
音频分析
对音频信号进行特征提取和分类, 用于语音识别、音乐信息检索等领 域。
IIR滤波器应用场景
广泛应用于语音处理、图像处理等领 域。
FIR滤波器设计
FIR滤波器定义
FIR滤波器特点
FIR滤波器,即有限冲激响应滤波器,是一 种离散时间滤波器,其冲激响应有限长。
FIR滤波器具有线性相位、设计灵活、计算 量大等特性。
FIR滤波器设计方法
FIR滤波器应用场景
通过窗函数法、频率采样法等进行设计, 常用的设计方法有汉明窗法、凯泽窗法等 。
课程目标
掌握数字信号处理的基本概念、原理和方法。
学会使用数字信号处理软件进行信号处理和分析 。
了解数字信号处理在通信、图像处理、音频处理 等领域的应用。
02 基础知识
信号与系统
信号定义与分类
信号是信息传输的载体,可以是离散 的或连续的,也可以是时间的函数。 信号分类包括周期信号、非周期信号 、确定信号、随机信号等。
全套电子课件:数字信号处理(第三版)
5、本书的主要内容
经典的数字信号处理限于线性时不变系统理 论, 数字滤波和FFT是常用方法。
随机信号处理:基于平稳高斯随机信号 目前DSP研究热点: 时变非线性系统、非平
稳信号、 非高斯信号 处理方法的发展:自适应滤波、 离散小波 变换、 高阶矩分析、盲处理、分形、混沌
理论
课程介绍
基础理论:离散时间信号与系统(ch1)(复习和强化)
(4)可以实现多维信号处理
利用庞大的存储单元,可以存储二维的图像信号或多维的阵列信号,实现二维或 多维的滤波及谱分析等。 4G移动通信:MIMO和OFDM
缺点
(1)增加了系统的复杂性。它需要模拟接口以及比较复杂的数字系统。 (2)应用的频率范围受到限制。主要是A/D转换的采样频率的限制。 (3)系统的功率消耗比较大。数字信号处理系统中集成了几十万甚至更多的晶体管 ,而模拟信号处理系统中大量使用的是电阻、电容、电感等无源器件,随着系统的复 杂性增加这一矛盾会更加突出。
其常中用zZ为[x(复n)变]表量示,对以序其列实x(部n)为的横Z坐变标换,,虚即部为纵坐标构成的平面为z平面。
Z[ x(n)] x(n) z n n
这种变换也称为双边 Z 变换,与此相应还有单边 Z 变换,单边 Z变换只是 对单边序列(n>=0部分)进行变换的Z变换,其定义为
X ( z) x(n) z n n0
上个世纪80年代用Apple II计算机用雷米兹交替算法设计一256阶的FIR滤波 器需要20多小时。
上个世纪90年代已经可以实时地在PC机上实现音视频的编解码。
4、DSP的发展与运用(续)
DSP发展的主要表现: (1) 由 简 单 的 运 算 走 向 复 杂 的 运 算 , 目 前 几十位乘几十位的全并行乘法器可以在数 个纳秒的时间内完成一次浮点乘法运算, 这无论在运算速度上和运算精度上均为复 杂的数字信号处理算法提供了先决条件;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 对密集的乘法运算的支持
GPP不是设计来做密集乘法任务的,即使 是一些现代的GPP,也要求多个指令周期来做 一次乘法。而DSP处理器使用专门的硬件来实 现单周期乘法。DSP处理器还增加了累加器寄 存器来处理多个乘积的和。累加器寄存器通常 比其他寄存器宽,增加称为结果bits的额外 bits来避免溢出。 同时,为了充分体现专门的乘法-累加硬件 的好处,几乎所有的DSP的指令集都包含有显 式的MAC指令。
实时性
高频信号的处理
可以处理包括微波毫米波乃 按照奈准则的要求, 至光波信号 受S/H、A/D和处理速 度的限制
3、一个硬件系统适用于不同的软件
4、数字信号处理的实现
(1) 在通用的微机上用软件实现。 (2)用单片机来实现。
(3)利用专门用于信号处理的可编程DSP来实现。
(4)利用特殊用途的DSP芯片来实现。 (5)用FPGA开发ASIC芯片实现数字信号处理算法。
传统上,GPP使用冯.诺依曼存储器结构。这种结构中, 只有一个存储器空间通过一组总线(一个地址总线和一 个数据总线)连接到处理器核。通常,做一次乘法会发 生4次存储器访问,用掉至少四个指令周期。 大多数DSP采用了哈佛结构,将存储器空间划分成两个, 分别存储程序和数据。它们有两组总线连接到处理器核, 允许同时对它们进行访问。这种安排将处理器存贮器的 带宽加倍,更重要的是同时为处理器核提供数据与指令。 在这种布局下,DSP得以实现单周期的MAC指令。 还有一个问题,即现在典型的高性能GPP实际上已包含 两个片内高速缓存,一个是数据,一个是指令,它们直 接连接到处理器核,以加快运行时的访问速度。从物理 上说,这种片内的双存储器和总线的结构几乎与哈佛结 构的一样了。然而从逻辑上说,两者还是有重要的区别。
DSP的特点
考虑一个数字信号处理的实例,比如有限冲击 响应滤波器(FIR)。用数学语言来说,FIR滤 波器是做一系列的点积。取一个输入量和一个 序数向量,在系数和输入样本的滑动窗口间作 乘法,然后将所有的乘积加起来,形成一个输 出样本。 类似的运算在数字信号处理过程中大量地重复 发生,使得为此设计的器件必须提供专门的支 持,促成了了DSP器件与通用处理器(GPP)的 分流。
数字信号处理器原理及应用
主要内容
第一章 数字信号处理器 ( DSP )简介
一. 为什么用DSP 二. DSP特点 三. DSP的种类 四. TI的DSP 五. DSP应用领域 六. DSP系统开发步骤 七. DSP知识平台 八. DSP课程内容 九. 教学模式 十.参考书
c. DSP
采用哈佛结构,程序和数据分开存储 采用一系列措施保证数字信号的处理速 度,如对FFT的专门优化
采用哈佛结构的DSP处理器
哈佛结构的指令流的定时关系
改进的哈佛结构
(2) DSP典型系统
2 、 DSP芯片的主要特点
哈佛(Harvard)结构和改进的哈佛结构 专用的硬件乘法器 指令系统的流水线操作 片内外两级存储结构 特殊的DSP指令 快速指令周期
(6) 在通用的计算机系统中使用加速卡来实现。
▲
二、DSP的特点
1、DSP与MCU的比较 2、DSP特点
(1)几种微处理器Microprocessor
a. 通用处理器(GPP)
ቤተ መጻሕፍቲ ባይዱ
采用冯.诺依曼结构,程序和数据的存储空间 合二而一 8086/286/386/486/Pentium/Pentium II/ Pentium III Pentium Ⅳ PowerPc 64-bit CPU(SUN Sparc,DEC Alpha, HP) CISC 复杂指令计算机, RISC 精简指令计算机 采取各种方法提高计算速度,提高时钟频率, 高速总线,多级Cashe,协处理器等
2、信号处理方式的比较
比较因素 模拟方式 数字方式
改变软件设置A/D的位 数和计算机字长算法 修改设计的灵活性 修改硬件设计, 或调整硬件参数 精度 元器件精度
可靠性和可重复性 受环境温度、湿度、噪声、 不受这些因素的影响 电磁场等的干扰和影响大 大规模集成 DSP器件体积小、功能 尽管已有一些模拟集成电路, 但品种较少、集成度不高、 强、功耗小、一致性好、 价格较高 使用方便、性能/价格 比高 除开电路引入的延时外,处 由计算机的处理速度决 理是实时的 定
一、为什么用DSP
1、DSP含义
Digital Signals Processing 数字信号 处理(方法、技术)
Digital Signals Processor 数字信号 处理器
作为一个案例研究,我们来考虑数字领域里最通常 的功能:滤波。简单地说,滤波就是对信号进行处理, 以改善其特性。例如,滤波可以从信号里清除噪声或静 电干扰,从而改善其信噪比。为什么要用微处理器,而 不是模拟器件对信号做滤波呢?我们来看看其优越性: 模拟滤波器(或者更一般地说,模拟电路)的性能要 取决于温度等环境因素。而数字滤波器则基本上不受环 境的响。 数字滤波易于在非常小的宽容度内进行复制,因为其 性能并不取决于性能已偏离正常值的器件的组合。 一个模拟滤波器一旦制造出来,其特性(例如通带频 率范围)是不容易改变的。使用微处理器来实现数字滤 波器,就可以通过对其重新编程来改变滤波的特性。
采用冯.诺依曼结构的处理器
冯.诺依曼结构的处理器取指令过程
b.Single Chip Computer/ Micro Controller Unit(MCU)
除通用CPU所具有的ALU和CU,还有存储 器(RAM/ROM)寄存器,时钟,计数器, 定时器,串/并口,有的还有A/D,D/A INTEL MCS/48/51/96(98) MOTOROLA HCS05/011
(2) 存储器结构
GPP使用控制逻辑来决定哪些数据和指令字存储在片 内的高速缓存里,其程序员并不加以指定(也可能 根本不知道)。与此相反,DSP使用多个片内存储器 和多组总线来保证每个指令周期内存储器的多次访 问。在使用DSP时,程序员要明确地控制哪些数据和 指令要存储在片内存储器中。程序员在写程序时, 必须保证处理器能够有效地使用其双总线。 此外,DSP处理器几乎都不具备数据高速缓存。这是 因为DSP的典型数据是数据流。也就是说,DSP处理 器对每个数据样本做计算后,就丢弃了,几乎不再 重复使用。