二元一次方程组与不等式的解法

合集下载

一次函数与方程(组)、不等式及二次函数与二元一次方程、不等式的关系

一次函数与方程(组)、不等式及二次函数与二元一次方程、不等式的关系

一次函数与方程(组)、不等式及二次函数与二元一次方程、二元一次不等式的关系1、一次函数与一元一次方程从“数”的角度看,解方程kx+b=0相当于一次函数y=kx+b 的函数值为0时,求自变量的取值;从“形”的角度看,解方程kx+b=0,相当于确定直线y=kx+b 与x 轴交点横坐标的值 一次函数与一元一次不等式从“数”的角度看,解不等于式kx+b 〉0(<0)相当于一次函数y=kx+b 的函数值>0(<0)时,求自变量x 的取值范围;从“形”的角度看,求不等于式kx+b>0(<0)的解集,相当于确定直线y=kx+b 在x 轴上(下)方部分所对应的自变量x 取值范围 从“数”的角度看,解不等于式11b x k +〉22b x k +相当于一次函数111b x k y +=与222b x k y +=函数值y 1>y 2时,求自变量的取值范围;从“形”的角度看,解不等于式11b x k +〉22b x k +,相当于确定直线111b x k y +=在直线222b x k y +=上(下)方部分所对应的自变量x 取值范围 一次函数与二元一次方程组从“数”的角度看,解二元一次方程组{y =k 1x +b 1y =k 2x +b 2相当于求自变量x 为何值时相应的两个函数y =k 1x +b 1与y =k 2x +b 2的函数值相等,从“形”的角度看,解二元一次方程组,相当于确定直线y =k 1x +b 1与y =k 2x +b 2交点的坐标类比可得出二次函数与二元一次方程、二元一次不等式的关系:1、从数的角度看,解方程02=c bx ax ++相当于二次函数c bx ax y ++=2的函数值y=0时自变量x 的值,从形的角度看,解方程02=++c bx ax 相当于确定二次函数c bx ax y ++=2与x 轴的交点模坐标的值2、从数的角度看,解方程)0(02<>++c bx ax 相当于二次函数c bx ax y ++=2的函数值y>0(<0)时自变量x 的取值范围,从形的角度看,解方程)0(02<>++c bx ax 相当于确定二次函数c bx ax y ++=2与在x 轴上(下)方部分所对应的自变量x 取值范围。

不等式二元一次方程组

不等式二元一次方程组

不等式二元一次方程组不等式和二元一次方程组,听起来是不是有点儿高大上?别担心,今天咱们就来轻松聊聊这些数学小伙伴,让你们觉得其实没那么可怕,甚至还有点儿有趣。

先说说不等式吧。

想象一下,你在超市里挑水果,香蕉一斤十块,苹果一斤八块。

这时候你心里就开始打起算盘,买多少水果才划算呢?不等式就像你在权衡的标准。

比如说,如果你买了x斤香蕉和y斤苹果,你可能会想着花的钱不能超过你预算的20块。

于是你就得写出个不等式:10x + 8y ≤ 20。

哎,听起来是不是有点意思?再说说二元一次方程组。

想象一下,你跟朋友约好去看电影。

你们俩决定买票和吃零食,结果又不想花太多钱。

这时候你就需要给自己设个计划。

假设电影票每人40块,爆米花和可乐加起来30块。

你们俩的钱合起来叫做x,去看电影和吃东西的钱叫做y。

于是你就会写出方程组:x + y = 70。

这样,算得出你们能花多少钱,又能买什么。

这些数学公式就像生活中的小助理,帮助你在选择中做决策。

咱们在生活中总会遇到各种各样的选择,比如午饭吃啥、买啥衣服、怎么安排时间等等。

不等式和方程组就像是你的小指南针,告诉你这些选择在什么范围内才是合理的。

二元一次方程组有个有趣的地方,那就是它们的解法!你可以用代入法,也可以用消元法,甚至图像法。

就像你在聚会上,有的人喜欢先去聊聊天,有的人则喜欢直接玩游戏。

每种方法都有自己的风格,但最终目的都是找到那个让你满意的答案。

咱们生活中也是,处理问题的方式多种多样,找到适合自己的就好。

不等式也有个特别的魅力,能让你在选择中变得更加灵活。

想象一下,今天你心情不错,想多买点零食。

于是你就心里想着,咱们不如把预算提升到30块,这样可以买更多的东西。

那你又得重新写个不等式:10x + 8y ≤ 30。

数学就是这样,灵活多变,让你在不同情况下都能找到最佳解决方案。

再来聊聊这些方程和不等式的图像吧。

想象一下你在公园散步,看到一块大大的草地,草地上画着一个个小点,那些点就像是你的解。

(七年级)二元一次方程组及解不等式组

(七年级)二元一次方程组及解不等式组

二元一次方程组及解不等式组1、二元一次方程:含有两个未知数,且含未知数的项的次数为1, 二元一次方程有无数多个解.2、二元一次方程组:有一个解,可以用代入消元法和加减消元法解.3、三元一次方程组:先转化为二元一次方程组.4、应用题:解、设、列、解、验、答5、典型例题:①二元一次方程满足的条件:系数≠0,次数=1②平方+绝对值= 0③已知方程(组)的解,求其它未知数的值4、解不等式组的步骤:(1)先求出各个不等式的解集(2)将这些解集表示在同一个数轴上(3)在数轴上找出这些解集的公共部分,就是这个不等式组的解集。

5、典型例题:①已知解集求未知数范围:看解集不等号方向是否改变,不变则系数>0,改变则系数<0 ②已知不等式(组)的解求未知数的值:令所求解集等于已知解集③已知不等式(组)的整数解求未知数的值:先求出解集,令解集满足一定条件解法:消元法1)代入消元法用代入消元法的一般步骤是:1.选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;2.将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;3.解这个一元一次方程,求出x 或y 值;4.将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;5。

把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

[1]例:解方程组:x+y=5①6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89得y=59/7把y=59/7代入③,得x=5-59/7得x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。

2)加减消元法①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。

中考数学复习《二元一次方程组》

中考数学复习《二元一次方程组》

中考考点精讲精练
考点1 解二元一次方程组[5年1考:2013年(解答题)]
典型例题
1. 解方程组: x+y=5, 2x+3y=11.
解: x+y=5, ① 2x+3y=11. ②
①×3-②,得x=4. 把x=4代入①,得y=1. 则方程组的解为 x=4,
y=1.
2x+3y=12, 2. 解方程组:
y= -1.
4. 解方程组: x+3y=-1, 3x-2y=8.
解: x+3y=-1, ①
3x-2y=8. ②
由①得x=-1-3y. ③
把③代入②,得3(-1-3y)-2y=8.
解得y=-1.
则x=-1-3×(-1)=2. 故二元一次方程组的解为
x=2, y=-1.
考点点拨: 本考点是广东中考的高频考点,题型一般为计算题,难度简 单. 解答本考点的有关题目,关键在于熟练掌握消元法和代入法 解二元一次方程组. 注意以下要点: (1)用代入消元法解二元一次方程组的步骤; (2)用加减消元法解二元一次方程组的步骤.
பைடு நூலகம்
方法规律
1. 用代入消元法解二元一次方程组的一般步骤(概括为“变, 代,解,回代,联”五步) (1)从方程组中选出一个系数比较简单的方程,将这个方程中
的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示 出来,即写成y=ax+b的形式,即“变”. (2)将y=ax+b代入到另一个方程中,消去y,得到一个关于x的
3. 列二元一次方程组解应用题的一般步骤(概括为“审,找, 列,解,答”五步) (1)审:通过审题,把实际问题抽象成数学问题,分析已知数 和未知数,并用字母表示其中的两个未知数. (2)找:找出能够表示题意的两个相等关系. (3)列:根据这两个相等关系列出必需的代数式,从而列出方 程组. (4)解:解这个方程组,求出两个未知数的值. (5)答:在对求出的方程组的解做出是否合理的判断的基础上, 写出答案.

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

二元一次方程+不等式的解法

二元一次方程+不等式的解法

4132x y x y x+=⎧⎪+⎨-=⎪⎩用代入消元法解二元一次方程组知识点梳理用代入法解二元一次方程组的步骤是:(1)把方程组中的一个方程变形,写成____________________的形式; (2)把它_______________中,实现消元,得到一个一元一次方程; (3)解这个________________;(4)把求得的值代入到_________,从而得到原方程组的解. 基本技能:用代入法解方程例1【综合创新训练】1.当a=3时,方程组122ax y x y +=⎧⎨+=⎩的解是_________.2. 已知⎩⎨⎧==11y x 和⎩⎨⎧-=-=21y x 是关于x 、y 的二元一次方程22=-by ax 的两解,则a = ,b =3.已知方程2x+3y=2,当x 与y 互为相反数时,x=______,y=_______.4.已知x=-1,y=2是方程组的1311ax by bx ay +=⎧⎨+=-⎩解,则ab=________.用加减消元法解二元一次方程组知识梳理1.方程组231534m n m n +=⎧⎨+=⎩中,n 的系数的特别是_______,所以我们只要将两式________,•就可以消去未知数,化成一个一元一次方程,达到消元的目的.2.方程组532534m n m n -+=⎧⎨+=⎩中,m 的系数的特别是________,所以我们只要将两式________,就可以消去未知数m ,化成一个一元一次方程,进而求得方程组的解.会选择适合的方法解方程组:2(2)4379:2:5(1)(2)(3)2247550025022500000x x y x y x y x y x y x y ++=+==⎧⎧⎧⎨⎨⎨+=-=+=⎩⎩⎩2x +y =53x -y =10⎪⎩⎪⎨⎧=+=++=+879-59y 32x 74z 3x z y x z ⎪⎩⎪⎨⎧=++==36z y 5:4y 4:3y x x z ::(4)若⎩⎨⎧=+=+200620042005200320052004y x y x ,求()()32y x y x -++的值。

解方程公式法的公式

解方程公式法的公式

解方程公式法的公式解方程是数学中常见的问题之一,公式法是其中一种常用的解题方法。

这种方法是基于一些已经发现的数学规律和性质,通过将方程中的未知数用一个或多个变量表示,然后根据一系列的等式和不等式关系进行一系列的代数变换,最终得出方程的解。

在解方程的过程中,可以使用一些常见的公式,下面将详细介绍其中一些常用的公式。

1.一元二次方程的求根公式:对于形如ax^2+bx+c=0的方程,其中a、b、c为已知常数,x为未知数,可以使用求根公式来解方程。

x = (-b ± √(b^2-4ac))/(2a)2.一元一次方程的解法:对于形如ax+b=0的一元一次方程,可以直接通过变形得到解。

x=-b/a3.二元一次方程组的解法:对于形如a1x+b1y=c1a2x+b2y=c2的二元一次方程组,可以利用克拉默法则来求解。

x=(c1b2-c2b1)/(a1b2-a2b1)y=(a1c2-a2c1)/(a1b2-a2b1)4.三元一次方程组的解法:对于形如a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3的三元一次方程组,可以使用克拉默法则或矩阵法来求解。

5.二次三项式完全平方式:对于形如(a+b)^2的二次三项式,可以利用平方式来展开,得到如下公式:(a+b)^2 = a^2 + 2ab + b^26.二次三项式差平方式:对于形如(a-b)^2的二次三项式,可以利用差平方式来展开,得到如下公式:(a-b)^2 = a^2 - 2ab + b^27.二次三项式完全立方方式:对于形如(a+b)^3的二次三项式,可以利用完全立方方式来展开,得到如下公式:(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^38.二次三项式差立方方式:对于形如(a-b)^3的二次三项式,可以利用差立方方式来展开,得到如下公式:(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^39.欧拉公式:欧拉公式是数学中著名的公式之一,表示了数学中的常见数学常数e 与虚数单位i和三角函数之间的关系。

二元一次方程组和不等式组

二元一次方程组和不等式组

二元一次方程组和不等式组在数学中,方程组和不等式组是两个很常见的概念。

在解决各种实际问题时,它们是不可或缺的工具。

本文将着重探讨二元一次方程组和不等式组的概念和方法。

一、二元一次方程组1. 定义二元一次方程组是由两个形如ax+by=c的方程所组成的方程组。

其中a、b、c分别为已知常数,而x和y是未知量。

2. 解法为了解决二元一次方程组,我们可以采取以下两种方法。

(1) 相减法若方程组为:⑴ax+by=c⑵dx+ey=f则方程两边相减,得到(b-e)y = c-f 。

进而可以解出y的值。

将y的值代入其中一方程,即可求出x的值。

(2) 代入法若方程组为:⑴ax+by=c⑵dx+ey=f则可以将其中一个方程中的一个未知量表示成另一个方程相应未知量的函数。

例如,将⑴式中的x表示成y的函数,则:x = (c-by)/a将其代入⑵式中,就可得到只含有y的方程。

二、不等式组1. 定义不等式组是含有形如ax+b<y和cx+d>z的不等式的方程组。

其中a、b、c和d是已知常数,而x、y和z是未知量。

2. 解法为了解决不等式组,我们可以采取以下两种方法。

(1) 图像法不等式组可以通过对其图像进行研究来解决。

例如:ax+b<y则可以绘制出y = ax+b的函数图像。

从而可以确定该不等式组的解集。

(2) 替换法替换法是将不等式组中的一个不等式代入另一个不等式中,从而得到一个只含有一个未知量的不等式。

例如:ax+b<ycan+d>z可将第一个不等式中的y替换成can+d,从而得到ax+b<can+d。

从而得到只含有x和z的一个不等式。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

二元一次方程组与不等式的解法

二元一次方程组与不等式的解法

12、二元一次方程组及不等式的解法1.不等式260x ->的解集在数轴上表示正确的是( )2,已知方程()()026281||2=++--+m n y n x m 是二元一次方程,则m+n 的值( )A.1B. 2C.-3D.33,在等式y=kx+b 中,当x=1时,y=2;当x=2时,y=5,则k,b 的值为( )A .⎩⎨⎧-=-=13b kB .⎩⎨⎧=-=31b kC .⎩⎨⎧-==13b kD .⎩⎨⎧-=-=31b k 4,若方程1-=+y x ,42=-y x 和7=-my x 有公共解,则m 的取值为( )A.4B.3C.2D.15.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ). A.m >-1.25 B.m <-1.25 C.m >1.25 D.m <1.256,要配制15%的硝酸溶液240千克,需用8%和50%的硝酸溶液的克数分别为( )A. 40,200B.80,160C.160,80D.200,407,两位同学在解方程组时,甲同学由2,78.ax by cx y +=⎧⎨-=⎩正确的解出3,2;x y =⎧⎨=-⎩乙同学因把c写错了而解得2,2.x y =-⎧⎨=⎩那么a 、b 、c 的正解的值应为( ) A.1,5,4-===c b a B.0,5,4=-=-=c b aC.2,5,4-===c b aD.2,5,4=-=-=c b a8.不等号填空:若a <b <0 ,则5a - 5b -;a 1 b 1;12-a 12-b . 9.当0<<a x 时,2x 与ax 的大小关系是_______________.10.若点P (1-m ,m )在第二象限,则(m -1)x >1-m 的解集为_______________. 11,从方程组⎩⎨⎧+=-=121a y a x 中可以得到y 与x 的关系式为_______. 12,当x =0、1、-1时,二次三项式ax 2+bx+c 的值分别为5、6、10,则a =___,b ___,c =___.13.若11|1|-=--x x ,则x 的取值范围是 14,某校现有学生804人,与去年相比:男生增加10%,女生减少10%,学生总数增加0.5%,则现有男、女学生的人数分别为___.A .B .C .D .15,用适当方法解方程组:⑴231,498.s t s t +=-⎧⎨-=⎩ ⑵()()()()3144,5135.x y y x -=-⎧⎪⎨-=+⎪⎩⑶11,233210.x y x y +⎧-=⎪⎨⎪+=⎩ (4)530,43,2 1.x y z y z x z --=⎧⎪+=⎨⎪-=⎩16.解不等式(1)1)1(22 ---x x . (2)134155-+x x(3)312-x ≤643-x (4)341221x x +≤--.17,当a 为何值时,方程组⎩⎨⎧=-=+02,162y x ay x 有正整数解?并求出正整数解.18,某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润可涨至7500元。

八年级下册数学-一次函数与二元一次方程组、不等式

八年级下册数学-一次函数与二元一次方程组、不等式

第17讲 一次函数与二元一次方程组、不等式知识导航二元一次方程组的解实质是求组成方程组的两个方程的公共解,也可以看作是求两条直线的交点坐标. 1.一般地,每个二元一次方程组都对应两个一次函数,因而也对应两条直线;从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这两个函数值是何值;从形的角度看,解方程组相当于确定两条直线的交点的坐标.2.二元一次方程组的解法有代入法,加减消元法和图象法,图象法只是直观地反映了二元一次方程组的解在相应的一次函数图象上的点的坐标之间的关系.3.解一元一次不等式ax +b >0或ax +b <0(a ≠0),相当于是某个一次函数y =ax +b 的值大于0或小于0时,求自变量x 的取值范围.【板块一】一次函数与一元一次方程方法技巧由于任何一元一次方程都可转化为kx +b =0(k ,b 为常数,k ≠0)的形式,所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值;从图象上看,这相当于已知直线y =kx +b 确定它与x 轴交点的横坐标的值.题型一 直线与坐标轴的交点【例1】(1)直线y =kx +b 过点A (0,-3)和点B (2,0),则关于x 的方程kx +b =0的解是( ) A .x =2 B .x =-2 C .x =3 D .x =-3 (2)直线y =k 1x +1和直线y =k 2x -3的交点在x 轴上,则12k k =( ) A . 13 B .-3 C .13D .3【例2】(1)关于x 的方程x +b =-2的解为x =1,则函数y =x +b +2与x 轴交点坐标为______________; (2)一次函数y =kx +b 的图象经过点A (2,1),则直线y =kx +b -1与x 轴交点B 的坐标是______________.针对练习11.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解是_____________,关于x 的方程kxx2.不论m为何值,直线y=(m-1)x+m一定经过一个定点,则这个定点的坐标为______________.3.如图,在口ABCD中,点A(-1,0),B(3,0),D(0,3),AC,BD交于点'O.(1)求点'O的坐标;(2)若直线y=kx-1,将口ABCD的面积分成两等份,求k的值.x板块二一次函数与二元一次方程组题型二求两条直线的交点【例1】用作图象的方法解方程组27 38 x yx y【例2】已知函数y=1(1)1(10)1(00)1(1)x xx xx xx x的图象为“W”型,直线y=kx-k+1与函数y的图象有三个公共点,则k的值是()A.1或12B.0或12C.12D.12或-12题型三直线与直线的交点坐标位置与字母的取值范围【例3】已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)交于点M,且直线l2与x轴的交点为A(-2,0).(1)如图,若点M在第一象限,求k的取值范围;(2)若点M在第二象限,直接写出k的取值范围.针对练习21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b),不解关于x,y的方程组1,, y xy mx n=+⎧⎨=+⎩请你直接写出它的解.2.无论m为何实数,直线y=x+2m与直线y=-x+4的交点一定不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.若直线y=kx+3经过直线y=4-3x与y=2x-1的交点,求k的值.4.在夹击直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=132x-+的图象与x轴,y轴分别相交于点A,B,若点P在△AOB的内部,求m的取值范围.【板块三】一次函数与一元一次不等式(组)方法技巧 一元一次不等式求解:从数的角度看,求ax +b >0(a ≠0)的解即求x 为何值时,y =ax +b 的值大于0;从形的角度看,求ax +b >0(a ≠0)的解即确定直线y =ax +b 在x 轴上方的图象所对应的x 的取值范围,数形结合是解一次不等式(组)的重要方法. 题型四 观察图象求不等式的解.【例1】如图,函数y 1=1x -和,y 2=12x +1的图象相交于(0,1),(4,3)两点,当y 1>y 2时,x 的取值范围______.题型五 利用图象求不等式组的解【例2】(1)如图1,直线y =kx +b 经过点A (-1,3),与x 轴交于点B0),则关于x 的不等式组0≤kx +b <-3x 的解集为_______.图1 图2 图3 图4(2)如图2,直线y =kx +b 经过点A (-1,0)和B (3,-1)两点,则不等式组x -4<kx +b ≤0的解集为_____.(3)如图3,直线y =kx +b 交x 轴于(-3,0),且过P (2,-3),则不等式组kx +b ≤-1,5x <0的解集为_____.(4)如图4,直线y =kx +b 经过A (2,0)和P (3,1)两点,则关于x 的不等式组1,3,x b kx kx b ⎧-≤⎪⎨⎪>-⎩ 的解集为____. 【例3】如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),求不等式组mx >kx +b >mx -2的解集.题型六隐藏的交点的运用【例4】(1)如图1,直线y=kx+b过A(2,1),B,0),则不等式组0≤kx+b<12x的解集为_____.(2)如图2,直线y=kx+b经过A(2,1),B(-1,-2)两点,求不等式组12x>kx+b>-2的解集.图1 图2 题型七由不等的解集求交点坐标【例5】不等式kx+b>2x+3的解集为x>1,则方程组,23y kx by x=+⎧⎨=+⎩的解为___.针对练习31.在平面直角坐标系中,直线y=kx向下平移6个单位后刚好过点(-2,0),求不等式kx-6>3x的解集.2.在平面直角坐标系中,将直线y=kx+2沿y轴翻折后刚好经过点(2,1),求不等式kx+2>x+1的解集.3.在平面直角坐标系中,点A,B的坐标分别为(3,m),(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围是_______(用含m的式子表示).4.如图,已知直线y=kx+b过(-2,3)和(-1,0),则x+5>kx+b≥0的解集为_____.5.如图,A(2,1)为直线y=kx+b上一点,则不等式kx+b>x-1>0的解集为____.6.在同一平面直角坐标系中,直线y=kx与函数24,(3),2,(33),28,(3)x xy xx x+<-⎧⎪=--≤≤⎨⎪->⎩的图象恰好有三个不同的交点,则k的取值范围是_______.7.已知关于x的不等式kx+b>0的解集为x>1,下列关于直线y=kx+b与x轴交点坐标与k的符号正确的是()A.(1,0),k>0 B.(1,0),k<0 C.(-1,0),k>0 D.(-1,0),k<0 8.如图,直线y=-x+m与y=nx+4(n≠0)的交点的横坐标为-2,求关于x的不等式组-x+m>nx+4n>0的整数解集.。

方程与不等式之二元一次方程组技巧及练习题

方程与不等式之二元一次方程组技巧及练习题

方程与不等式之二元一次方程组技巧及练习题一、选择题1.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩ 【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩. 故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.2.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x 文,乙原有钱y 文,可得方程组( ) A .14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .14822483y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .14822483x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .14822483y x x y ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】【分析】 根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.【详解】设甲原有x 文钱,乙原有y 文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.3.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=10【答案】A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.4.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k是()A .-3B .-2C .-1D .1【答案】A【解析】【分析】 根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可.【详解】∵x 的值比y 的相反数大2,∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10,解得,y=2,∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3.故选A.【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.5.已知方程组32422x y x y -=⎧⎨-=⎩,则()2x y --=( ) A .14 B .12 C .2 D .4【答案】A【解析】32422x y x y =①=②-⎧⎨-⎩, ①-②得:x-y=2,则原式=-22=14. 故选A.6.已知2,1.x y =⎧⎨=⎩是方程25+=x ay 的解,则a 的值为( ) A .1B .2C .3D .4【答案】A【解析】 将21x y =⎧⎨=⎩代入方程2x+ay=5,得:4+a=5, 解得:a=1,故选:A.7.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( ) A .42a b =⎧⎨=⎩ B .24a b =⎧⎨=⎩ C .24a b =-⎧⎨=-⎩ D .42a b =-⎧⎨=-⎩【答案】A【解析】【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可.【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩, ∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩, 故选:A .【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.8.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改 成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种 物品(两种都买)的方案有( )A .3种B .4种C .5种D .6种 【答案】C【解析】【分析】设1袋笔的价格为x 元,1本笔记本的价格为y 元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论,再设可购买a 袋笔和b 本笔记本,根据总价=单价×数量可得出关于a ,b 的二元一次方程,结合a ,b 均为正整数即可得出结论.【详解】设1袋笔的价格为x 元,1本笔记本的价格为y 元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34x . ∵x ,y 均为正整数,∴411xy⎧⎨⎩==,88xy⎧⎨⎩==,125xy⎧⎨⎩==,162xy⎧⎨⎩==.设可购买a袋笔和b本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b,∵a,b均为正整数,∴44ab⎧⎨⎩==;②当x=8,y=8时,4x+6y-22=58,∴8a+8b=58,即a+b=294,∵a,b均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a-,∵a,b均为正整数,∴34 ab==⎧⎨⎩;④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a,∵a,b均为正整数,∴119ab⎧⎨⎩==,211ab⎧⎨⎩==,33ab⎧⎨⎩==.综上所述,共有5种购进方案.故选:C.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.已知关于x的方程x-2m=7和x-5=3m是同解方程,则m值为()A.1 B.-1 C.2 D.-2【答案】C【解析】【分析】根据同解方程,可得方程组,根据解方程组,可得答案.【详解】解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =,由②得:3+5x m =,∴7+23+5m m =,解得:2m =,故选C.【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.10.关于x 、y 的方程组222x y mx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m 的个数有( )A .4个B .3个C .2个D .无数个 【答案】A【解析】【分析】先解二元一次方程组x 、y ,然后利用解为整数解题即可【详解】 解方程组222x y mx y m +=⎧⎨+=+⎩得到242m x m y m ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m 可以为0、1、3、4,所以满足条件的m 的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x 、y 再利用解为整数求解是本题关键11.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A【解析】【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.12.若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A .3-B .0C .3D .6【答案】C【解析】【分析】 根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b 的值.【详解】 ∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩, 解得30a b =⎧⎨=⎩, ∴a+b=3.故选C.【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.13.|21|0a b -+=,则2019()b a -等于( )A .1-B .1C .20195D .20195- 【答案】A【解析】【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值.【详解】12110a b -+=,所以50,210,a b a b ++=⎧⎨-+=⎩①② 由②,得21b a =+③,将③代入①,得2150a a +++=,解得2a =-,把2a =-代入③中,得3b =-,所以20192019()(1)1b a -=-=-. 故选A.【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.14.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩ 【答案】A【解析】【分析】 设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组.【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A .本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y =-8C.5x+4y=-3 D .3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A.B.C.D.【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .7385y x y x =-⎧⎨=+⎩B .7385y x y x =+⎧⎨-=⎩C .7385y x y x =+⎧⎨+=⎩D .7385y x y x =+⎧⎨=+⎩【答案】A【解析】【分析】 根据关键语句“若每组7人,余3人”可得方程7y+3=x ;“若每组8人,则缺5人.”可得方程8y-5=x ,联立两个方程可得方程组.【详解】设运动员人数为x 人,组数为y 组,由题意得:7385y x y x =-⎧⎨=+⎩. 故选A .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 【答案】B【解析】【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米, ∴35 1.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.20.由方程组53x m y m-=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-【答案】C【解析】【分析】 先解方程组求得5x m =+、3y m =-,再将其相减即可得解.【详解】解:∵53x m y m -=⎧⎨+=⎩①② 由①得,5x m =+由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=.故选:C【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.。

第11讲二元一次方程组的概念与求解(原卷版)

第11讲二元一次方程组的概念与求解(原卷版)

第11讲二元一次方程组的概念与求解目标导航知识精讲知识点01二元一次方程(组)概念及解1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.注意:二元一次方程的识别方法①“二元”,即含有两个未知数;②“一次”,即含未知数的次数是1;③“整式方程”,即未知数不能出现在分母中。

2、二元一次方程组共含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组.注意:①含有两个整式方程;②方程中共含有两个未知数;③含未知数的项的次数都是1.3、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.注意:①二元一次方程的每一个解都是一对数值,而不是一个数;②一般情况下,一个二元一次方程有无穷多个解,但如果对其未知数的取值附加某些限制条件,那么也可能只有有限个特殊的解。

4、二元一次方程组的解我们把二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.注意:①方程组的解同时满足方程组中的每一个方程;②由于方程组需用“{”括起来,所以方程组的解也要用“{”括起来.5、二元一次方程组解的情况(1)唯一解;(2)无数解;(3)无解.【知识拓展】(2019秋•成都期末)下列方程是二元一次方程的是()A .2y xy -+=B .3115x x -=C .32x y =+D .2612x y -=【即学即练1】(2019春•迁西县期末)已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程3mx y -=的一个解,则m的值是()A .1-B .1C .5-D .5【即学即练2】(2020春•港南区期末)下列各组数值是二元一次方程34x y -=的解的是()A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩【即学即练3】(2020春•肇源县期末)已知21x y =⎧⎨=⎩是方程组15ax by x by -=⎧⎨+=⎩的解,则a 、b 的值分别为()A .2,7B .1-,3C .2,3D .1-,7知识点02二元一次方程组的解法1、代入消元法将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。

二元一次方程组及一元一次不等式组家教辅导学习资料

二元一次方程组及一元一次不等式组家教辅导学习资料

知识构造:第七章二元一次方程组实二二元元二元一次际一一次次方程组的问方方解法程程题组应知一、基本观点二元一次方程:含有两个未知数,而且未知项的最高次数是1的整式方程叫做二元一次方程。

二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

二元一次方程组:两个方程中,每个方程都含有两个未知数(x和y),而且未知数的指数都是1,像这样的方程叫做二元一次方程。

二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、基本法例二元一次方程组的解法主要运用“消元”思想。

主要方法有两种:代入消元法:将一个未知数用另一个未知数来表示,而后辈入方程中,消去一个未知数,获得一个一元一次方程。

这种方法叫做代入消元法,简称代入法。

加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,获得一个一元一次方程,这种方法叫做加减消元法,简称加减法。

【注意】更多时候同一未知数的系数需经简单变形后,才成为相反数或相等。

应会列二元一次方程式(组)。

解二元一次方程组。

用二元一次方程组解实质问题。

例题 以下方程组是否是二元一次方程组。

不是的请说明原因。

x 3y 4 xy 4(1)5y7(2)5y72x2xx 3y 4 x 2 3y 4(3)z 7(4)5y 72x2x2.(1)方程(a +2)x+(b-1)y=3是二元一次方程,试求 a 、b 的取值范围.a –1是二元一次方程,试求 a 的值.(2)方程x∣∣+(a-2)y=2已知以下三对值:x =-6x =10 x =10y =-9y =-6y =-1(1)哪几对数值使方程1x-y=6的左、右两边的值相等?2(2)哪几对数值是方程组1x y6的解?231y2x114.x a是方程2x+y=2的解,求8a+4b-3的值。

若by5.解以下方程组:(1)y2x()m n2()3x2y212x y12232m3n123x4y36.已知方程组3xy5的解也是方程组ax2y4的解,则4x7y13x-by5a=_______,b=________,3a+2b=___________。

方程与不等式综合复习—知识讲解及经典例题解析

方程与不等式综合复习—知识讲解及经典例题解析

中考总复习:方程与不等式综合复习—知识讲解及经典例题解析【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )不等式组 (其中a >b )图示 解集 口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b >⎧⎨<⎩ba无解 (空集) (大大、小小找不到)A .2,2x y =-⎧⎨=⎩ B .2,3x y =-⎧⎨=⎩ C .3,3x y =-⎧⎨=⎩ D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解. 【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程. 【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-,整理,得21.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去. 【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2. (1)求证:B-A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小. 【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0. 由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3). ∵ a >2,∴ a+7>0.当2<a <3时,a-3<0, ∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0, ∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0, ∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大. 【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想. 举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由. 【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >-> ∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+> ∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+- ∵1>a ,∴20,10a a +>-> ∴A>C>B【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得 ⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105; 若x 为偶数,即x =22时,y =101. ∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名? 【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式. 【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110. 故今年最少可招收“宏志班”学生110名. 【总结升华】本题属于列方程与不等式组综合题. 举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数) (1)若此方程的一个非零实数根为k , ① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式;(2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式; (2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可. 【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程, ∴ m ≠ 2. ∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0mm k m k---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+.(2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ .当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根.解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根.解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图)当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知关于x 的一元二次方程2x 2+4x+k ﹣1=0有实数根,k 为正整数.(1)求k 的值(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向右平移1个单位,向下平移2个单位,求平移后的图象的解析式.【答案】解:(1)∵方程2x 2+4x+k ﹣1=0有实数根,∴△=42﹣4×2×(k ﹣1)≥0,∴k≤3.又∵k 为正整数,∴k=1或2或3.(2)当此方程有两个非零的整数根时,当k=1时,方程为2x 2+4x=0,解得x 1=0,x 2=﹣2;不合题意,舍去.当k=2时,方程为2x 2+4x+1=0,解得x 1=﹣1+,x 2=﹣1﹣;不合题意,舍去. 当k=3时,方程为2x 2+4x+2=0,解得x 1=x 2=﹣1;符合题意.因此y=2x 2+4x+2的图象向右平移1个单位,向下平移2个单位,得出y=2x 2﹣2.【变式2】已知:关于x 的方程()0322=-+-+k x k x (1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16=(k -4)2≥0∴此方程总有实根。

专题2.10方程(组)与不等式相结合的解集问题(重难点培优)-2021年八年级数学下册尖子生同步培优

专题2.10方程(组)与不等式相结合的解集问题(重难点培优)-2021年八年级数学下册尖子生同步培优

2020-2021学年八年级数学下册尖子生同步培优题典【北师大版】专题2.10方程(组)与不等式相结合的解集问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________1.(2020秋•拱墅区月考)(1)已知关于x 的不等式①x +a >7的解都能使不等式②x−2a 5>1﹣a 成立,求a 的取值范围.(2)若关于x 、y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.【分析】(1)分别取出求出不等式①②的解集,再根据题意得到7﹣a ≥5﹣3a ,最后解不等式即可求出a 的取值范围.(2)两个方程相加,即可得出关于m 的不等式,求出m 的范围,即可得出答案. 【解析】(1)解不等式①x +a >7得:x >7﹣a , 解不等式②x−2a 5>1﹣a 得:x >5﹣3a ,根据题意得,7﹣a ≥5﹣3a , 解得:a ≥﹣1.(2){2x +y =−3m +2①x +2y =4②,①+②得:3x +3y =﹣3m +6, ∴x +y =﹣m +2,∵关于x 、y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,∴﹣m +2>−32, ∴m <72,∴满足条件的m 的所有正整数值是1,2,3,.2.(2020春•南关区月考)感知:解方程组{2x +3y =7,①4(2x +3y)−y =27②,下列给出的两种方法中,方法简单的是B .(A )由①,得x =7−3y2,代入②,先消去x ,求出y ,再代入求解. (B )将①代入②,得4×7﹣y =27,解得y =1,再代入求解.探究:解方程组{x +y =2018x+y2−5y =1094.应用:若关于x ,y 的二元一次方程组{3x −2y =1+2a3x−2y 3−2x =3的解中的x 是正数,则a 的取值范围为 a >4 .【分析】感知:根据题目中的解答过程可知(B )种方法简答; 探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a 的代数式表示出x ,再根据方程组的解中x 是正数,从而可以求得a 的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B ), 故答案为:(B ); 探究:{x +y =2018①x+y2−5y =1094②,将①代入②,得 1009﹣5y =1094, 解得,y =﹣17, 将y =﹣17代入①,得 x =2035,故原方程组的解是{x =2035y =−17;应用:{3x −2y =1+2a ①3x−2y 3−2x =3②,将①代入②,得1+2a 3−2x =3,解得,x =a−43,∵关于x ,y 的二元一次方程组{3x −2y =1+2a3x−2y3−2x =3的解中的x 是正数,∴a−43>0,解得,a >4, 故答案为:a >4.3.(2020秋•沙坪坝区校级月考)若关于x 、y 的方程组{2x +y =5kx −y =4k +3的解满足x +y ≤6,求k 的取值范围.【分析】先把k 当作已知表示出x 、y 的值,再根据x +y ≤6列出不等式,求出k 的取值范围即可. 【解析】解方程组{2x +y =5k x −y =4k +3得,{x =3k +1y =−k −2,∵x +y ≤6, ∴3k +1﹣k ﹣2≤6, 解得k ≤72.∴k 的取值范围为k ≤72.4.(2020春•南岗区校级月考)关于x 、y 的二元一次方程组{x +2y =2m −5x −2y =3−4m 的解x 、y 满足x +y ≥0,求此时m 的取值范围.【分析】将m 看做已知数求出方程组的解,然后根据已知不等式求出m 的范围即可. 【解析】{x +2y =2m −5①x −2y =3−4m②,①+②得2x =﹣2﹣2m , 解得x =﹣1﹣m . ①﹣②得4y =6m ﹣8, 解得y =32m ﹣2. ∵x +y ≥0,∴﹣1﹣m +32m ﹣2≥0, 解得m ≥6.故m 的取值范围是m ≥6.5.(2020春•荔城区校级月考)已知关于x 、y 的方程组{x +2y =3mx −y =9m .(1)若此方程组的解是二元一次方程2x +3y =16的一组解,求m 的值; (2)若此方程组的解满足不等式12x +3y >6,求m 的取值范围.【分析】(1)根据方程组的解法解答即可; (2)根据不等式的解法解答即可. 【解析】(1){x +2y =3m ①x −y =9m②,①﹣②得:3y =﹣6m , 解得:y =﹣2m ,①+②×2得:3x =21m , 解得:x =7m ,将x =7m ,y =﹣2m 代入2x +3y =16得:14m ﹣6m =16, 解得m =2;(2)由(1)知:x =7m ,y =﹣2m , 代入12x +3y >6,得7m 2+(﹣6m )>6,∴m <−125. 6.(2020春•高邮市期末)已知关于x 、y 的二元一次方程组{3x −5y =4m5x −3y =8(1)若方程组的解满足x ﹣y =6,求m 的值; (2)若方程组的解满足x <﹣y ,求m 的取值范围.【分析】(1)用加减消元法解出x 和y 的值,把x 和y 用含有m 的式子表示,代入x ﹣y =6,求出m 的值即可,(2)把x 和y 用含有m 的式子表示,代入x +y <0,得到关于m 的一元一次不等式,解之即可. 【解析】(1){3x −5y =4m ①5x −3y =8②,①+②得:8x ﹣8y =4m +8,即x ﹣y =1+12m , 代入x ﹣y =6得:1+12m =6, 解得:m =10, 故m 的值为10,(2)②﹣①得:2x +2y =8﹣4m ,即x +y =4﹣2m , ∵x <﹣y , ∴x +y <0, ∴4﹣2m <0, 解得:m >2,故m 的取值范围为:m >2.7.(2020秋•路北区月考)(1)解方程组:{3x −y =3①x 2+y 3=2②;(2)已知关于x ,y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.【分析】(1)先整理方程②,再用加减消元法解方程组即可;(2)方程组两方程相加表示出x +y ,代入已知不等式求出m 的范围,确定出正整数值即可. 【解析】(1){3x −y =3①x 2+y 3=2②,由②得3x +2y =12 ③ 由③﹣①得,3y =9, 解得:y =3,把y =3代入①得,x =2. 所以这个方程组的解是{x =2y =3;(2){2x +y =−3m +2①x +2y =4②,①+②得:3(x +y )=﹣3m +6,即x +y =﹣m +2, 代入不等式得:﹣m +2>−32, 解得:m <72,则满足条件m 的正整数值为1,2,3.8.(2020•历下区校级模拟)已知关于x ,y 的二元一次方程组{x −3y =5x −2y =k 的解满足x >y ,求k 的取值范围.【分析】加减法求得x ,y 的值(用含k 的式子表示),然后再列不等式求解即可. 【解析】{x −3y =5①x −2y =k②,①﹣②得:﹣y =5﹣k , ∴y =k ﹣5,将y =k ﹣5代入②得,x =3k ﹣10, ∵x >y , ∴3k ﹣10>k ﹣5. ∴k >52.即k 的取值范围为k >52.9.(2020春•宝应县期末)已知关于x ,y 的二元一次方程组{2x −3y =5x −2y =k.(1)若{x =3y =−2满足方程x ﹣2y =k ,请求出此时这个方程组的解;(2)若该方程组的解满足x >y ,求k 的取值范围.【分析】(1)把x 与y 的值代入已知方程求出k 的值,进而求出方程组的解即可; (2)表示出方程组的解,根据x >y ,求出k 的范围即可. 【解析】(1)把{x =3y =−2代入x ﹣2y =k 得:k =3+4=7,方程组为{2x −3y =5①x −2y =7②,①﹣②×2得:y =﹣9, 把y =﹣9代入①得:x =﹣11, 则方程组的解为{x =−11y =−9;(2){2x −3y =5①x −2y =k②,①﹣②得:x ﹣y =5﹣k , ∵x >y ,即x ﹣y >0, ∴5﹣k >0, 解得:k <5.10.(2020春•沭阳县期末)关于x 、y 的方程组{x +2y =3k 2x +y =−2k +1的解满足x +y >35.(1)求k 的取值范围; (2)化简:|5k ﹣1|﹣|4﹣5k |.【分析】(1)两方程相加、化简得出x +y =k+13,结合x +y >35知k+13>35,解之可得答案; (2)根据绝对值的性质去绝对值符号,再去括号、合并即可得. 【解析】(1)将两个方程相加可得3x +3y =k +1, 则x +y =k+13, ∵x +y >35, ∴k+13>35,解得k >45;(2)原式=5k ﹣1﹣(5k ﹣4) =5k ﹣1﹣5k +4 =3.11.(2020春•东城区校级期末)若关于x ,y 的二元一次方程组{x +y =5k ,x −y =k的解满足x ﹣2y <1,求k 的取值范围.【分析】首先解关于x 的方程组,求得x ,y 的值,然后代入方程x ﹣2y <1,即可得到一个关于k 的不等式,再解不等式即可解答.【解析】由方程组{x +y =5k ,x −y =k 得:{x =3k y =2k ,∵关于x ,y 的二元一次方程组{x +y =5k ,x −y =k的解满足x ﹣2y <1,∴3k ﹣4k <1, 解得:k >﹣1.∴k 的取值范围是k >﹣1. 12.(2020春•万州区期末)已知方程组{x −y =4m ①2x +y =2m +3②的解满足x ﹣2y <8.(1)求m 的取值范围;(2)当m 为正整数时,求代数式2(m 2﹣m +1)﹣3(m 2+2m ﹣5)的值.【分析】(1)解方程组得出x =2m +1,y =1﹣2m ,代入不等式x ﹣2y <8,可求出m 的取值范围; (2)根据题意求出m =1,化简原式即可得出答案.【解析】(1)解方程组{x −y =4m ①2x +y =2m +3②得,{x =2m +1y =1−2m ,∵x ﹣2y <8,∴2m +1﹣2(1﹣2m )<8, 解得,m <32.(2)∵m <32,m 为正整数, ∴m =1,∴原式=2m 2﹣2m +2﹣3m 2﹣6m +15=﹣m 2﹣8m +17. 当m =1时,原式=﹣1﹣8+17=8.13.(2020春•叙州区期末)若关于x 、y 的二元一次方程组{2x +3y =−7k2y +x =k +5.(1)若方程组的解满足x ﹣y =1,求k 的值; (2)若x +y ≤﹣1,求k 的取值范围.【分析】(1)先利用加减消元法解方程组得到{x =−17k −15y =9k +10,则利用x ﹣y =1得到﹣17k ﹣15﹣(9k +10)=1,然后解关于k 的方程即可;(2)利用x +y ≤﹣1得到﹣17k ﹣15+9k +10≤﹣1,然后解关于k 的不等式即可. 【解析】(1)解方程组{2x +3y =−7k 2y +x =k +5得{x =−17k −15y =9k +10,∵x ﹣y =1,∴﹣17k ﹣15﹣(9k +10)=1, ∴k =﹣1; (2)∵x +y ≤﹣1,∴﹣17k ﹣15+9k +10≤﹣1, ∴k ≥−12.14.(2020春•南安市期中)已知关于x ,y 的二元一次方程组{2x −y =3mx −2y =6的解满足x +y >3,求满足条件的m的取值范围.【分析】先将m 看做常数解方程组求出x =2m ﹣2、y =m ﹣4,再代入x +y >3可得关于m 的不等式,解之可得答案.【解析】{2x −y =3m ①x −2y =6②,①×2得:4x ﹣2y =6m ③, ③﹣②得:3x =6m ﹣6, ∴x =2m ﹣2,把x =2m ﹣2代入①得:2(2m ﹣2)﹣y =3m , ∴y =m ﹣4, ∵x +y >3,∴(2m ﹣2)+(m ﹣4)>3, ∴m >3.15.(2020春•北流市期末)已知不等式组{2x −5<5x +43(x +1)≤2x +5的最小整数解是关于x 的方程12x ﹣mx =5的解,求m 的值.【分析】分别求出不等式组中两不等式的解集,找出解集中的公共部分,确定出不等式组的解集,找出解集中的整数解,确定出x 的值,将x 的值代入已知方程计算,即可求出m 的值. 【解析】{2x −5<5x +4①3(x +1)≤2x +5②,由 ①,得:x >﹣3; 由 ②,得:x ≤2;∴原不等式组的解集为:﹣3<x ≤2, ∵x 为最小整数 ∴x =﹣2,把x =﹣2代入方程12x ﹣mx =5,得:12×(−2)−m ×(−2)=5,解得m =3.16.(2014春•福清市校级期末)已知不等式组{x >−1x <1x <1−k(1)当k =﹣2时,不等式组的解集是: ﹣1<x <1 ;当k =3时,不等式组的解集是: 无解 (2)由(1)可知,不等式组的解集随k 的值变化而变化,若不等式组有解,求k 的取值范围并求出解集. 【分析】(1)把k =﹣2和k =3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k 为任意有理数时,要分1﹣k <﹣1,1﹣k >1,﹣1<1﹣k <1三种情况分别求出不等式组的解集. 【解析】(1)把k =﹣2代入,得 {x >−1x <1x <3,解得﹣1<x <1; 把k =3代入,得 {x >−1x <1x <−2,无解.故答案是:﹣1<x <1;无解;(2)若k 为任意实数,不等式组的解集分以下三种情况: 当1﹣k ≤﹣1即k ≥2时,原不等式组可化为{x >−1x <−1,故原不等式组的解集为无解;当1﹣k ≥1即k ≤0时,原不等式组可化为{x >−1x <1,故原不等式组的解集为﹣1<x <1;当﹣1<1﹣k <1即0<k <2时,原不等式组可化为{x >−1x <1−k ,故原不等式组的解集为﹣1<x <1﹣k .17.(2014春•无锡期末)已知方程组{x +y =4a +5x −y =6a −5的解满足不等式4x ﹣5y <9.求a 的取值范围.【分析】先解得不等式的解集,再根据题意,求出a 的取值范围. 【解析】两个方程相加得,x =5a , 两个方程相减得,y =﹣a +5, ∵4x ﹣5y <9,∴20a ﹣5(﹣a +5)<9 ∴a <342518.(2020春•惠东县期中)若关于x ,y 的方程组{2x +y =ax +2y =5a 的解满足x ﹣y >12,求a 的取值范围.【分析】将两个方程相减得出x ﹣y =﹣4a ,结合x ﹣y >12得出关于a 的不等式,解之可得. 【解析】两方程相减可得x ﹣y =﹣4a , ∵x ﹣y >12, ∴﹣4a >12, 解得a <﹣3.19.(2020•黄石模拟)若关于x 、y 的二元一次方程组{3x +y =1+ax +3y =3的解满足x +y <2,求a 的正整数解.【分析】将两个方程相加可得4(x +y )=4+a ,根据x +y <2知4(x +y )<8,从而列出关于a 的不等式,解之可得.【解析】将两个方程相加可得4x +4y =4+a ,即4(x +y )=4+a , ∵x +y <2, ∴4(x +y )<8, ∴4+a <8, 解得a <4,∴a 的正整数解为1、2、3.20.(2020春•海淀区校级期中)已知关于x ,y 的方程组{3x +2y =p +14x +3y =p −1的解满足x <y ,求p 的取值范围? 【分析】解不等式组求出{x =p +5y =−p −7,再根据x <y 得出关于p 的不等式,解之可得答案. 【解析】解方程组{3x +2y =p +14x +3y =p −1,得:{x =p +5y =−p −7, ∵x <y ,∴p +5<﹣p ﹣7,解得p <﹣6.。

方程与不等式二元一次方程组的解法

方程与不等式二元一次方程组的解法

方程与不等式二元一次方程组的解法方程与不等式:二元一次方程组的解法在数学中,方程和不等式是我们常常会遇到的问题。

其中,二元一次方程组是一类重要的题型,它涉及到两个未知数的线性方程组。

本文将介绍一种常用且有效的解决二元一次方程组的方法。

一、二元一次方程组的定义二元一次方程组是由两个未知数的线性方程组成的。

一般表示为:{ax + by = c{dx + ey = f其中,a、b、c、d、e、f为已知的常数,x和y为未知数。

二、解二元一次方程组的方法为了解决二元一次方程组,我们可以使用消元法或代入法。

1. 消元法消元法是一种常用的解决方程组的方法。

具体步骤如下:步骤一:通过乘以适当的常数,使得方程组的系数相等,得到相等的方程组。

步骤二:将两个相等的方程相减或相加,消去一个未知数,得到一个一元一次方程。

步骤三:求解一元一次方程得到一个未知数的值。

步骤四:将求得的一个未知数的值代入另一个方程,解出另一个未知数的值。

步骤五:得到方程组的解。

2. 代入法代入法是另一种解决方程组的常用方法。

具体步骤如下:步骤一:从一个方程中解出一个未知数,得到一个关于另一个未知数的方程。

步骤二:将这个关于另一个未知数的方程代入另一个方程中。

步骤三:解这个只含有一个未知数的方程,得到一个未知数的值。

步骤四:将求得的一个未知数的值代入另一个方程,解出另一个未知数的值。

步骤五:得到方程组的解。

三、示例问题为了更好地理解和应用上述方法,我们来看一个具体的例子。

例题:解方程组{2x + 3y = 7{4x - 5y = -3解法一:消元法我们可以通过消元法来解决这个方程组。

步骤一:将第一个方程乘以2,得到:4x + 6y = 14。

步骤二:将第二个方程乘以3,得到:12x - 15y = -9。

步骤三:将第二个方程加到第一个方程上,得到:16x - 9y = 5。

步骤四:解一元一次方程16x - 9y = 5,得到x = 1。

步骤五:将x = 1代入第一个方程2x + 3y = 7,解得y = 1。

二元一次方程组和不等式的结合应用题

二元一次方程组和不等式的结合应用题

二元一次方程组和不等式的结合应用题摘要:一、二元一次方程组的定义和基本解法1.二元一次方程组的定义2.代入法解二元一次方程组3.消元法解二元一次方程组二、不等式的基本性质和解法1.不等式的定义和基本性质2.解不等式的方法3.解含有绝对值的不等式三、二元一次方程组和不等式的结合应用题1.结合二元一次方程组解不等式2.结合不等式解二元一次方程组3.二元一次方程组和不等式的实际应用正文:一、二元一次方程组的定义和基本解法二元一次方程组是指包含两个未知数,且每个方程中的次数都是一次的方程组。

解决二元一次方程组的方法有代入法和解元法。

代入法是将一个方程的未知数表示为另一个方程的未知数的函数,然后代入另一个方程求解。

解元法是先将两个方程相加或相减,消去一个未知数,然后再用已知条件求解另一个未知数。

二、不等式的基本性质和解法不等式是指含有比较关系的数学表达式,如大于、小于、大于等于、小于等于等。

解不等式首先要了解不等式的基本性质,如加减同一数、乘除同一正数或负数等。

解不等式的方法有移项法、系数化为1法、解集的端点法等。

对于含有绝对值的不等式,可以先将其转化为不含绝对值的不等式,然后再用相应的方法解出。

三、二元一次方程组和不等式的结合应用题在实际问题中,我们常常需要同时解决二元一次方程组和不等式的问题。

例如,一个商店的苹果和香蕉的价格分别为每斤x元和y元,已知苹果的总价不小于100元,香蕉的总价不大于200元,求苹果和香蕉各多少斤。

这类问题需要先根据不等式确定未知数的取值范围,然后再用二元一次方程组求解。

另外,二元一次方程组和不等式的结合应用题也可以是关于时间、速度、距离等问题。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12、二元一次方程组及不等式的解法
1.不等式260x ->的解集在数轴上表示正确的是( )
2,已知方程()()026281||2=++--+m n y n x m 是二元一次方程,则m+n 的值( )
A.1
B. 2
C.-3
D.3
3,在等式y=kx+b 中,当x=1时,y=2;当x=2时,y=5,则k,b 的值为( )
A .⎩⎨⎧-=-=13b k
B .⎩⎨⎧=-=31b k
C .⎩⎨⎧-==13b k
D .⎩
⎨⎧-=-=31b k 4,若方程1-=+y x ,42=-y x 和7=-my x 有公共解,则m 的取值为( )
A.4
B.3
C.2
D.1
5.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ). A.m >-1.25 B.m <-1.25 C.m >1.25 D.m <1.25
6,要配制15%的硝酸溶液240千克,需用8%和50%的硝酸溶液的克数分别为( )
A. 40,200
B.80,160
C.160,80
D.200,40
7,两位同学在解方程组时,甲同学由2,78.ax by cx y +=⎧⎨-=⎩正确的解出3,2;
x y =⎧⎨=-⎩乙同学因把c
写错了而解得2,2.x y =-⎧⎨=⎩
那么a 、b 、c 的正解的值应为( ) A.1,5,4-===c b a B.0,5,4=-=-=c b a
C.2,5,4-===c b a
D.2,5,4=-=-=c b a
8.不等号填空:若a <b <0 ,则5a - 5b -;a 1 b 1;12-a 12-b . 9.当0<<a x 时,2x 与ax 的大小关系是_______________.
10.若点P (1-m ,m )在第二象限,则(m -1)x >1-m 的解集为_______________. 11,从方程组⎩
⎨⎧+=-=121a y a x 中可以得到y 与x 的关系式为_______. 12,当x =0、1、-1时,二次三项式ax 2+bx+c 的值分别为5、6、10,则a =___,b ___,c =___.
13.若11
|1|-=--x x ,则x 的取值范围是 14,某校现有学生804人,与去年相比:男生增加10%,女生减少10%,学生总数增加0.5%,则现有男、女学生的人数分别为___.
A .
B .
C .
D .
15,用适当方法解方程组:
⑴231,498.s t s t +=-⎧⎨
-=⎩ ⑵()()()()3144,5135.
x y y x -=-⎧⎪⎨-=+⎪⎩
⑶11,233210.x y x y +⎧-=⎪⎨⎪+=⎩ (4)530,43,2 1.x y z y z x z --=⎧⎪+=⎨⎪-=⎩
16.解不等式(1)
1)1(22 ---x x . (2)134155-+x x
(3)
312-x ≤643-x (4)3
41221x x +≤--.
17,当a 为何值时,方程组⎩⎨
⎧=-=+02,162y x ay x 有正整数解?并求出正整数解.
18,某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润可涨至7500元。

当地一家农产品工商公司收获这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或加工完毕,为此公司研制了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成.你认为选择哪种方案获利最多?为什么?。

相关文档
最新文档