中考数学第22题解析+(1)
2023 上海中考数学 22题
2023年上海中考数学第22题解析22.“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.
(1)他实际花了多少钱购买加油卡?
(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x的函数解析式(不用写出定义域).
(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?
【分析】
(1)根据打九折列出算式,计算即可;
(2)根据每一升油,油的单价降低0.30元知:y=0.9(x-0.30);
(3)当x=7.30,可得y=6.30,根据优惠后油的单价比原价便宜(x-y)元,计算求解即可.
【解答】
解:(1)由题意知,1000×0.9=900(元),
答:实际花了900元购买会员卡;
(2)由题意知,y=0.9(x-0.30),
整理得y=0.9x-0.27,
∴y关于x的函数解析式为y=0.9x-0.27;
(3)当x=7.30时,y=0.9×7.30-0.27=6.30,
∵7.30-6.30=1.00,
∴优惠后油的单价比原价便宜1.00元.。
【中考必备】最新中考数学试题分类解析 专题22 二次函数的应用(几何问题)
2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,若|ax 2+bx +c |=k (k ≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3【答案】 D 。
【考点】二次函数的图象和性质。
【分析】根据题意得:y =|ax 2+bx +c |的图象如右图,∵|ax 2+bx +c |=k (k ≠0)有两个不相等的实数根, ∴k >3。
故选D 。
二、填空题 三、解答题1. (2012天津市10分)已知抛物线y =ax 2+bx +c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上.(Ⅰ)当a =1,b =4,c =10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.【答案】解:(Ⅰ)若a =1,b =4,c =10,此时抛物线的解析式为y =x 2+4x +10。
①∵y =x 2+4x +10=(x +2)2+6,∴抛物线的顶点坐标为P (-2,6)。
②∵点A (1,y A )、B (0,y B )、C (-1,y C )在抛物线y =x 2+4x +10上, ∴y A =15,y B =10,y C =7。
∴A B C y 15==5y y 107--。
(Ⅱ)由0<2a <b ,得0bx 12a<=--。
由题意,如图过点A 作AA 1⊥x 轴于点A 1, 则AA 1=y A ,OA 1=1。
连接BC ,过点C 作CD ⊥y 轴于点D , 则BD =y B -y C ,CD =1。
过点A 作AF ∥BC ,交抛物线于点E (x 1,y E ),交x 轴于点F (x 2,0)。
人教版九年级数学中考总复习 第22课时 能源与可持续发展 含解析及答案
第22课时能源与可持续发展中考回顾1.(2022·四川自贡中考)下列关于能源及其利用的说法,正确的是()A.目前人类的主要能源是柴草、煤等化石能源B.石油、天然气、天然铀矿等都属于可再生能源C.核电站使用过的核废料无放射性,不会污染环境D.风能、水能、太阳能等清洁能源可以转化为电能答案:D2.(2021·四川成都中考)人类的发展离不开能源,“碳达峰、碳中和”是我国对世界做出的庄严承诺。
对于能量和能源,下列说法正确的是()A.现代生活离不开电,电能是一次能源B.提高能量转化效率是“节能减排”的重要措施之一C.新能源的开发和利用技术难、成本高,无实用价值D.能量既不能创造,也不会消灭,所以不用节约能源答案:B3.(2021·云南中考)近年,我国在信息、材料和能源等领域取得了辉煌的成绩,以下说法正确的是()A.量子计算机中的电子器件都是用超导体制成的B.祝融号火星车利用电磁波将信息传回地球C.水力、风力、太阳能发电都是利用不可再生能源D.核电站产生的核废料可以像生活垃圾那样被处理答案:B4.(2021·云南昆明中考)目前,人类利用核能发电的主要方式是(选填“核裂变”或“核聚变”); 石油、天然气是(选填“可再生”或“不可再生”)能源。
答案:核裂变不可再生5.(2021·青海中考)某路灯的灯杆顶端有太阳能电池板和风车,风车转动带动发电机发电,它发电的原理是现象。
若太阳光辐射到该电池板的能量为2.7×107 J,这与完全燃烧kg焦炭放出的热量相当。
(焦炭的热值为3×107 J/kg)答案:电磁感应0.9模拟预测1.下列四种能源中属于二次能源的是()A.电能B.风能C.水能D.太阳能答案:A解析:电能是由一次能源经过加工而获得的能源,是二次能源,故A正确。
2.关于原子、原子核和核能,表述正确的是()A.原子由质子和电子组成B.原子核由质子和中子组成C.核能清洁无污染,利用核能有利无害D.核能是我国当前利用的最主要能源答案:B解析:原子由原子核和核外电子组成,原子核由质子和中子组成,A选项错误,B选项正确;核能的利用既有有利的一面,也有有害的一面,C选项错误;我国当前利用的最主要能源仍然是化石能源,D选项错误。
中考数学 专题22 图形的旋转(知识点串讲)(解析版)
专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。
【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。
平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。
旋转:将一个图形绕一个顶点沿某个方向转一定角度。
轴对称:将一个图形沿一条直线对折。
2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。
旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。
轴对称:对应线段或延长线如果相交,那么交点在对称轴上。
3)确定条件不同A平移:距离与方向旋转:旋转的三要素。
2023年深圳中考数学22题
2023年深圳中考数学22题在2023年深圳中考数学试卷中的第22题中,考查的是关于概率的计算问题。
本题要求考生利用给定的条件,计算出某一事件发生的概率。
首先,我们来具体看一下这道题的内容。
题目描述如下:已知某学校有180名学生,其中60人选修了数学课程。
现在从这180人中随机选取一人,请回答以下问题:(1)该学生没有选修数学课程的概率是多少?(2)随机选取的学生选修数学课程并且是男生的概率是多少?(3)随机选取的学生不选修数学课程或者是男生的概率是多少?接下来,我们将针对每一个问题逐一进行讨论和解答。
(1)该学生没有选修数学课程的概率是多少?根据已知条件可知,总共有180名学生,其中60人选修了数学课程。
因此,没有选修数学课程的学生人数为180-60=120人。
所以,该学生没有选修数学课程的概率可以表示为没有选修数学课程的学生人数120除以总学生人数180,即120/180=2/3。
(2)随机选取的学生选修数学课程并且是男生的概率是多少?根据已知条件可知,总共有180名学生,其中60人选修了数学课程。
由于题目没有提到关于男生和女生的具体数量,所以我们无法准确计算这一特定事件的概率。
但是,我们可以根据常识和经验来判断。
通常来说,男生和女生在选修课程上不会存在差异,即男生和女生选择数学课程的比例应该相近。
因此,我们可以暂时假设男生和女生选择数学课程的比例相同。
在这种情况下,我们可以得到一个近似的答案。
根据已知条件可知,选修数学课程的学生总数为60人。
假设男生和女生选修数学课程的比例相同,那么约有一半的选修数学课程的学生是男生。
所以,我们可以估计随机选取的学生既选修数学课程又是男生的概率为1/2。
(3)随机选取的学生不选修数学课程或者是男生的概率是多少?根据已知条件可知,总共有180名学生,其中60人选修了数学课程。
我们要计算的是随机选取的学生不选修数学课程或者是男生的概率,即计算出选修数学课程的男生数量、不选修数学课程的女生数量和不选修数学课程的男生数量。
2021年中考数学一轮复习训练22 三角形中位线定理应用问题(解析版)
专题22 三角形中位线定理应用问题1.三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。
2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
3.对三角形中位线的深刻理解(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.【例题1】(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14 【答案】D【解析】根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.∵D ,E ,F 分别是AB ,BC ,CA 的中点,1214∴DE =12AC ,DF =12BC ,EF =12AB ,∴DF BC =EF AB =DE AC =12,∴△DEF ∽△ABC ,∴S △DEFS △ABC =(DE AC )2=(12)2=14, ∵等边三角形ABC 的面积为1,∴△DEF 的面积是14.【对点练习】(2019内蒙古赤峰)如图,菱形ABCD 周长为20,对角线AC 、BD 相交于点O ,E 是CD 的中点,则OE 的长是( )A .2.5B .3C .4D .5【答案】A .【解析】∵四边形ABCD 为菱形,∴CD =BC ==5,且O 为BD 的中点, ∵E 为CD 的中点,∴OE 为△BCD 的中位线,∴OE =CB =2.5。
【点拨】掌握菱形特点,根据三角形中位线定理解决问题。
【例题2】(2020•临沂)如图,在△ABC 中,D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,H 为AF 与DG 的交点.若AC =6,则DH = .【解析】1.【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB ,解得EF =2,则DH =12EF =1. 【解析】∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,【对点练习】(2019广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,F 、G 分别是AD 、AE 的中点,且FG =2cm ,则BC 的长度是 cm .【答案】8.【解析】利用三角形中位线定理求得FG=DE,DE=BC.如图,∵△ADE中,F、G分别是AD、AE的中点,∴DE=2FG=4cm,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=8cm【点拨】连续两次应用三角形中位线定理处理本题,是关键。
2022内蒙古包头中考数学试卷+答案解析
2022年内蒙古包头中考数学一、选择题(每小题3分,共36分,下列各小题均有四个选项,其中只有一个是正确的)1. 若24×22=2m ,则m 的值为 ( )A.8B.6C.5D.22. 若a ,b 互为相反数,c 的倒数是4,则3a +3b -4c 的值为 ( ) A.-8B.-5C.-1D.163. 若m >n ,则下列不等式中正确的是 ( )A.m -2<n -2B.-12m >-12nC.n -m >0D.1-2m <1-2n4. 几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为( )A.3B.4C.6D.95. 2022年2月20日北京冬奥会大幕落下,中国队在冰上、雪上项目中,共斩获9金4银2铜,创造中国队冬奥会历史最好成绩。
某校为普及冬奥知识,开展了校内冬奥知识竞赛活动,并评出一等奖3人。
现欲从小明等3名一等奖获得者中任选2名参加全市冬奥知识竞赛,则小明被选到的概率为 ( )A.16B.13C.12D.236. 若x 1,x 2是方程x 2-2x -3=0的两个实数根,则x 1·x 22的值为( )A.3或-9B.-3或9C.3或-6D.-3或67. 如图,AB ,CD 是☉O 的两条直径,E 是劣弧BC 的中点,连接BC ,DE 。
若∠ABC =22°,则∠CDE 的度数为( )A.22°B.32°C.34°D.44°8.在一次函数y=-5ax+b(a≠0)中,y的值随x值的增大而增大,且ab>0,则点A(a,b)在()A.第四象限B.第三象限C.第二象限D.第一象限9.如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为()A.1∶4B.4∶1C.1∶2D.2∶110.已知实数a,b满足b-a=1,则代数式a2+2b-6a+7的最小值等于()A.5B.4C.3D.211.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3√3B.2√3C.3D.212.如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF∥AB,AE=AB,AF与BE相交于点O,连接OC。
上海中考数学第22题解题方法(一)
上海中考数学第22题解题方法(一)关于上海中考数学第22题解题的讨论引言上海中考数学第22题是一道考察学生数学逻辑推理能力的典型题目。
本文将探讨该题目的解题方法,并详细说明各种方法的具体步骤。
问题描述题目描述如下:某班全体学生参加田径比赛,成绩按照得到的分数从高到低顺序排列,相邻两名同学的分数差不超过3。
现已知得到了第1名至第50名同学的分数,求可能得到第51名同学的最高分数。
解题思路要解决这个问题,我们需要根据已给出的信息进行分析,找到一种可能得到第51名同学最高分数的情况。
我们可以按照以下三个步骤来解题:步骤一:列举条件首先,我们应该列举已知的条件。
根据题目描述,已知如下条件:•学生参加田径比赛,成绩按照得到的分数从高到低顺序排列。
•相邻两名同学的分数差不超过3。
•已知得到了第1名至第50名同学的分数。
步骤二:分析条件接下来,我们需要分析已知的条件,找到其中的规律和限制。
通过观察题目描述,我们可以得出以下结论:•总体分数的范围是有限的,即不可能无限制地增长或减少。
•第51名同学的分数最高,因此应该尽量接近已知分数中的最大值。
步骤三:找出最高分数根据以上分析,我们可以采用以下方法来求得可能得到第51名同学最高分数的情况:1.首先,我们将已知的前50名同学的分数按照从大到小的顺序排列。
2.然后,我们观察已知分数的差值情况。
如果某两个相邻的分数差值大于3,那么我们就可以在这两个分数之间插入一个数,使得插入后的分数值仍然满足题目要求。
3.根据以上方法,我们可以不断插入分数,直到插入到第50名同学的分数位置。
这样,我们就找到了可能得到第51名同学最高分数的情况。
结论通过以上步骤,我们成功地解答了上海中考数学第22题。
根据题目要求,我们找到了一种可能得到第51名同学最高分数的情况。
不过需要注意的是,这只是一种可能情况,并不保证是唯一的解答。
总结起来,解决这道题目需要运用数学逻辑推理能力,通过列举条件、分析条件和找出最高分数的方法,我们可以有效地解决类似的问题。
中考数学专卷2020届中考数学总复习(22)圆-精练精析(1)及答案解析
图形的性质——圆1一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C. D.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.27.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.48.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3 B.6 C.6 D.12二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .10.正六边形的中心角等于_________ 度.11.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________ .12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_________ .13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________ cm.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ .15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________ .三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________ ;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.图形的性质——圆1 参考答案与试题解析一.选择题(共8小题) 1.如图,正方形ABCD 的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是( )A .B .1﹣C .﹣1D . 1﹣考点: 扇形面积的计算. 分析: 图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.解答: 解:如图: 正方形的面积=S 1+S 2+S 3+S 4;① 两个扇形的面积=2S 3+S 1+S 2;② ②﹣①,得:S 3﹣S 4=S 扇形﹣S 正方形=﹣1=.故选:A .点评: 本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB⊥CD,垂足为M ,则AC 的长为( )A . cmB .cmC .cm 或cmD . cm 或cm考点: 垂径定理;勾股定理. 专题: 分类讨论. 分析: 先根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C3 D.2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.7.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.4考点:垂径定理;等腰三角形的性质;勾股定理;解直角三角形.专题:分类讨论.分析:作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD ﹣OD,即求得OA的长.解答:解:如图,作AD⊥BC于D,∵AB=AC=5,∴AD垂直平分BC,∴点O在直线AD上,连结OB,在Rt△ABD中,sinB==,∵AB=5,∴AD=4,∴BD==3,在Rt△OBD中,OB=,BD=3,∴OD==1,当点A与点O在BC的两侧时,OA=AD+OD=4+1=5;当点A与点O在BC的同侧时,OA=AD﹣OD=4﹣1=3,故OA的长为3或5.故选:A.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理.8.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6 C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴PD=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;轴对称的性质.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .考点:垂径定理;勾股定理.专题:分类讨论.分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.考点:垂径定理的应用;勾股定理.分析:(1)延长CO交DE于点F,连接OD,根据垂径定理求出BC的长,由sin∠COB=得出OB的长,根据DE∥AB可知∠ACD=∠CDE,∠DFO=∠BCO=90°.由OF过圆心可得出DF的长,再根据勾股定理求出OF的长,进而可得出CF的长;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中由勾股定理求出DF的长,由cot∠ACD=cot∠CDF即可得出结论.解答:解:(1)延长CO交DE于点F,连接OD∵OC⊥AB,OC过圆心,AB=24m,∴BC=AB=12m.在Rt△BCO中,sin∠COB==,∴OB=13mCO=5m.∵DE∥AB,∴∠ACD=∠CDE,∠DFO=∠BCO=90°.又∵OF过圆心,∴DF=DE=×4=2m.在Rt△DFO中,OF===7m,∴CF=CO+OF=12m,即当水位线DE=4m时,此时的水深为12m;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中,DF===4m.在Rt△CDF中,cot∠CDF==.∵DE∥AB,∴∠ACD=∠CDE,∴cot∠ACD=cot∠CDF=.答:若水位线以一定的速度下降,当水深8m时,此时∠ACD的余切值为.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.考点:切线的判定;勾股定理.专题:计算题;证明题.分析:(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线;(2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB;故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值.解答:(1)证明:连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC;∵AB=AC,∴BD=DC.∵OA=OB,∴OD∥AC.∵DF⊥AC,∴DF⊥OD.∴∠ODF=∠DFA=90°,∴DF为⊙O的切线.(2)解:连接BE交OD于G;∵AC=AB,AD⊥BC,ED=BD,∴∠EAD=∠BAD.∴.∴ED=BD,OE=OB.∴OD垂直平分EB.∴EG=BG.又AO=BO,∴OG=AE.在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2∴()2﹣(﹣OG)2=BO2﹣OG2解得:OG=.∴AE=2OG=.点评:本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.专题:几何综合题.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=∠OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.。
2020年中考数学第22题应用题复习专题(有答案)
武汉市中考数学第22题复习专题1.我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y 元.写出y与m之间的函数关系式,并写出商店能获得最大利润的进货方案;(3)由于市场浮动,A型电动自行车的进货价格下调a(100<a<300)元,此时商店能获得最大利润为14400,求a值.2.为迎接军运会,武汉市政府启动了梁子湖水质提升方案,其中治理所需的部分原料450吨由某公司存放于甲、乙两个仓库,如果运出甲仓库所存原料的30%,乙仓库所存原料的20%,那么乙仓库剩余的原料与甲仓库剩余的原料一样多.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变.设从甲仓库运m吨原料到工厂,求出总运费w关于m的函数解析式(不要求写出m的取值范围);(3)若在(2)的条件下,请根据函数的性质说明:随着m的增大,w的变化情况.3.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B 两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表CD总计(吨)A(吨)200B(吨)x300合计(吨)240260500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.4.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:游泳次数方式一的总费用(元)101501517520……x方式二的总费用(元)90135…(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.5、(10分)某企业拥有一条生产某品牌酸奶的生产线,已知该酸奶销售额为4800元时的销量比相售额为800元时的销量要多500瓶。
【决胜】(预测题)中考数学 专题22 几何三大变换问题之旋转(中心对称)问题(含解析)
专题22 几何三大变换问题之旋转(中心对称)问题轴对称、平移、旋转是平面几何的三大变换。
旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。
旋转由旋转中心、旋转的方向和角度决定。
经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; 旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。
把一个图形绕着某一定点旋转一个角度360°/n(n 为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。
特别地,中心对称也是旋转对称的一种的特别形式。
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。
在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。
中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。
一. 直线(线段)的旋转问题1. 如图,直线l :y =y 轴交于点A ,将直线l 绕点A 顺时针旋转75º后,所得直线的解析式为【 】A .y =.y x =.y x =- D .y x =【答案】B 。
【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,由已知,可求直线y=x、y轴的交点分别为B(1,0),A(0,2.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y x1=+,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x55=-垂直的直线l6的函数表达式。
备战2021年四川中考数学必考专题 22 解直角三角形(解析版)
备战2021年四川中考数学必考专题22 解直角三角形一.选择题(共3小题)1.(2019•绵阳)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.【点拨】根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ﹣5sinθ=5,∴cosθ﹣sinθ,∴(sinθ﹣cosθ)2.故选:A.【点睛】本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.2.(2019•凉山州)如图,在△ABC中,CA=CB=4,cos C,则sin B的值为()A.B.C.D.【点拨】过点A作AD⊥BC,垂足为D,在R t△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD;在Rt△ABD中,BD=CB﹣CD=3,AD,∴AB2,∴sin B.故选:D.【点睛】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB 的长是解题的关键.3.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x =﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.【点拨】如图,设直线x=﹣5交x轴于K.由题意KD CF=5,推出点D的运动轨迹是以K 为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.【解析】解:如图,设直线x=﹣5交x轴于K.由题意KD CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO,∴,∴OE,∴AE,作EH⊥AB于H.∵S△ABE•AB•EH=S△AOB﹣S△AOE,∴EH,∴AH,∴tan∠BAD,故选:B.【点睛】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二.填空题(共4小题)4.(2019•雅安)在Rt△ABC中,∠C=90°,AB=5,BC=4,则sin A=.【点拨】根据正弦的定义解答.【解析】解:在Rt△ABC中,sin A,故答案为:.【点睛】本题考查的是锐角三角函数的定义,锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.5.(2019•绵阳)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【点拨】过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴CD5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC BC•AD=75或25.故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.6.(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【点拨】给图中相关点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【解析】解:给图中相关点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a a,∴AD a,∴cos(α+β).故答案为:.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.7.(2019•乐山)如图,在△ABC中,∠B=30°,AC=2,cos C.则AB边的长为.【点拨】如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,cos C,∴,∴CH,∴AH,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH,故答案为.【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三.解答题(共11小题)8.(2019•内江)如图,两座建筑物DA与CB,其中CB的高为120米,从DA的顶点A测得CB顶部B的仰角为30°,测得其底部C的俯角为45°,求这两座建筑物的地面距离DC为多少米?(结果保留根号)【点拨】作AE⊥BC于E,设BE=x,利用正切的定义用x表示出EC,结合题意列方程求出x,计算即可.【解析】解:作AE⊥BC于E,则四边形ADCE为矩形,∴AD=CE,设BE=x,在Rt△ABE中,tan BAE,则AE x,∵∠EAC=45°,∴EC=AE x,由题意得,BE+CE=120,即x+x=120,解得,x=60(1),∴AD=CE x=180﹣60,∴DC=180﹣60,答:两座建筑物的地面距离DC为(180﹣60)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.9.(2019•泸州)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛D位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).【点拨】(1)过D作DE⊥AB于E,解直角三角形即可得到结论;(2)过D作DF⊥BC于F,解直角三角形即可得到结论.【解析】解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=20,∠DAE=45°,∴DE=20sin45°=20,在Rt△BED中,BD=20,∴sin∠ABD;(2)过D作DF⊥BC于F,在Rt△BED中,DE=20,BD=20,∴BE40,∵四边形BFDE是矩形,∴DF=EB=40,BF=DE=20,∴CF=BC﹣BF=30,在Rt△CDF中,CD50,∴小岛C,D之间的距离为50nmile.【点睛】此题考查了解直角三角形的应用﹣方向角问题,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.10.(2019•广元)如图,某海监船以60海里/时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡査此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方向.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.【点拨】(1)作CE⊥AB于E,则∠C EA=90°,由题意得:AB=60×1.5=90,∠CAB=45°,∠CBN=30°,∠DBN=60°,得出△ACE是等腰直角三角形,∠CBE=60°,得出CE=AE,∠BCE=30°,由直角三角形的性质得出CE BE,BC=2BE,设BE=x,则CE x,AE=BE+AB =x+90,得出方程x=x+90,解得:x=4545,得出BC=2x=9090即可;(2)作DF⊥AB于F,则DF=CE x=135+45,∠DBF=30°,由直角三角形的性质得出BD=2DF=270+90,即可得出结果.【解析】解:(1)作CE⊥AB于E,如图1所示:则∠CEA=90°,由题意得:AB=60×1.5=90(海里),∠CAB=45°,∠CBN=30°,∠DBN=60°,∴△ACE是等腰直角三角形,∠CBE=60°,∴CE=AE,∠BCE=30°,∴CE BE,BC=2BE,设BE=x,则CE x,AE=BE+AB=x+90,∴x=x+90,解得:x=4545,∴BC=2x=9090;答:B,C两处之间的距离为(9090)海里;(2)作DF⊥AB于F,如图2所示:则DF=CE x=135+45,∠DBF=90°﹣60°=30°,∴BD=2DF=270+90,∴海监船追到可疑船只所用的时间为3(小时);答:海监船追到可疑船只所用的时间为(3)小时.【点睛】本题考查了解直角三角形的应用、方向角、直角三角形的性质;正确作出辅助线是解题的关键.11.(2019•眉山)如图,在岷江的右岸边有一高楼AB,左岸边有一坡度i=1:2的山坡CF,点C与点B在同一水平面上,CF与AB在同一平面内.某数学兴趣小组为了测量楼AB的高度,在坡底C处测得楼顶A的仰角为45°,然后沿坡面CF上行了20米到达点D处,此时在D处测得楼顶A的仰角为30°,求楼AB的高度.【点拨】由i EC2=CD2,解得DE=20m,EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,则四边形DEBG、四边形DECH、四边形BCHG都是矩形,证得AB =BC,设AB=BC=xm,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,tan∠ADG,代入即可得出结果.【解析】解:在Rt△DEC中,∵i,DE2+EC2=CD2,CD=20,∴DE2+(2DE)2=(20)2,解得:DE=20(m),∴EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:则四边形DEBG、四边形DECH、四边形BCHG都是矩形,∵∠ACB=45°,AB⊥BC,∴AB=BC,设AB=BC=xm,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,∵tan∠ADG,∴,解得:x=50+30.答:楼AB的高度为(50+30)米.【点睛】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形得出方程是解题的关键.12.(2019•资阳)如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.(1)求渔船B航行的距离;(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)【点拨】(1)由题意得到∠CAB=30°,∠ACB=90°,BC=20,根据直角三角形的性质即可得到结论;(2)过B作BE⊥AE于E,过D作DH⊥AE于H,延长CB交DH于G,得到四边形AEBC和四边形BEHG是矩形,根据矩形的性质得到BE=GH=AC=20,AE=BC=20,设BG=EH=x,求得AH=x+20,解直角三角形即可得到结论.【解析】解:(1)由题意得,∠CAB=30°,∠ACB=90°,BC=20,∴AB=2BC=40海里,答:渔船B航行的距离是40海里;(2)过B作BE⊥AE于E,过D作DH⊥AE于H,延长CB交DH于G,则四边形AEBC和四边形BEHG是矩形,∴BE=GH=AC=20,AE=BC=20,设BG=EH=x,∴AH=x+20,由题意得,∠BDG=60°,∠ADH=45°,∴x,DH=AH,∴20x=x+20,解得:x=20,∴BG=20,AH=20+20,∴BD40,AD AH=2020,答:中国渔政船此时到外国渔船B的距离是40海里,到外国渔船A的距离是(2020)海里.【点睛】本题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.13.(2019•巴中)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【点拨】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.【解析】解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE,∴AE,∴BE=300,又BF=DE=x,∴CF=414﹣x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414﹣x,又BE=DF,即:300414﹣x,解得:x=214,故:点D到AB的距离是214m.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三角函数列方程是解题的关键.14.(2019•遂宁)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)【点拨】过A作AH⊥BC于H,过E作E G⊥BC于G,于是得到四边形EGHA是矩形,求得EG=AH,GH=AE=2,得到AH=BH,求得BG=BH﹣HG,得到FG,根据梯形的面积公式求得梯形ABFE的面积乘以大坝的长度即可得到结论.【解析】解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=30×30=900cm=9米,∴BG=BH﹣HG=7,∵斜坡EF的坡度i=1:,∴FG=9,∴BF=FG﹣BG=97,∴S梯形ABFE(2+97)×9,∴共需土石为200=900(95)立方米.【点睛】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.15.(2019•成都)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C(结的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【点拨】作CE⊥AB于E,根据矩形的性质得到CE=AB=20,CD=BE,根据正切的定义求出AE,结合图形计算即可.【解析】解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.(2019•宜宾)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)【点拨】设AM=x米,根据等腰三角形的性质求出FM,利用正切的定义用x表示出EM,根据题意列方程,解方程得到答案.【解析】解:设AM=x米,在Rt△AFM中,∠AFM=45°,∴FM=AM=x,在Rt△AEM中,tan∠AEM,则EM x,由题意得,FM﹣EM=EF,即x x=40,解得,x=60+20,∴AB=AM+MB=61+20,答:该建筑物的高度AB为(61+20)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(2019•广安)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据: 1.4, 1.7)【点拨】(1)由∠HFE=45°知HE=EF=10,据此得BH=BE+HE=1.5+10=11.5;(2)设DE=x米,则DG x米,由∠GFD=45°知GD=DF=EF+DE,据此得x=10+x,解之求得x的值,代入CG=DG+DC x+1.5计算可得.【解析】解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DE tan60°DE,设DE=x米,则DG x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=55,∴CG=DG+DC x+1.5(55)+1.5=16.5+525,答:教学楼CG的高约为25米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.(2019•达州)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84. 1.41, 1.73)【点拨】作BF⊥CE于F,根据正弦的定义求出BF,利用余弦的定义求出CF,利用正切的定义求出DE,结合图形计算即可.【解析】解:作BF⊥CE于F,在Rt△BFC中,BF=BC•sin∠BCF≈3.20,CF=BC•cos∠BCF≈3.85,在Rt△ADE中,DE 1.73,∴BH=BF﹣HF=0.20,AH=EF=CD+DE﹣CF=0.58,由勾股定理得,AB0.6(m),答:AB的长约为0.6m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。
九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)
九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段阅读与思考比例线段是初中数学的一个核心问题.我们开始是用平行线截线段成比例进行研究的,随着学习的深入、知识的增加,在平行线法的基础上,我们可以利用相似三角形研究证明比例线段,在这两种最基本的研究与证明比例线段方法的基础上,在不同的图形中又发展为新的形式.在直角三角形中,以积的形式更明快地表示直角三角形内线段间的比例关系.在圆中,又有相交弦定理、切割线定理及其推论,这些定理用乘积的形式反映了圆内的线段的比例关系. 相交弦定理、切割线定理及其推论,它们之间有着密切的联系: 1.从定理的形式上看,都涉及两条相交直线与圆的位置关系;2.从定理的证明方法上看,都是先证明一对三角形相似,再由对应边成比例而得到等积式. 熟悉以下基本图形和以上基本结论.TPBDCBAPP ADCBA例题与求解【例1】如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F .若DE =34CE ,AC =85,点D 为EF 的中点,则AB = . (全国初中数学联赛试题)解题思路:设法求出AE 、BE 的长,可考虑用相交弦定理,勾股定理等.例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段BD 的长为( )A .1B .12C .13D .14(武汉市中考试题)解题思路:由切割线定理知BE 2=BD ·BC ,欲求BD ,应先求BE . 须加强对图形的认识,充分挖掘隐含条件.【例3】如图,AB 是半圆的直径,O 是圆心,C 是AB 延长线上一点,CD 切半圆于D ,DE ⊥AB 于E .已知AE ∶ EB =4∶ 1,CD =2,求BC 的长.(成都市中考试题)解题思路:由题设条件“直径、切线”等关键词联想到相应的知识,寻找解题的突破口.【例4】如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23. (1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值.(呼和浩特市中考试题)解题思路:对于(1),恰当连线,为已知条件的运用创设条件;对于(2),将问题转化为求线段的比值.P【例5】如图,已知AB 为⊙O 的直径,C 为⊙O 上一点.延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BF 交⊙O 于F ,AF 交CE 于P .求证:PE =PC .(太原市竞赛试题)解题思路:易证PC 为⊙O 切线,则PC 2=PF ·PA ,只需证明PE 2= PF ·PA . 证△PEF ∽△PAE ,作出常用辅助线,突破相关角.B【例6】如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线. 过点P 作⊙O 的割线PAB ,交⊙O 于A 、B 两点,与ST 交于点C .求证:1PC =12(1PA +1PB ).(国家理科实验班招生试题)解题思路:利用切割线定理,再由三角形相似即可证.能力训练A 级1.如图,PA 切⊙O 于A 点,PC 交⊙O 于B 、C 两点,M 是BC 上一点,且PA =6,PB =BM =3,OM =2,则⊙O 的半径为 .(青岛市中考试题) 2.如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 的中点.如果BD ∥CF ,BC =25,则CD = .(四川省竞赛试题)PD(第1题图) (第2题图) (第3题图) (第4题图)3.如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 、D ,OP ⊥CD 于点P . 若AB =4cm ,AD =8cm ,⊙O 的半径为5cm ,则OP = .(天津市中考试题)4.如图,已知⊙O 的弦AB 、CD 相交于点P ,PA =4,PB =3,PC =6,EA 切⊙O 于点A ,AE 与CD 的延长线交于点E ,AE =25,那么PE 的长为 .(成都市中考试题)5.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为( ) A .2 6 B . 6 C .2 3 D .2 2(辽宁省中考试题)MD CBAC(第5题图) (第6题图) (第7题图)6.如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成的圆环的面积为( )A .16πB .36πC .52πD .81π(南京市中考试题)7.如图,两圆相交于C 、D ,AB 为公切线,若AB =12,CD =9,则MD =( )A .3B .3 3C .6D .6 38.如图,⊙O 的直径AB =10,E 是OB 上一点,弦CD 过点E ,且BE =2,DE =22,则弦心距OF 为( ) A .1 B . 2C .7D . 3(包头市中考试题)B(第8题图) (第9题图) (第10题图)9.如图,已知在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,⊙O 是△BDE 的外接圆. (1)求证:AC 是⊙O 的切线; (2)若AD =6,AE =62,求DE 的长.(南京市中考试题)10.如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,连结AD 并延长交⊙O 于E ,已知:BE 2=DE ·EA .求证:(1)PA =PD ;(2)2BP 2=AD ·DE .(天津市中考试题)11.如图,△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC .已知⊙O 过点C 且与AC 相交于F ,与AB 相切于AB 的中点G .求证:AD ⊥BF .(全国初中数学联赛试题)(第11题图) (第12题图)12.如图,已知AB 是⊙O 的直径,AC 切⊙O 于点A . 连结CO 并延长交⊙O 于点D 、E ,连结BD 并延长交边AC 于点F.(1)求证:AD ·AC =DC ·EA ;(2)若AC =nAB (n 为正整数),求tan ∠CDF 的值.(太原市竞赛试题)B 级1.如图,两个同心圆,点A 在大圆上,AXY 为小圆的割线,若AX ·AY =8,则圆环的面积为( ) A .4π B .8π C .12π D .16π(咸阳市中考试题)2.如图,P 为圆外一点,PA 切圆于A ,PA =8,直线PCB 交圆于C 、B ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β. 连结AB 、AC ,则sin αsin β的值等于( ) A .14 B .12 C .2 D .4(黑龙江省中考试题)βαPAD CB(第1题图) (第2题图) (第3题图)3.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为( )A .23 B .22 C .556 D .5544.如图,已知⊙O的半径为12,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2 CD的长(武汉市中考试题)(第4题图)(第5题图)(第6题图)5.如图,PC为⊙O的切线,C为切点,PAB是过O点的割线,CD⊥AB于D.若tan∠B=12,PC=10cm,求△BCD 的面积.(北京市海淀区中考试题)6.如图,已知CF为⊙O的直径,CB为⊙O的弦,CB的延长线与过F的⊙O的切线交于点P.(1)若∠P=45°,PF=10,求⊙O半径的长;(2)若E为BC上一点,且满足PE2=PB·PC,连结FE并延长交⊙O于点A.求证:点A是⌒BC的中点.(济南市中考试题)7.已知AC、AB是⊙O的弦,AB>AC.(1)如图1,能否在AB上确定一点E,使AC2=AE·AB?为什么?(2)如图2,在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB与⊙O的位置关系并说明理由;(3)在条件(2)的情况下,如果E是PD的中点,那么C是PE的中点吗?为什么?(重庆市中考试题)PA DCEACB(第7题图) (第8题图)8.如图,P 为⊙O 外一点,PA 与⊙O 切于A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,求证:PB BD =PCCD .(四川省竞赛试题)9.如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在的直线的解析式分别为:y =43x 和y =32534+-x .D 、E 分别为边OC 和AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,其交点为Q .(1)求证:点Q 为△COP 的外心; (2)求正方形OABC 的边长;(3)当⊙Q 与AB 相切时,求点P 的坐标.(河北省中考试题)(第9题图) (第10题图) (第11题图)10.如图,已知BC 是半圆O 的直径,D 是 ⌒AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E . (1)求证:AC ·BC =2BD ·CD ;(2)若AE =3,CD =25,求弦AB 和直径BC 的长.(天津市竞赛试题)11.如图,PA是⊙O的切线,切点为A,PBC是⊙O的割线,AD⊥OP,垂足为D.证明:AD2=BD·CD.(全国初中数学联合竞赛试题)专题22 与圆相关的比例线段例 1 设CE=4k,则DA=DF=3k,AF=AC=,由,即=3k10k,得,而AE==8,又BE===16,故AB=AE+BE=24. 例2 C例3 1 提示:设EB=x,则AE=4x.设CB=y,则由,,,得4=y(y+5x),. 例4(1)联结OB,OP,可证明△BDC∽△P AE,有.又∵OC为△ABD的中位线,∴OC∥AD,则CE⊥OC,知CE为☉O的切线,故,有,即PE=PC.例 6 解法一:如图1,过P作PH⊥ST于H,则H是ST的中点,由勾股定理得.又由切割线∴,即.解法二:如图2,联结PO 交ST 于D ,则PO ⊥ST .联结SO ,作OE ⊥PB 于E ,则E为AB 的中点,于是.∵C ,E ,O ,D 四点共圆,∴.∵Rt △SPD ∽Rt △OPS ,∴,∴,即.A 级 1. 2. 提示:△BDE ≌△CFE ,DE =EF ,OF =FE =ED ,设OF =x ,则OA =OD =3x ,AE =5x ,由,得,∴. 3. 4cm 4.4 5.D 6.B 7.A 8.C 9.(1)略 (2),△AED ∽△ABE ,=.设DE =,BE =2x ,而,解得x =.∴DE =. 10.(1)略 (2).可得PB =BD =PD ,∴PB =PD =DC ,∴又∵BD CD =AD DE ,∴. 11.作DE ⊥AC 于E ,则AC =AE ,AG =DE .由切割线定理得,故,即.∵AB =5DE ,∴,于是.又∠BAF =∠AED =90°,∴△BAF ∽△AED ,于是又∠ABF =∠EAD . ∵∠EAD+∠DAB=90°,∴∠ABF+∠DAB=90°,故AD ⊥BE. 12. ⑴如图,连接AD ,AE. ∵∠DAC=∠DAE ,∴△ADC ∽△EAC AD EAAD AC DC EA DC AC⇒=⇒•=•. ⑵∵∠CDF=∠1=∠2=∠DEA ,∴tan ∠CDF=tan ∠DEA=AD AE .由⑴知=AD DC AE AC ,故tan ∠CDF= DCAC.由圆的切割线定理知2AC DC EC =•,而EC=ED+DC ,则()2AC DC DC ED =+.又AC=nAB ,ED=AB ,代入上式得()22n AB DC DC AB =+,即222n 0DC AB DC AB +•-=,故2114n =2DC -+.显然,上式只能取加号,于是214n 1n DC DC tan CDF AC AB +-∠==.B 级1. B2. B3. C4. A5. 提示:1=2AD CD AC tanB CDDB BC===.设AD=x ,则CD=2x ,DB=4x ,AB=5x ,由△PAC ∽△PCB 得,1=2PA AC PC CB =,∴PA=5,又2PC PA PB =•,即()210=555x +,解得:x=3,∴AD=3,CD=6,DB=12,∴1362BCDSCD DB =•=. 6. ⑴略. ⑵连接FB ,证明PF=PE ,∠BFA=∠AFC.7. ⑴能.连接BC ,作∠ACE=∠B ,CE 交AB 于E. ⑵ PB 与⊙O 相切. ⑶C 是PE 的中点.8. 连接OA 、OB 、OC ,则2PA PD PO PB PC =•=•,于是,B 、C 、O 、D 四点共圆,有△PCD ∽△POB ,则=PC PO POCD OB OC= ①,又由POC ∽△PBD 得PO PB OC BD = ②,由①②得PB PCBD CD=. 9. ⑴略 ⑵ A (4,3),OA=5. ⑶P (3,94). 10. ⑴延长BA ,CD 交于点G ,由Rt △CAG ∽Rt △BDC ,得AC CG BD BC =,即AC BC BD CG •=•,又12DG CD CG ==,故2AC BC BD CG •=•. ⑵由Rt △CDE ∽Rt △CAG ,得CE CDCG AC =,即2545=,解得CE=5,从而AG= ()()222245354CG AC +=--=,GA GB GD GC •=•,即()442545AB +=⨯,解得AB=6,()222261035BC AB AC =+==++.11. 延长AD 交⊙O 于E ,连接PE 、BE 、CE ,∵PA 为⊙O 的切线,PO ⊥AE ,∴PE=PA ,12AD DE AE ==,易证△PAB ∽△PCA ,△PEB ∽△PCE ,∴,AB PA EB PE AC PC EC PC ==,则AB EB AC EC=,即AB EC AC EB •=•,由托勒密定理得=AB EC AC EB AE BC •+••. ∴=AB EC AC EB AD BC •+••,即AB BC AC BC AD EC AD EB==,,有∵∠BAE=∠BCE ,∠CAD=∠CBE , ∴△ABD ∽△CBE ,△CAD ∽△CBE ,则△ABD ∽△CAD ,∴AD CD BD AD =,故2AD BD CD =•.。
2020年浙江省绍兴市中考数学第22题四边形专题训练含答案
2020年浙江省绍兴市中考数学第22题四边形专题训练1.(1)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,若AB=AC=2,求DE的长;(2)如图,在(1)的条件下,连结AG、AF分别交DE于M、N两点,求MN的长;(3)如图,在△ABC中,AB=AC=BN=2,∠BAC=108°,若AM=AN,请直接写出MN的长.2.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.3.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.4.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE和AF数量关系________.(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.5.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点c重合,点E,F分别在正方形的边CB,CD上,连接AF.取AF中点M,EF的中点N,连接MD,MN.(1)连接AE,求证:△AEF是等腰三角形;(2)猜想与发现:在(1)的条件下,请判断DM,MN的数量关系和位置关系,得出结论.结论1:DM,MN的数量关系是________;结论2:DM,MN的位置关系是________;(3)拓展与探究:如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.6.如图,在矩形ABCD中,AB=3cm,AD=4cm,EF经过对角线BD的中点O,分别交AD,BC于点E,F.(1)求证:△BOF≌△DOE;(2)当EF⊥BD时,求AE的长.7.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,则对角线BD的长为________;②若AC⊥BD,求证:AD=CD;________(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.直接写出AE的长为________.8.如图,在▱ABCD中,BC=2AB,E,F分别是BC,AD的中点,AE,BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的长.9.如图,矩形纸片ABCD中,AB=4,点E在边CD上移动连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′CE,点B、C的对应点分别为点B′、C′(1)当点E与点C重合时,设B′C′与AD的交点为F,若AD=4DF,则AD=________(2)若AD=6,B′C′的中点记为P,则DP的取值范围是________10.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”(1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC中,AB=AC,∠BAC=90°,BC=2.在AB的垂直平分线上是否存在点P使得以A,B,C,P为顶点的四边形为“准等边四边形”?若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.11.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.12.(1)【问题探究】如图①,在正方形ABCD中,点E在边AD上,点F在边CD上,且AE=DF.线段BE与AF相交于点G,GH是△BFG的中线.①求证:△ABE≌△DAF.②判断线段BF与GH之间的数量关系,并说明理由.(2)【问题探究】如图②,在矩形ABCD中,AB=4,AD=6.点E在边AD上,点F在边CD上,且AE=2,DF=3,线段BE与AF相交于点G.若GH是△BFG的中线,则线段GH的长为________.13.已知,如图所示,在矩形ABCD中,点E在BC边上,△AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.14.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB//CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD.(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.15.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求Rt△CED的内切圆半径的取值范围.16.如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE.F为AB上的一点,且BF=DE,连接FC.(1)若DE=1,CF= 2√2,求CD的长;(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=60°,求证:AF+CE= √3 AC.17.如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE.F为AB上的一点,且BF=DE,连接FC.(1)若DE=1,CF= 2√2,求CD的长;(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=60°,求证:AF+CE= √3 AC.18.如图,在矩形ABCD中,AB=4,BC=5,E是BC边上的一个动点,DF⊥AE,垂足为点F,连结CF(1)若AE=BC①求证:△ABE≌△DFA;②求四边形CDFE的周长;③求tan∠FCE的值;(2)探究:当BE为何值时,△CDF是等腰三角形.19.如图1,在正方形ABCD中,点E为边AB上的点,BE:AE=n,连结DE、BD,过点A作AG⊥DE,垂足为点F,与BC、BD分别交于点G、H,连结EH.(1)①求证:△ADE≌△BAG;②求证:DH:BH=n+1;(2)如图2,当EH∥AD时,求n的值.20.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE的中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.答案1. (1)解:∵AB =AC =2,∠A =90°,∴∠B =∠C =45°,BC = 2√2 ,∵四边形DEFG 是正方形,∴DE =DG =GF =EF ,∠DGF =∠EFG =90°,∴∠BGD =∠CFE =90°,∴∠B =∠BDG =45°,∠C =∠CEF =45°,∴BG =DG , CF =EF ,∴BG=FG=FC=DE ,∴DE = 13 BC =2√23 .(2)解:∵DE ∥BC ,∴ MN GF =AN AF =AE AC =DE BC , ∴ 2√23=13 ,∴MN =2√29(3)解:∵AB =AC ,∠BAC =108°,∴∠B =∠C =36°,∵BA =NB ,∴∠ANB =∠BAN =72°,∵AM =AN ,∴∠AMN =∠ANM =72°,∴∠B =∠BAM =∠MAN =36°,∴BM =AM =AN ,设MN =x ,则AN =AM =BM =2﹣x.∵△NAM ∽△NBA ,∴AN 2=NM •NB ,∴(2﹣x )2=2x , ∴x =3﹣ √5 或3+ √5 (舍弃) ∴MN =3﹣ √5 .2. (1)证明:∵四边形ABCD 为正方形,∴AB=AD ,∠D=∠B=90°,DC=CB ,∵E 、F 为DC 、BC 中点,∴DE= 12 DC ,BF= 12 BC ,∴DE=BF ,在△ADE和△ABF中,{AD=AB∠B=∠DDE=BF,∴△ADE≌△ABF(SAS)(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF= 12×4=2,CE=CF= 12×4=2,∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF=4×4﹣12×4×2﹣12×4×2﹣12×2×2=63. (1)证明:∵AD=BD,∴∠B=∠BAD,∵AD=CD,∴∠C=∠CAD,在△ABC中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°(2)解:如图②,连接AC,BD,OE,∵四边形ABCD是矩形,∴OA=OB=OC=OD =12 AC =12BD,∵AE⊥CE,∴∠AEC=90°,∴OE =12AC,∴OE =12BD,∴∠BED=90°,∴BE⊥DE(3)解:如图3,∵四边形ABCD是矩形,∴AD=BC,∠BAD=90°,∵△ADE是等边三角形,∴AE=AD=BC,∠DAE=∠AED=60°,由(2)知,∠BED=90°,∴∠BAE=∠BEA=30°,过点B作BF⊥AE于F,∴AE=2AF,在Rt△ABF中,∠BAE=30°,∴AB=2BF,AF=√3 BF,∴AE=2 √3 BF,∴AE=√3 AB,∴BC=√3 AB.4.(1)BE=AF(2)解:成立;理由如下:当正方形DFGE在BC的上方时,如图②所示,连接AD,∵在Rt△ABC中,AB=AC,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADE+∠EDB=90°,∵四边形DFGE为正方形,∴DE=DF,且∠EDF=90°,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,{BD=AD∠BDE=∠ADFDE=DF,∴△BDE≌△ADF(SAS),∴BE=AF;当正方形DFGE在BC的下方时,连接AD,如图③所示:∵∠BDE=∠BDF+90°,∠ADF=∠BDF+90°,∴∠BDE=∠ADF,在△BDE和△ADF中,{BD=AD∠BDE=∠ADFDE=DF,∴△BDE≌△ADF(SAS),∴BE=AF;综上所述,(1)中的结论BE=AF成立(3)AE的最大值为3.5. (1)证明:四边形ABCD是正方形,AB=AD=BC=CD,∠B=∠ADF=90°,△CEF是等腰直角三角形,∠C=90°,CE=CF。
全国各地中考数学试题分类汇编(第2期)专题22 等腰三角形(含解析)
等腰三角形选择题1. (2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B .2.(2016·广西百色·3分)如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD+CD 的最小值是( )A .4B .32C .23D .2+3【考点】轴对称-最短路线问题;等边三角形的性质.【分析】连接CC′,连接A′C 交y 轴于点D ,连接AD ,此时AD+CD 的值最小,根据等边三角形的性质即可得出四边形CBA′C′为菱形,根据菱形的性质即可求出A′C 的长度,从而得出结论.【解答】解:连接CC′,连接A′C 交l 于点D ,连接AD ,此时AD+CD 的值最小,如图所示.∵△ABC 与△A′BC′为正三角形,且△ABC 与△A′BC′关于直线l 对称,∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°, ∴A′C=2×23A′B=23.故选C .3.(2016·广西桂林·3分)已知直线y=﹣3x+3与坐标轴分别交于点A ,B ,点P 在抛物线y=﹣ (x ﹣ 3 )2+4上,能使△ABP 为等腰三角形的点P 的个数有( )A.3个 B.4个 C.5个 D.6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.4.(2016·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.5. (2016·湖北武汉·3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。
2020届中考数学总复习(22)圆-精练精析(1)及答案解析
2020届中考数学总复习图形的性质——圆1一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C. D.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.27.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.48.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3 B.6 C.6 D.12二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .10.正六边形的中心角等于_________ 度.11.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________ .12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_________ .13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________ cm.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ .15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________ .三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.20.如图,AB是⊙O的直径,弦CD⊥A B于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,c os∠ABC=,求tan∠DBC的值.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________ ;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.图形的性质——圆1参考答案与试题解析一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣考点:扇形面积的计算.分析:图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.解答:解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=S扇形﹣S正方形=﹣1=.故选:A.点评:本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm考点:垂径定理;勾股定理.专题:分类讨论.分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C3 D.2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.7.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.4考点:垂径定理;等腰三角形的性质;勾股定理;解直角三角形.专题:分类讨论.分析:作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD ﹣OD,即求得OA的长.解答:解:如图,作AD⊥BC于D,∵AB=AC=5,∴AD垂直平分BC,∴点O在直线AD上,连结OB,在Rt△ABD中,sinB==,∵AB=5,∴AD=4,∴BD==3,在R t△OBD中,OB=,BD=3,∴OD==1,当点A与点O在BC的两侧时,OA=AD+OD=4+1=5;当点A与点O在BC的同侧时,OA=AD﹣OD=4﹣1=3,故OA的长为3或5.故选:A.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理.8.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6 C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴P D=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;轴对称的性质.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .考点:垂径定理;勾股定理.专题:分类讨论.分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.考点:垂径定理的应用;勾股定理.分析:(1)延长CO交DE于点F,连接OD,根据垂径定理求出BC的长,由sin∠COB=得出OB的长,根据DE∥AB可知∠ACD=∠CDE,∠DFO=∠BCO=90°.由OF过圆心可得出DF的长,再根据勾股定理求出OF的长,进而可得出CF的长;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中由勾股定理求出DF的长,由cot∠ACD=cot∠CDF即可得出结论.解答:解:(1)延长CO交DE于点F,连接OD∵OC⊥AB,OC过圆心,AB=24m,∴BC=AB=12m.在Rt△BCO中,sin∠COB==,∴OB=13mCO=5m.∵DE∥AB,∴∠ACD=∠CDE,∠DFO=∠BCO=90°.又∵OF过圆心,∴DF=DE=×4=2m.在Rt△DFO中,OF===7m,∴CF=CO+OF=12m,即当水位线DE=4m时,此时的水深为12m;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中,DF===4m.在Rt△CDF中,cot∠CDF==.∵DE∥AB,∴∠ACD=∠CDE,∴cot∠ACD=cot∠CDF=.答:若水位线以一定的速度下降,当水深8m时,此时∠ACD的余切值为.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.考点:切线的判定;勾股定理.专题:计算题;证明题.分析:(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线;(2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB;故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值.解答:(1)证明:连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC;∵AB=AC,∴BD=DC.∵OA=OB,∴OD∥AC.∵DF⊥AC,∴DF⊥OD.∴∠ODF=∠DFA=90°,∴DF为⊙O的切线.(2)解:连接BE交OD于G;∵AC=AB,AD⊥BC,ED=BD,∴∠EAD=∠BAD.∴.∴ED=BD,OE=OB.∴OD垂直平分EB.∴EG=BG.又AO=BO,∴OG=AE.在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2∴()2﹣(﹣OG)2=BO2﹣OG2解得:OG=.∴AE=2OG=.点评:本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.专题:几何综合题.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=∠OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.。
2022年福建省中考数学变式题22-25(含答案解析)
2022年福建省中考数学变式题22-25原题221.在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.变式题1基础2.为进一步落实“双减”工作,某中学准备从商场一次性购买一批足球和篮球用于开展课后服务训练,每个足球的价格都相同,每个篮球的价格也相同,已知篮球的单价比足球单价的2倍少30元,购买2个足球和1个篮球共需花费210元.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,且要求购买足球的总费用不超过购买篮球的总费用,那么学校最少要准备多少资金?变式题2基础3.某超市有A、B、C三种型号的甲种品牌饮水机和D、E两种型号的乙种品牌饮水机,某中学准备从甲、乙两种品牌的饮水机中各选购一种型号的饮水机安装到教室(1)写出所有的选购方案,如果各种选购方案被选中的可能性相同,那么A型号饮水机被选中的概率是多少?(2)如果该学校计划用1万元人民币购买甲、乙两种品牌的饮水机共24台(价格如表格所示),其中甲种品牌饮水机选为A型号的,请你算算该中学购买到A型号饮水机共多少台?品牌甲乙型号A B C D E(元)600400250500200单价变式题3巩固4.“中国海带之乡”霞浦县今年又迎来一个丰收年.海带养殖专业村为保障养殖户收益,联系了村海带加工厂,收购养殖户每天收割的鲜海带.该加工厂主要以加工干海带和盐渍海带两种方式处理每天收购的30吨鲜海带,工厂现有12名工人,每位工人在同一天中只能选择一种加工方式.若生产干海带,每人每天可加工2吨鲜海带,每吨可获利250元;若加工盐渍海带,每人每天可加工0.6吨鲜海带,每吨可获利600元;每天加工不完的鲜海带直接续给鲍鱼养殖场作饲料.若安排所有的工人都加工干海带,则加工厂当天可获利6300元.(1)求加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利多少元;(2)根据市场销售情况,该加工厂决定生产干海带的人数不超过盐渍海带人数的2倍.问加工厂如何安排工人,可使每天生产的利润最大?最大利润是多少元?变式题4巩固5.为落实立德树人、五育并举的育人目标,某校决定表彰品学兼优和学科特长的同学,购买一批奖杯和奖牌作为奖品,已知奖杯单价35元,奖牌单价28元.(1)若购买奖杯和奖牌的总数为40个,共花费1260元,求本次购买的奖杯、奖牌各多少个?(2)新学期学校计划采购上述两种奖品共180个,要求奖杯数量不少于奖牌数量的三分之一,问如何采购才能使总费用最少,最少费用是多少?变式题5提升6.某公司销售A型和B型两种电脑,其中A型电脑每台利润为400元,B型电脑每台利润为500元.该公司计划一次性购进这两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.(1)求y关于x的函数关系式,并求出自变量x的取值范围;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,若该公司保持这两种型号电脑的售价不变,公司经理发现:无论该公司如何进货,这100台电脑的销售利润都不变,求a的值.变式题6提升7.某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A型和B型口罩共5万只,其中A型口罩不得少于1.8万只,若生产A型口罩每天能生产0.6万只,生产B型口罩每天能生产0.8万只,工厂同一天只能生产同一种型号的口罩;已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)若要在最短时间内完成任务,应该安排生产A型口罩______万只和B型口罩______万只,完成任务最短时间是______天.(2)在完成任务的前提下,如何安排A 型口罩和B 型口罩的生产天数,使获得的总利润最大,最大总利润是多少?原题238.如图,BD 是矩形ABCD 的对角线.(1)求作⊙A ,使得⊙A 与BD 相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD 与⊙A 相切于点E ,CF ⊥BD ,垂足为F .若直线CF 与⊙A 相切于点G ,求tan ADB ∠的值.变式题1基础9.已知AC 是ABCD Y 的一条对角线.(1)求作矩形AEFD ,使得E ,F 两点都在直线BC 上;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若=90ACD ∠︒,2AB =,4=AD ,求矩形AEFD 的面积.变式题2基础10.如图,在△ABC 中,CB =CA ,(1)求作四边形ABCD ,使得AC ⊥BD ,CD ∥AB .(要求:尺规作图,不写作法,保留作图痕迹)(2)设BD ,AC 相交于点O ,若∠ADC =90°,求sin ∠DBC 的值.变式题3巩固11.如图,已知在 ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若AB =4,AC =3,试求(1)中⊙P 的半径;变式题4巩固12.如图,在ABC 中,40B ∠=︒,50C ∠=︒.(1)通过观察尺规作图的痕迹,可以发现直线DF 是线段AB 的__________,射线AE 是DAC ∠的__________;(2)在(1)所作的图中,求DAE ∠的度数.变式题5提升13.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =3.(1)以BC 边上一点O 为圆心作⊙O ,使⊙O 分别与AC 、AB 都相切(要求:尺规作图,保留作图痕迹,不写作法);(2)求⊙O 的面积.变式题6提升14.如图,在△ABC 中,∠ACB=90°,AC=3,BC=1,点D 是斜边上一点,且AD=4BD .(1)求tan ∠BCD 的值;(2)过点B 的⊙O 与边AC 相切,切点为AC 的中点E ,⊙O 与直线BC 的另一个交点为F .(ⅰ)求⊙O 的半径;(ⅱ)连接AF ,试探究AF 与CD 的位置关系,并说明理由.原题2415.已知ABC DEC ≌△△,AB =AC ,AB >BC .(1)如图1,CB 平分∠ACD ,求证:四边形ABDC 是菱形;(2)如图2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于∠BAC ),BC ,DE 的延长线相交于点F ,用等式表示∠ACE 与∠EFC 之间的数量关系,并证明;(3)如图3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于∠ABC ),若BAD BCD ∠=∠,求∠ADB 的度数.变式题1基础16.如图,在ABCD Y 中,点E ,F 分别在BC ,AD 上,AC 与EF 相交于点O ,且AO CO =.求证:四边形AECF 是平行四边形.变式题2基础17.如图,在平行四边形ABCD 中,BE ⊥AD ,BF ⊥CD ,垂足分别为E ,F ,且AE =CF .(1)求证:平行四边形ABCD 是菱形;(2)若DB =10,AB =13,求平行四边形ABCD 的面积.变式题3巩固18.菱形ABCD 的边长为6,∠D =60°,点E 在边AD 上运动.(1)如图1,当点E 为AD 的中点时,求AO :CO 的值;(2)如图2,F 是AB 上的动点,且满足BF +DE =6,求证:△CEF 是等边三角形.变式题4巩固19.如图,在正方形ABCD 中,E ,F 为边AB 上的两个三等分点,点A 关于DE 的对称点为A ',AA '的延长线交BC 于点G .(1)求证://DE A F ';(2)求GA B '∠的大小;(3)求证:2A C A B ''=.变式题5提升20.已知正方形ABCD 的边长为P 是对角线AC 上的一个动点(点P 与A 、C 不重合).连接BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连接QP ,QP 与BC 交于点E ,QP 延长线与直线AD 交于点F .(1)连接CQ ,证明:CQ AP =;(2)若3PC AP =,求CEEB的值;(3)设AP x =,CE y =,试写出y 关于x 的函数关系式,并求y 的最大值.变式题6提升21.已知:如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,将△ABC 绕点A 逆时针旋一个角度α得到Rt △ADE ,连接BD ,CE .(1)如图①,当0°<α<45°时,求证:△ABD ∽△ACE ;(2)如图②,当α=45°时,点E 在AB 的延长线上,延长DB 交CE 于点F ,求∠DFE 的度数;(3)如图③,当45°<α<90°时,延长DB 交CE 于点F ,求证:点F 是线段CE 的中点.原题2522.在平面直角坐标系xOy 中,已知抛物线2y ax bx =+经过A (4,0),B (1,4)两点.P 是抛物线上一点,且在直线AB 的上方.(1)求抛物线的解析式;(2)若△OAB 面积是△PAB 面积的2倍,求点P 的坐标;(3)如图,OP 交AB 于点C ,PD BO ∥交AB 于点D .记△CDP ,△CPB ,△CBO 的面积分别为1S ,2S ,3S .判断1223S S S S +是否存在最大值.若存在,求出最大值;若不存在,请说明理由.变式题1基础23.如图,抛物线y =x 2-ax +b 交x 轴于A 、B 两点(点B 在点A 的右边),交y 轴的正半轴于C 点.(1)若OC =2,∠OBC =30°,试确定a 、b 的值;(2)若b =1,求证:△OAC ∽△OCB.变式题2基础24.已知抛物线与直线()0y n n =≠只有一个交点P ,PB ⊥x 轴于点()10B ,,点B 关于点P 的对称点为点C ,点P 关于y 轴的对称点为点Q ,直线QC 交y 轴于点A.(1)直接写出点P ,点A 的坐标(用n 表示);(2)抛物线过点A ,与直线QC 的另一交点为点D .连接OC 交PQ 于点N .若点N 为△QBC 的内心.求△QND 的面积.变式题3巩固25.如图1,已知二次函数()2416133y x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 是抛物线的顶点.(1)求点A,点C的坐标;∥交抛物线于点E.求证:∠DCE=∠CAO;(2)如图2,连结AC,DC,过点C作CE AB(3)如图3,在(2)的条件下,连结BC,在射线EC上有点P,使以点D,E,P为顶点的三角形与△ABC相似,求EP的长.变式题4巩固26.已知抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴交于点C(0,3),且它的对称轴为直线x=1.(1)求b,c的值;(2)如图,过x轴上一点P(m,0)作直线l与线段BC相交于点Q,若△PCQ∽△CAP.①求证:∠QCP=∠OCA;②求直线l的函数表达式.变式题5提升27.已知抛物线C1:y=x2+4mx+4m2﹣4m﹣3的顶点C在定直线l上.(1)求C点的坐标(用含m的式子表示);(2)求证:不论m为何值,抛物线与定直线l的两交点间的距离d恒为定值;(3)当C1的顶点C在y轴上,且与x轴交于A、B两点(A点在B点左侧)时,在C1上是否存在两点M,N(xM<xN),设MN交线段AC于P点,使∠APN=2∠ACO,且直线MN将△ABC的面积分成1:2的两部分?若存在,求出直线MN的解析式:若不存在,请说明理由.变式题6提升28.如图①,抛物线()20y ax bx c a =++≠经过点()4,0A -,点()2,0B 和点()0,4C -,它的对称轴为直线l ,顶点为D .(1)求该抛物线的表达式;(2)如图②,点P 是直线AC 下方该抛物线上的一个动点,连接AP 、CP 、AC ,当APC△的面积取得最大值时,求点P 的坐标;(3)如图③,点E 是直线AD 下方该抛物线上的一个动点,过E 点作EF ⊥直线l 于F ,连接DE ,当以D 、E 、F 为顶点的三角形与BOC 相似时,求点E 的坐标.参考答案:1.(1)购买绿萝38盆,吊兰8盆(2)369元【分析】(1)设购买绿萝x 盆,购买吊兰y 盆,根据题意建立方程组4696390x y x y +=⎧⎨+=⎩,解方程组即可得到答案;(2)设购买绿萝x 盆,购买吊兰y 盆,总费用为z ,得到关于z 的一次函数3414z y =-+,再建立关于y 的不等式组,解出y 的取值范围,从而求得z 的最小值.【详解】(1)设购买绿萝x 盆,购买吊兰y 盆∵计划购买绿萝和吊兰两种绿植共46盆∴46x y +=∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元∴96390x y +=得方程组4696390x y x y +=⎧⎨+=⎩解方程组得388x y =⎧⎨=⎩∵38>2×8,符合题意∴购买绿萝38盆,吊兰8盆;(2)设购买绿萝x 盆,购买吊兰吊y 盆,总费用为z∴46x y +=,96z x y=+∴4143z y=-∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍∴41433902y x y-<⎧⎨≥⎩将46x y =-代入不等式组得4143390462y y y-<⎧⎨-≥⎩∴4683y <≤∴y 的最大值为15∵3414z y =-+为一次函数,随y 值增大而减小∴15y =时,z 最小∴4631x y =-=∴96369z x y =+=元故购买两种绿植最少花费为369元.【点睛】本题考查二元一次方程组、一次函数、不等式组的性质,解题的关键是数量掌握二元一次方程组、一次函数、不等式组的相关知识.2.(1)足球的单价是60元,则篮球的单价是90元;(2)14400元【分析】(1)设足球的单价是x 元,则篮球的单价是()230x -元,根据“购买2个足球和1个篮球共需花费210元”列出方程,即可求解;(2)设购买足球a 个,学校准备资金w 元,则购买篮球()200a -个,根据题意.列出函数关系式,再由购买足球的总费用不超过购买篮球的总费用,可得120a ≤,再根据一次函数的性质,即可求解.(1)解∶设足球的单价是x 元,则篮球的单价是()230x -元,根据题意得:2230210x x +-=,解得:60x =,∴23090x -=,答:足球的单价是60元,则篮球的单价是90元;(2)解:设购买足球a 个,学校准备资金w 元,则购买篮球()200a -个,根据题意得:()60902003018000w a a a =+-=-+,∵购买足球的总费用不超过购买篮球的总费用,∴()6090200a a ≤-,解得:120a ≤,∵300-<,∴w 随a 的增大而减小,∴当120a =时,w 最小,最小值为14400,答:学校最少要准备14400元资金.【点睛】本题主要考查了一元一次方程的应用,一次函数的应用,明确题意,准确得到等量关系是解题的关键.3.(1)()AD 、()AE 、()BD 、()BE 、()CD 、()CE ;13(2)能买到A 型号饮水机13台【分析】(1)所有的选购方案:()AD 、()AE 、()BD 、()BE 、()CD 、()CE ,即可得到A 型号饮水机被选中的概率;(2)分两种情况讨论:方案1:(A 、)D ;方案2:(A 、)E ,设购买A 型号饮水机x 台,根据价格分别列出方程,然后解方程即可得到答案.(1)解:所有的选购方案:()AD 、()AE 、()BD 、()BE 、()CD 、()CE ;(P A 型号饮水机被选中)2163==;(2)解:设购买A 型号饮水机x 台,方案1:(A 、)D ,600500(24)10000x x ∴+-=,解得20x =-,不合题意舍去;方案2:(A 、)E ,600200(24)10000x x ∴+-=,解得13x =.答:能买到A 型号饮水机13台.【点睛】本题考查了利用列举法求概率的方法,一元一次方程的应用,解题的关键是掌握先列举出所有可能的结果,然后找出某事件发生的结果,利用概念即可求出概率.4.(1)鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利50元(2)安排8人生产干海带,4人生产盐渍海带,可使得每天生产的利润最大,最大利润是6020元【分析】(1)首先由题意可求得全部工人每天可加工的干海带的数量及作为鲍鱼饲料的鲜海带的数量,设直接卖给鲍鱼养殖场作饲料每吨可获利m 元,根据题意列出一元一次方程即可求得结果;(2)设安排x 人加工干海带,每天的生产利润为y 元,根据题意列表,由列表及题意得到y 关于x 的一次函数解析式,并确定x 的取值范围,最后即可求得最大利润及工人安排情况.【详解】(1)(1)12名工人每天可加工干海带12×2=24吨<30吨.∴鲍鱼饲料为:30246-=.设直接卖给鲍鱼养殖场作饲料每吨可获利m 元,根据题意,得2425066300m ⨯+=.解得50m =.答:鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利50元.(2)设安排x 人加工干海带,每天的生产利润为y 元,根据题意列表如下:干海带盐渍海带鲍鱼饲料安排人数x 12x -0鲜海带重量(单位:吨)2x ()0.612x -()3020.612x x ---利润(单位:元)2250x ⋅()0.612600x -⋅()3020.61250x x ⎡⎤⎣-⎦--⨯根据题意,得∴[]22500.6(12)6003020.6(12)50705460y x x x x x =⨯+-⨯+---⨯=+.由2(12)x x ≤-.解得8x ≤.∵x ≥0,∴08x ≤≤.∵700>,∴y 值随x 值的增大而增大.∴当x 取最大值8时,利润y 有最大值,87054606020y =⨯+=最大值.则1284-=(人).答:安排8人生产干海带,4人生产盐渍海带,可使得每天生产的利润最大,最大利润是6020元.【点睛】本题是函数与方程的综合,考查了一元一次方程、一次函数的实际应用,解一元一次不等式,一次函数的性质等知识,正确理解题意,根据关系式列出方程及一次函数关系式是解题的关键,注意所得函数自变量的取值范围.5.(1)购买奖杯20个,购买奖牌20个(2)采购45个奖杯,135个奖牌费用最少,最少费用是5355元【分析】(1)设购买奖杯x 个,购买奖牌y 个,根据题意列出二元一次方程组求解;(2)设采购a 个奖杯,则采购(180)a -个奖牌,根据题意得到总费用3528(180)w a a =+-,求出它的最大值即可求解.(1)解:设购买奖杯x 个,购买奖牌y 个依题意得4035281260x y x y +=⎧⎨+=⎩,解得2020x y =⎧⎨=⎩,即购买奖杯20个,购买奖牌20个.答:购买奖杯20个,购买奖牌20个;(2)解:设采购a 个奖杯,则采购(180)a -个奖牌,则总费用3528(180)w a a =+-即75040w a =+又1(180)3a a ≥-,解得45a ≥.∵70k =>∴w 随着a 的增大而增大故当45a =时,74550405355w =⨯+=最小答:采购45个奖杯,(18045)135-=个奖牌费用最少,最少费用是5355元.【点睛】本题主要考查了二元一次方程组的应用,读懂题意,找出数量关系,列出方程组是解答关键.6.(1)10050000y x =-+;1001003x ≤≤,且x 为正整数;(2)购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)100【分析】(1)根据总利润等于A 、B 两种型号电脑的利润之和,即可求解;(2)根据“B 型电脑的进货量不超过A 型电脑的2倍,”列出不等式,即可求解;(3)根据题意列出y 关于x 的函数关系式,可得当a -100=0时,y =50000恒成立,即可求解.(1)解:根据题意得:400500(100)10050000y x x x =+-=-+;∵B 型电脑的进货量不超过A 型电脑的2倍,∴1002x x -≤,解得:1003x ≥,∴自变量x 的取值范围为1001003x ≤≤,且x 为正整数;(2)解:∵-100<0,∴当y 随x 的增大而减小,∴当x =34时,y 有最大值,最大值为46600,答:该商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)解:根据题意得:(400)500(100)(100)50000y a x x a x =++-=-+,当a -100=0时,y =50000恒成立,即当a =100时,无论该公司如何进货,这100台电脑的销售利润都不变.【点睛】本题主要考查了一次函数的应用及一元一次不等式的应用,解题的关键是根据一次函数x 值的增大而确定y 值的增减情况.7.(1)1.8,3.2,7(2)安排7天生成A 型口罩,1天生产B 型口罩,产生的利润最大,最大利润为2.34万元.【分析】(1)设生成A 型口罩x 万只,B 型口罩y 万只,加工天数为t ,根据题意列出不等式组,解得1.8 4.2x ≤≤,0.8 3.2y ≤≤,且0.6x 、0.8y 为整数,再根据一次函数1(0.23)0.48t x =+的性质即可求解;(2)设总利润为W ,根据题意有:0.50.3W x y =+,可知t 随x 的增大而增大,再结合1.8 4.2x ≤≤,0.8 3.2y ≤≤,且0.6x 、0.8y 为整数,即可求解.(1)设生成A 型口罩x 万只,B 型口罩y 万只,加工天数为t ,根据题意有:51.8x y x +=⎧⎨≥⎩,且0.6x 、0.8y 为整数,解得:1.8 4.2x ≤≤,0.8 3.2y ≤≤,且0.6x 、0.8y 为整数,即:51(0.23)0.60.80.60.80.48x y x x t x -=+=+=+,可知t 随x 的增大而增大,∴当x =1.8时,t 有最小值,且最小值为:11(0.23)(0.21.83)70.480.48t x =+=⨯+=,此时y =5-1.8=3.2,故要在最短时间内完成任务,应该安排生产A 型口罩1.8万只和B 型口罩3.2万只,完成任务最短时间是7天.(2)设总利润为W ,根据题意有:0.50.3W x y =+,即根据5x y +=有0.2 1.5W x =+,可知t 随x 的增大而增大,∵1.8 4.2x ≤≤,0.8 3.2y ≤≤,且0.6x 、0.8y 为整数,∴当x =4.2时,W 有最大值,且最大值为:0.2 1.50.2 4.2 1.5 2.34W x =+=⨯+=(万元),此时y =5-4.2=0.8,∴ 4.270.60.6x ==(天),0.810.80.8y ==,即安排7天生成A 型口罩,1天生产B 型口罩,产生的利润最大,最大利润为2.34万元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等知识,根据题意列出相关的代数式和不等式是解答本题的关键.8.(1)作图见解析12【分析】(1)先过点A 作BD 的垂线,进而找出半径,即可作出图形;(2)根据题意,作出图形,设ADB α∠=,⊙A 的半径为r ,先判断出BE =DE ,进而得出四边形AEFG 是正方形,然后在Rt △ABE 中,根据勾股定理建立方程求解tan BE r α=,再判定C ABE DF ≌△△,根据tan BE DF r α==,tan DE DF EF r r α=+=+,在Rt △ADE 中,利用tan AE ADE DE ∠=,得到2tan tan 10αα+-=,求解得到tan ∠ADB .【详解】(1)解:如图所示,⊙A 即为所求作:(2)解:根据题意,作出图形如下:设ADB α∠=,⊙A 的半径为r ,∵BD 与⊙A 相切于点E ,CF 与⊙A 相切于点G ,∴AE ⊥BD ,AG ⊥CG ,即∠AEF =∠AGF =90°,∵CF ⊥BD ,∴∠EFG =90°,∴四边形AEFG 是矩形,又AE AG r ==,∴四边形AEFG 是正方形,∴EF AE r ==,在Rt △AEB 和Rt △DAB 中,90BAE ABD ∠+∠=︒,90ADB ABD ∠+∠=︒,∴BAE ADB α∠=∠=,在Rt △ABE 中,tan BAE BE AE∠=,∴tan BE r α=,∵四边形ABCD 是矩形,∴AB CD ∥,AB =CD ,∴ABE CDF ∠=∠,又90AEB CFD ∠=∠=︒,∴C ABE DF ≌△△,∴tan BE DF r α==,∴tan DE DF EF r r α=+=+,在Rt △ADE 中,tan AE ADE DE ∠=,即tan DE AE α⋅=,∴()tan tan r r r αα+=,即2tan tan 10αα+-=,∵tan 0α>,∴tan α=tan ∠ADB .【点睛】此题是圆的综合题,主要考查了尺规作图,切线的性质,全等三角形的判定和性质,正方形的判定与性质,矩形的判定与性质,勾股定理,锐角三角函数,利用三角函数得出线段长建立方程是解决问题的关键.9.(1)见解析(2)【分析】(1)分别过A ,D 两点作直线BC 的垂线即可;(2)利用平行四边形和勾股定理求出AC 的长,求出平行四边形的面积,进而求出矩形的面积.(1)解:如图所示(2)解:在ABCD Y 中2AB CD ==,4AD BC ==∵=90ACD ∠︒∴AC =22AD CD -=2242-=23∴ABCD S =CD ×AC =BC ×AE =2×23=43又S 矩形AEFD =EF ×AE =AD ×AE =BC ×AE∴S 矩形AEFD =43【点睛】本题考查了矩形的性质,勾股定理求边长,利用等面积的转化是解决问题的关键.10.(1)见解析(2)sin ∠DBC 的值为13.【分析】(1)根据要求作出图形即可;(2)过点C 作CE ⊥AB 于点E ,设CD =AE =a ,CO =b ,则AB =2a ,由△DOC ∽△BOA ,得到OA =2b ,则CB =CA =3b ,根据正弦函数的定义求解即可.【详解】(1)解:如图,四边形ABCD 即为所求作.(2)解:过点C作CE⊥AB于点E,∵CB=CA,∴AE=BE,∵∠ADC=90°,CD∥AB,∴四边形AECD是矩形,∴AD=CE,CD=AE,设CD=AE=a,CO=b,则AB=2a,∵CD∥AB,∴△DOC∽△BOA,∴122 CO CD aOA AB a===,∴OA=2b,则CB=CA=3b,∵AC⊥BD,则∠BOC=90°,∴sin∠DBC=133 OC bCB b==;∴sin∠DBC的值为1 3.【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.11.(1)见解析(2)43【分析】(1)根据角平分线的性质,作ABC ∠的角平分线交AC 于点P ,以P 为圆心PA 为半径作圆,⊙P 就是所作圆(2)设⊙P 半径为r ,根据等面积法即可求解.(1)如图所示:作ABC ∠的角平分线交AC 于点P ,以P 为圆心PA 为半径作圆,⊙P 就是所作圆(2)在 ABC 中,∠A =90°,AB =4,AC =3,5BC ∴,设⊙P 半径为r ,PA PD ∴=r =,12ABC ABP BPC S AB AC S S =⋅=+ ,1122AB r BC r =⋅+⋅,1113445222r r ∴⨯⨯=⨯+⨯,解得43r =.∴⊙P 半径为43.【点睛】本题考查了切线的性质,角平分线的性质,作角平分线,作圆,勾股定理,掌握以上知识是解题的关键.12.(1)垂直平分线,角平分线;(2)25°【分析】(1)根据图形结合垂直平分线、角平分线的作法即可得到答案;(2)根据垂直平分线的性质及等腰三角形的性质即可得到40BAD B ∠=∠=︒,再结合三角形的内角和便能求得90BAC ∠=︒,50DAC ∠=︒,再根据角平分线的定义即可得到答案.【详解】解:(1)由图可知:直线DF 是线段AB 的垂直平分线,射线AE 是DAC ∠的角平分线,故答案为:垂直平分线,角平分线;(2)∵DF 是线段AB 的垂直平分线,∴DB DA =,∴40BAD B ∠=∠=︒,∵40B ∠=︒,50C ∠=︒,∴90BAC ∠=︒,∴50DAC ∠=︒.∵射线AE 是DAC ∠的平分线,∴25DAE ∠=︒.【点睛】本题考查了垂直平分线、角平分线的作法以及它们的性质,等腰三角形的性质,三角形的内角和,熟练掌握垂直平分线、角平分线的性质是解决本题的关键.13.(1)图形见解析(2)3π【分析】(1)直接利用角平分线的作法得出∠CAB 的角平分线,进而得出答案;(2)利用勾股定理得出⊙O 的半径,进而利用圆的面积求法得出答案.【详解】解:(1)如图所示:⊙O 为所求的图形.(2)在Rt △ABC 中,∵∠ABC =30°,∴∠CAB =60°,∵AO 平分∠CAB ,∴∠CAO =30°,设CO x =,则2AO x =,∵在Rt △ACO 中,222AO CO AC -=,∴()22223x x -=,解得:x =x =,∴⊙O 的面积为23S ππ==.【点睛】此题主要考查了复杂作图以及勾股定理,正确掌握角平分线的性质是解题关键.14.(1)tan ∠BCD=34;(2)(ⅰ)138;(ⅱ)AF 与CD 的位置关系是AF ⊥CD ,理由见解析.【分析】(1)作DM ⊥BC ,得到△DMB ∽△ACB ,利用相似三角形对应边成比例结合AD=4BD ,AC=3,BC=1,即可求得tan ∠DCM 的值;(2)(ⅰ)连接OE ,OF ,作OH ⊥BE ,证得OHCE 为矩形,设⊙O 的半径为r ,得到OF=OE=CH=r ,OH=CE=32,HF=BH=CH-BC=1r -,在Rt △OHF 中,利用勾股定理即可得解;(ⅱ)延长CD 交AF 于点K ,由(ⅰ)知CF 9 4=,求得tan ∠CAF 34=,由于tan ∠BCD=34,得到∠CAF=∠BCD ,从而得到AF 与CD 的位置关系是AF ⊥CD .【详解】(1)如图,过D 作DM ⊥BC ,垂足M .∵∠ACB=90°,∴DM ∥AC .∴△DMB ∽△ACB .∵AD=4BD ,AC=3,BC=1,∴15DM BD BM AC BA BC ===,即1315DM BM ==,∴35DM =,15BM =,则14155CM =-=,∴在Rt △DMC 中,tan ∠DCM=335445DM CM ==,(2)(ⅰ)如图,连接OE ,OF,∵⊙O 与AC 相切于AC 中点E ,∴OE ⊥AC .作OH ⊥BE ,垂足为H ,∵∠ACB=90°,∴OHCE 为矩形.设⊙O 的半径为r ,则OF=OE=CH=r .OH=CE=12AC=32,HF=BH=CH-BC=1r -.∴在Rt △OHF 中,222OF OH HF =+,∴()222312r r ⎛⎫=+- ⎪⎝⎭,解得:r=138;(2)(ⅱ)AF 与CD 的位置关系是AF ⊥CD ,理由如下:如图,延长CD 交AF 于点K ,由(ⅰ)知,CF=BC +BF=1+2()914r -=,在Rt △ACF 中,∠ACB=90°,∴tan ∠CAF=93434CF AC ==,∵tan ∠BCD=34,∴∠CAF=∠BCD ,即∠CAF=∠FCK ,∵∠CAF+∠F=90°,∴∠FCK+∠F=90°,即AF ⊥CD .【点睛】本题考查了切线的性质、相似三角形的判定与性质、锐角三角函数以及勾股定理,解题的关键是作出合适的辅助线,构建相似三角形和直角三角形.利用正切的定义求出tan ∠CAF 是解决第(ⅱ)问的关键.15.(1)见解析(2)180ACE EFC ∠+∠=︒,见解析(3)30°【分析】(1)先证明四边形ABDC 是平行四边形,再根据AB =AC 得出结论;(2)先证出ACF CEF ∠=∠,再根据三角形内角和180CEF ECF EFC ∠+∠+∠=︒,得到180ACF ECF EFC ∠+∠+∠=︒,等量代换即可得到结论;(3)在AD 上取一点M ,使得AM =CB ,连接BM ,证得ABM CDB △△≌,得到MBA BDC ∠=∠,设BCD BAD α∠=∠=,BDC β∠=,则ADB αβ∠=+,得到α+β的关系即可.【详解】(1)∵ABC DEC ≌△△,∴AC =DC ,∵AB =AC ,∴∠ABC =∠ACB ,AB =DC ,∵CB 平分∠ACD ,∴ACB DCB ∠=∠,∴ABC DCB ∠=∠,∴AB CD ∥,∴四边形ABDC 是平行四边形,又∵AB =AC ,∴四边形ABDC 是菱形;(2)结论:180ACE EFC ∠+∠=︒.证明:∵ABC DEC ≌△△,∴ABC DEC ∠=∠,∵AB =AC ,∴A ABC CB =∠∠,∴ACB DEC ∠=∠,∵180ACB ACF DEC CEF ∠+∠=∠+∠=︒,∴ACF CEF ∠=∠,∵180CEF ECF EFC ∠+∠+∠=︒,∴180ACF ECF EFC ∠+∠+∠=︒,∴180ACE EFC ∠+∠=︒;(3)在AD 上取一点M ,使得AM =CB ,连接BM ,∵AB =CD ,BAD BCD ∠=∠,∴ABM CDB △△≌,∴BM =BD ,MBA BDC ∠=∠,∴ADB BMD ∠=∠,∵BMD BAD MBA ∠=∠+∠,∴ADB BCD BDC ∠=∠+∠,设BCD BAD α∠=∠=,BDC β∠=,则ADB αβ∠=+,∵CA =CD ,∴2CAD CDA αβ∠=∠=+,∴2BAC CAD BAD β∠=∠-∠=,∴()1180902ACB BAC β∠=︒-∠=︒-,∴()90ACD βα∠=︒-+,∵180ACD CAD CDA ∠+∠+∠=︒,∴()()9022180βααβ︒-+++=︒,∴30αβ+=︒,即∠ADB =30°.【点睛】本题考查了菱形的判定定理、全等三角形的判定和性质、三角形内角和定理等,灵活运用知识,利用数形结合思想,做出辅助线是解题的关键.16.见解析【分析】先由ASA 证明AOF COE ≌△△,得出FO EO =,再由AO CO =,即可得出结论.【详解】证明:∵四边形ABCD 是平行四边形,∴//AD BC ,∴OAF OCE ∠=∠,在AOF 和COE 中,OAF OCE AO CO AOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AOF COE ≌△△(ASA )∴FO EO =,又∵AO CO =,∴四边形AECF 是平行四边形.【点睛】本题主要考查平行四边形的判定,掌握全等三角形的判定及性质是解题的关键.17.(1)见解析(2)120【分析】(1)根据平行四边形的性质可得A C ∠=∠,利用全等三角形的判定和性质得出ABE CBF ≅ ,AB CB =,依据菱形的判定定理(一组邻边相等的平行四边形的菱形)即可证明;(2)连接AC ,交BD 于点H ,利用菱形的性质及勾股定理可得224AC AH ==,再根据菱形的面积公式求解即可得.(1)证明:∵四边形ABCD 是平行四边形,∴A C ∠=∠,∵BE AD ⊥,BF CD ⊥,∴90AEB CFB ∠=∠=︒,在ABE 和CBF 中,A C AE CF AEB CFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABE CBF ≅ ,∴AB CB =,∴平行四边形ABCD 是菱形;(2)解:如图所示:连接AC ,交BD 于点H,∵四边形ABCD 是菱形,∴AC BD ⊥,∵13AB =,10BD =,∴5BH DH ==,在Rt ABH 中,12AH =,∴224AC AH ==,∴平行四边形ABCD 的面积为:11·241012022S AC BD ==⨯⨯=.【点睛】题目主要考查平行四边形的性质,全等三角形的判定和性质,菱形的判定和性质及其面积公式,勾股定理等,理解题意,熟练掌握各个性质定理是解题关键.18.(1)12(2)见解析【分析】(1)先由菱形的性质得BC =AD =6,AD ∥BC ,再证△AOE ∽△COB ,即可得出答案;(2)先证△ABC 是等边三角形,得AC =BC ,∠ACB =60°,再证△ACE ≌△BCF (SAS ),得CE =CF ,∠ACE =∠BCF ,然后证∠ECF =∠ACB =60°,即可得出结论.(1)∵四边形ABCD 是菱形,∴BC =AD =6,AD ∥BC ,∵点E 为AD 的中点,∴AE =12AD =3,∵AD ∥BC ,∴△AOE ∽△COB ,∴3162AO AE CO BC ===;(2)证明:∵四边形ABCD 是菱形,∴AB =BC ,AD ∥BC ,∠B =∠D =60°,∴∠CAE =∠ACB ,△ABC 是等边三角形,∴AC =BC ,∠ACB =60°,∴∠EAC =60°=∠B ,∵AE +DE =AD =6,BF +DE =6,。
2025中考数学二次函数压轴题专题练习22 胡不归模型(学生版+解析版)
专题22胡不归模型一、知识导航在前面的最值问题中往往都是求某个线段最值或者形如PA+PB最值,除此之外我们还可能会遇上形如“PA+kP矿这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题,(2)阿氏固.本文简单介绍“胡不归“模型【故丰介绍l从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据',两点之间线段最短",虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?(“胡“同“何”)而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?A VZ R驿道[棋型建立)如图,一动点P在直线MN外的运动速度为VI'在直线MN上运动的速度为忆,且冈<忆,A、BAC BC为定点,点C在直线MN上,确定点C的位置使--+—-的值最小V2 V,MBA V2 CN(问题分析)AC B C l V V了三(B C+t AC],记k=t即求BC+kAC的最小值.(问题解决I构造射线AD使得sin乙D儿'V=k,CH/ A C=k, CH=kAC.M A勺、"、、,'CCH、、、令si11a=一=k H、、AC、、、、、、忽CH=kAC BN将问题转化为求B C+CH最小值,过B点作BH上AD交J\1N于点C,交A D于H,点,此时BC+CH取到最小值,即BC+kAC最小.B, , ,,M A义”、、、、、、、'佥H、、、、、艾N(棋型总结】在求形如“PA+kP矿的式子的最值问题中,关键是构造与kPB相等的线段,将“1刃+肘功”型问题转化为“PA+PC'型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段石如图, 6.ABC中,AB=AC=IO,ta叭=2,BE_I_AC于点E,D是线段BE上的一个动点,则CD+—-BD的晟5小值是A8c乔(分析)本题关键在于处理”__:_BD",考虑tanA:o2,t,. ABE三边之比为1:2✓5,石上AB交AB于H点,则DH=--BD,5石sin乙钮E—,故作D H5A Ac8c问题转化为CD+DH最小值,故C、D、H共线时值最小,此时CD+DH=CH= 8£=4✓5【小结1本题简单在于题目已经将B A线作出来,只需分析角度的三角函数值,作出垂线D H即可斛决问题,若稍作改变,将图形改造如下·B二三则需自行构造a,如下图,这一步正是解决“胡不归”问题关锭所在.B二三渗石,l sina=一-B夕AIII、、I、$IIIIIIHIIcI三、中考真题演练I.(2023山东中考真题)已知抛物线y=-x2+b入+c与x轴交于A,B两点,与y轴交千点C(0,4),其对称轴为x=-一.3y A`l�l(1)求抛物线的表达式:(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC千点E,图2F,过点F作FG..lx轴,垂足为G,求FG+丘F P的最大值.2.(2023黑龙汀绥化中考真题)如困,抛物线Y,=少:2+bx+c的图象经过A(-6,0),8(-2,0), C(0,6)三点,且一次函数y=虹+6的图象经过点B.-8 -7l广X-8-7I 2(l)求抛物线和一次函数的解析式.(3将抛物线Y,=a.,\2 +bx+c的图象向右平移8个单位长度得到抛物线Y2,此抛物线的图象与X轴交于M,N两点(M点在N点左侧).点P是抛物线Y2上的一个动点且在过线NC下方已知点P的横坐标为m.过点P作PD上NC于点D求m为何值时,CD+�PD有最大值,最大值是多少?2(2023四川内江中考真题)如图,在平面丑角坐标系中,抛物线y=w.2+b入+c与x轴交千B(4,0),C(-2,0) 两点与y轴交于点A(0,-2)I •(I)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作轴的平行线交AB千点K,过点P作y轴的平行线l交r轴于点D,求与-PK+PD的最大值及此时点P的坐标;24.(2023天津中考真题)已知抛物线y=-入2+bx+c(b,c为常数,c>I)的顶点为P,与X轴相交于A,bB两点(点A在点B的左侧),与Y轴相交于点C,抛物线上的点M的横坐标为m,且-c<m<一,过点M2作C,垂足为N(I)若b=-2,c=3.@求点P和点A的坐标;@当仙V=石时,求点M的坐标;(2)若点A的坐标为(气',0),且MPII A C,当A N+3M N=9✓2时,求点M的坐标k5. (2023福建泉州模拟预测)如图,已知抛物线y=�(x+2)(x-4)(k为常数,且k>O)与X轴从左至右8§依次交千A,8两点,与Y轴交于点C,经过点B的宜线y=-—-x+b与抛物线的另一交点为D.y yX备用图(I)若点D的横坐标为-5,求抛物线的函数表达式;(2)在(l)条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒l个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?6.(2023广西柳州二模)已知抛物线y=少:2+b入+c(a丑0)过点A(LO),8(3,0)两点,与Y轴交于点C, OC=3,。
上海中考数学第22题解题技巧(一)
上海中考数学第22题解题技巧(一)上海中考数学第22题解题技巧1. 题目分析题目要求解一个等差数列的求和问题,给出了一些已知条件和待求内容。
我们需要根据题目的信息,利用相关的数学知识来解决这个问题。
2. 等差数列的求和公式在解题之前,我们首先需要了解等差数列的求和公式。
等差数列是指数列中相邻两项之间的差值保持恒定的数列。
求等差数列的和的公式如下:S n=n2(a1+a n)其中,S n表示等差数列的前n项和,a1表示首项,a n表示末项,n表示项数。
3. 解题步骤根据题目给出的条件,我们可以按照以下步骤解题:步骤1:确定已知条件首先,我们需要确定题目给出的已知条件。
在这道题中,已知条件有: - 等差数列的项数是50; - 等差数列的第1项是4; - 等差数列的第50项是100。
步骤2:确定待求内容接下来,我们需要确定题目要求求解的内容。
在这道题中,待求内容是等差数列的前50项和S50。
步骤3:计算首项和末项根据已知条件,我们可以得到等差数列的首项a1和末项a50。
根据等差数列的性质,我们知道:a50=a1+(50−1)d其中,d表示等差数列的公差。
根据题目给出的条件,我们可以得到:a50=4+(50−1)d=100步骤4:求解公差将上述等式进行变形,可以得到公式:d=100−4 50−1步骤5:计算前50项的和利用等差数列的求和公式,我们可以计算前50项的和S50:S50=502(a1+a50)步骤6:计算结果将已知条件和计算所得的结果代入求和公式,即可得到最终的结果。
4. 结论通过按照上述步骤解题,我们可以得到等差数列的前50项和S50的值。
这道题目主要考察了对等差数列性质和求和公式的理解和应用能力。
在解题过程中,我们需要注意计算的准确性和细致性。
希望本文能对同学们解决类似的数学问题有所帮助!5. 思考与拓展在解题过程中,我们使用了等差数列的求和公式来计算前50项的和。
这个公式在解决类似的等差数列求和问题时非常有用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图2,在原题的条件下,若 (m>0),则 的值是(用含m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上一点,AE和BD相交于点F.
若 (a>0,b>0),则 的值是(用含a、b的代数式表示).
22.(1)AB=3EH;CG=2EH; . (3分)
由①可知△ADC是等边三角形,DE∥AC,
∴DN=CF,DN=EM.
∴CF=EM.图2
∵∠ACB=90º,∠B=30º,
∴AB=2AC.
又∵AD=AC,
∴BD=AC.
∵S1= CF·BD,S2= AC·EM,图3
∴S1=S2.
证明:如图3,作DG⊥BC于点G,AH⊥CE交EC延长线于点H.
∵∠DCE=∠ACB=90º∴∠DCG+∠ACE=180º.
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).
若在射线BA上存在点F,使S△DCF=S△BDE,
请直接写出相应的BF的长.
【解析】
试题分析:(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60º,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30º角所对的直角边等于斜边的一半求出AC= AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB, 即∠ACD= ∠BCE
∴△ACD≌△BCE. ………………………………………………………………6分
∴AD = BE, ∠BEC=∠ADC=1350.
∴∠AEB=∠BEC-∠CED=1350-450=900.…………………………………7分
第一种情况:如图①,过点A作AP的垂线,交BP于点P/,
可证△APD≌△AP/B,PD=P/B=1,
CD= ,∴BD=2,BP= ,∴AM= PP/= (PB-BP/)=
第二种情况如图②,可得AM PP/= (PB+BP/)=
22.(10分)(2013河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(2)①DC=BE,理由如下
∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=600,
∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB, ……………5分
∴△CAD≌△EAB(SAS),∴DC=BE ………………………………6分
②BE长的最大值是4. …………………………………………………8分
22.(10分)(2012河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在□ABCD中,点E是BC边的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若 ,求 的值.
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是_______________,CG和EH的数量关系是_________________, 的值是.
∵AB⊥BC,DF⊥BC,∴AE∥DF.
又AE=DF,∴四边形AEFD为平行四边形.……3分
∵AB=BC·tan30°=
若使 为菱形,则需
即当 时,四边形AEFD为菱形.…………………………………5分
(3)①∠EDF=90°时,四边形EBFD为矩形.
在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10-2t=2t, .………7分
②∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.
∵∠A=90°-∠C=60°,∴AD=AE·cos60°.
即 ………………………………………………………9分
③∠EFD=90°时,此种情况不存在.
综上所述,当 或4时,△DEF为直角三角形.……………………10分
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是_________;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________________.
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
∴BD=AC=4 ;
如图5,当△EDC在BC下方,且A、D、E
三点共线时,△ADC是直角三角形,
由勾股定理得,AD=8, ∴AE=6,
根据 ,得BD=
22.(10分)(2014河南)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE
填空:(1)∠AEB的度数为;(2)线段AD、BE之间的数量关系是。
22.(10分)(2015河南))如图1,在Rt△ABC中,∠B=900,BC=2AB=8,点D,E分别是边BC,AC的中点,连DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当α=00时, =;②当α=1800时, =.
(2)拓展探究
试判断:当00≤α≤3600时, 的大小有无变化?请仅就图2的情形给出证明.
(3)解决问题
当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.
解:(1)① …………………………………………1分
② …………………………………………………2分
提示:①当α=00时,在Rt△ABC中,BC=2AB=8,∴AB=4;AC= =4
又点D,E分别是边BC,AC的中点,∴CE∥AB,
∴ = +2 =6
∵BC=8;CD=4;∴BD=8+4=12
∴ =
(2)无变化。(若误判断,但后续证明正确,不扣分)…………………………3分
在图1中,∵点D,E分别是边BC,AC的中点,∴CE∥AB,
∴ ,∠EDC=∠B=900;
如图2,∵△EDC在旋转过程中形状大小不变,
在等腰直角三角形DCE中,CM为斜边DE上的高,
∴CM= DM= ME,∴DE=2CM.
∴AE=DE+AD=2CM+BE………………………………………………………8分
(3) 或 …………………………………………………………10分
【提示】PD =1,∠BPD=900,
∴BP是以点D为圆心、以1为半径的OD的切线,点P为切点.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.
又∵AE=t,∴AE=DF.……………2分
(2)能.理由如下:
∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=0.×60°=30°,
又∵BD=4,∴BE= ∴BF1= ,BF2=BF1+F1F2=
故BF的长为 或 .
22. (1)①60;②AD=BE. ……………………………………………………………2分
(2)∠AEB=900;AE=2CM+BE. ………………………………………………4分
(注:若未给出本判断结果,但后续理由说明完全正确,不扣分)
理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900,
此时S△DCF=S△BDE,过点D作DF2⊥BD,
∵∠ABC=60°,∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=0.5×60°=30°
,∴∠CDF1=180°-30°=150°,∠CDF2=360°-150°-60°=150°,
又∵∠ACH+∠ACE=180º,∴∠ACH=∠DCG.
又∵∠CHA=∠CGD=90º,AC=CD,
∴△AHC≌△DGC.
∴AH=DG.又∵CE=CB,∴S1=S2.
又∵CE=CB,∴S1=S2.
(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,
(3)AM的最大值为3+ ,点P的坐标为(2- , )……10分
【提示】如图3,构造△BNP≌△MAP,则NB=AM,由(1)知,当点N在BA的延长线上时,NB有最大值(如备用图)。易得△APN是等腰直角三角形,AP=2,∴AN= ,∴AM=NB=AB+AN=3+ ;
过点P作PE⊥x轴于点E,PE=AE= ,又A(2,0)∴P(2- , )
中考数学第22题解析
22.(10分)(2016河南)(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b。
填空:当点A位于时线段AC的长取得最大值,且最大值为
(用含a,b的式子表示)
(2)应用
点A为线段B除外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由
②直接写出线段BE长的最大值.