正方体展开图相关题型 (2)

合集下载

山东省人教版七年级上册第四章几何图形初步认识--立体图形展开图与正方体展开图专项练习

山东省人教版七年级上册第四章几何图形初步认识--立体图形展开图与正方体展开图专项练习

立体图形展开图与正方体展开图跟踪训练一.选择题(共23小题)1.下列各图不是正方体表面展开图的是()A.B.C.D.2.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.3.将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.判断下列哪一个选项中的四个边可为此四个边?()A.AC、AD、BC、DE B.AB、BE、DE、CD C.AC、BC、AE、DE D.AC、AD、AE、BC4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.5.下列图形中,是圆锥侧面展开图的是()A.B.C.D.6.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.7.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.8.如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC,且A、B、C分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是()A.B.C.D.9.韩老师特制了4个同样的立方块,并将它们如图A放置,然后又如图B放置,则图B 中四个底面正方形中的点数之和为()A.11 B.13 C.14 D.1610.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美11.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A. B.C.D.12.将如图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA 与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是()A.B.C.D.13.下列四个展开图中能够构成如图所示模型的是()A.B.C.D.14.如图是一个由六个小正方体组合而成的几何体,每个小正方体的六个面上都分别写着﹣1,0,1,﹣2,3,﹣4六个数字,现在能看到的数字全部标在面上,那么现在图中所有看不见的面上的数字和是()A.﹣15 B.10 C.8 D.﹣1215.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.16.如图(1)是一个小正方体的表面展开图,小正方体从图(2)所示位置依次翻转到第1格、第2格、第3格,这时小正方体朝上一面的字是()A.腾B.飞C.燕D.山17.美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A.B.C.D.18.如图,哪一个是左边正方体的展开图()A.B.C.D.19.下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()A.B.C.D.20.下列平面图中不能围成正方体的是()A. B.C.D.21.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山22.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为()A.Q B.R C.S D.T23.如图是某一立方体的侧面展开图,则该立方体是()A.B.C.D.二.填空题(共10小题)24.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.25.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.26.圆锥有个面,它的侧面展开图是.27.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是.28.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值是.29.如图,矩形①、②、③、④都是圆柱的侧面展开图.这些圆柱的底面半径与高最接近相等的一个是(填序号).30.如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:(填序号).31.底面直径为m的圆柱体(如图),沿它的一条母线AB(也就是圆柱的高,且AB=h)剪开展平,则圆柱侧面展开后的面积为.32.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A、B、C均是棱的中点,现将纸盒剪开展成平面,则展开图可能是(错填得0分,少填酌情给分)33.如图(1),一个正方体的三个面上分别写有1、2、3,与它们相对的三个面上依次写有6、5、4.这个正方体的每一条棱处各嵌有一根金属条,每根金属条的质量数(单位:克)等于过该棱的两个面上所写数的平均数.(1)这个正方体各棱上所嵌金属条的质量总和为克.(2)沿这个正方体的某些棱(连同嵌条)剪开,得到图(2)所示的展开图,其周边棱上金属条质量之和的最小值为克.在图(2)中把这个正方体的六个面上原有的数字写出来(注:写字的这一面是原正方体的外表面).三.解答题(共7小题)34.操作探究:在一个正四面体(四个面都是等边三角形)上钻透一个圆孔,由于钻孔的位置不同,在四面体的展开图(如图四个连续的三角形)上看到的弧线或圆的数目也不同.探究:有几种“钻透”的情况?画出它们的展开图,并标出相应的弧线或圆.(要求:至少画出两种情况)35.现实生活中,我们常常能见到一些精美的纸质包装盒.现有一正方体形状的无盖纸盒,在盒底上印有一个兑奖的标志“吉”字,如图1所示.现请同学们用剪刀沿这个正方体纸盒的棱将这个纸盒剪开,使之展开成一平面图形.那么,能剪出多少种不同情况的展开图呢?请把剪开后展成的平面图形画出来,要求展开图中的标志“吉”字是正立着的.(其中一种的展开情况如图2,至少再画出六种不同情况的展开图)36.如图,正方体的每个面上都写有一个有理数,已知三对相对的两个面上的两个数之和相等,若15,9,﹣4的对面的数分别是x,y,z,求2x﹣3y+z的值.37.如图,在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的不同展开图(填出三种答案).38.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.39.以下哪些图形经过折叠可以围成一个棱柱?40.如图所示是长方体的表面展开图,折叠成一个长方体.(1)与字母F重合的点有哪几个?(2)若AD=4AB,AN=3AB,长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的容积.参考答案与试题解析一.选择题(共23小题)1.解:A、是正方体表面展开图,不符合题意;B、是正方体表面展开图,不符合题意;C、是正方体表面展开图,不符合题意;D、有“田”字格,不是正方体表面展开图,符合题意.故选:D.2.解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B 错误,正视图的斜线方向相反,故C错误,只有D选项符合条件,故选D3.解:将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.四个边可为AC、AD、BC、DE.故选:A.4.解;AB是正方体的边长,AB=1,故选:B.5.解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.6.解:A、另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.7.解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,无法组成长方体,故此选项不合题意;故选:C.8.解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,•与正方体三个画一条线段的三角形交于一个顶点不符.故选B.9.解:根据四个图形的点数,可推断出来,点4对面是点2;点5对面是点1;点6对面是点3.则图B中四个底面正方形中的点数是1,3,6,6,1+3+6+6=16,则图B中四个底面正方形中的点数之和为16.故选D.10.解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转城在下面,城与梦相对,故选:A.11.解:亲自动手折一折,再发挥空间想象力,可以得出正确的结果是C.故选C.12.解:A、B一定重合,与A、B相邻的两个阴影一定在A所在的母线重合,而另一端一定与圆锥的底面相交,即靠近A、B两点的两个空白部分无法围成环并且紧贴底面.故选B.13.解:选项A、B中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项D中折叠后图案的位置不符,所以正确的是C.故选C.14.解:(﹣1+0+1﹣2+3﹣4)×6﹣(1+3﹣4+0+3﹣1+0﹣4+1﹣2+1﹣1+0)=﹣15.故选A.15.解:通过具体折叠结合图形的特征,判断图中的线段折叠后只能平行,所以折叠成正方体后的立体图形是B.故选B.16.解:由图1可得,“祝”和“飞”相对;“愿”和“山”相对;“燕”和“腾”相对;由图2可得,小正方体从图2的位置依次翻到第3格时,“祝”在下面,则这时小正方体朝上面的字是“飞”.故选B.17.解:动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选:B.18.解:根据有图案的表面之间的位置关系,正确的展开图是D.故选D.19.解:选项C中红色面和绿色面都是相邻的,故不可能是一个正方体两个相对面上的颜色都一样,故选C.20.解:A、围成几何体时,有两个面重合,故不能围成正方体.B、C、D均能围成正方体.故选A.21.解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选D.22.解:由图可得,宽为3的长方形是R,则从左侧看到的面为B.故选B.23.解:A、两个圆所在的面是相对的,不相邻,故A错误;B、C中空白的圆圈不与白色的三角形相邻,故B、C错误;D、正确.故选D.24.解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.25.解:如图所示:故小丽总共能有4种拼接方法.故答案为:4.26.解:圆锥有二个面组成,它的侧面展开图是扇形.故答案为:二,扇形.27.解:根据题意可知连续3次变换是一循环.所以10÷3=3…1.所以是第1次变换后的图形,即按上述规则连续完成10次变换后,骰子朝上一面的点数是5.故应填:5.28.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∵标注了字母A的面是正面,∴左右面是标注了x2与3x﹣2的面,∴x2=3x﹣2,解得x1=1,x2=2.故答案为:1或2.29.解:由题意得,底面半径与高最接近相等应该是宽等于长的π倍,则底面半径与高最接近相等的一个是④.30.解:圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.31.解:圆柱的侧面积=π•mh.故答案为:π•mh.32.解:选项A、C、D折叠后都符合题意;只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,•与正方体三个画一条线段的三角形交于一个顶点不符.故答案为:ACD.33.解:(1)正方体各棱的质量为:(1+2)÷2=1.5克,(1+3)÷2=2克,(1+4)÷2=2.5克,(1+5)÷2=3克,(6+2)÷2=4克,(6+3)÷2=4.5克,(6+4)÷2=5克,(6+5)÷2=5.5克,(2+3)÷2=2.5克,(3+4)÷2=3.5克,(4+5)÷2=4.5克,(2+5)÷2=3.5克.1.5+2+2.5+3+4+4.5+5+5.5+2.5+3.5+4.5+3.5=42克.故这个正方体各棱上所嵌金属条的质量总和为42克;(2)如图所示:3+4.5+5+4.5+4=21克,42﹣21=21克.故答案为:42,21.34.解:有3种“钻透”的情况,作图(其中两种情况:面面、点面)如下:35.解:能剪出8种不同情况的展开图,作图如下:36.解:∵x+15=y+9=z﹣4,∴x﹣y=﹣6,y﹣z=﹣13.∴2x﹣3y+z=2(x﹣y)﹣(y﹣z)=1.故2x﹣3y+z的值为:1.37.解:根据正方体的展开图作图:38.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.39.解:(1)中间是三个矩形,矩形两边分别是四边形,故(1)不能围成棱柱;(2)中间是四个矩形,矩形两边分别是四边形,故(2)能围成棱柱;(3)中间是四个矩形,矩形一边有两个四边形,另一边没有四边形,故(3)不能为成棱柱;(4)中间是三个矩形,矩形两边分别是四边形,故(4)不能围成棱柱;答:(2)经过折叠可以围成一个棱柱.40.解:(1)与F重合的点是B.(2)设长方体的长、宽、高分别为x、y、z.根据题意得:解得:.∴原长方体的容积=4×8×12=384.。

正方体的展开图 小学数学 随堂练习

正方体的展开图 小学数学 随堂练习

一、选择题1. 下图是一个正方体表面展开图,请问与①号面相对的面是()号面。

A.③B.④C.⑤D.⑥2. 观察如图所示正方体的展开图,与6号面相对的是()号面。

A.1 B.2 C.3 D.53. 下面图形中能折成正方体的是()。

A.B.C.D.4. “顺”的对面是()字。

A.“考”B.“你”C.“祝”D.“利”5. 下图是一个正方体的展开图,和3号面相对的面是()。

A.3号B.4号C.6号D.5号二、填空题6. 观察图形,填空.折一折,能折成________体;其中②号面与________面相对;③号面与________面相对;⑤号面与________面相对.7. 折一折,用做一个,“3”的对面是( ),“1”的对面是( )。

8. 将下面这个展开图围成一个正方体后,与红色的面相对的面是( )色.9. 如图,26个英文字母排成S形,一个正方体木块的六个面上分别写着数字1到6,数字1和6相对,2和5相对,3和4相对.开始时,木块放在字母A上,木块朝上的面上的数字是1.现将木块沿着图中的方格滚动,当木块滚动到字母Z上时,木块朝上的面上的数字是________.10. 下面是一个正方体的展开图。

(1)①号面相对的是( )号面;⑤号面相对的是( )号面。

(2)如果这个正方体的棱长是2cm,那么它的表面积是( )。

三、解答题11. 将1、2、3、4、5、6分别填在如图中的每个方格内,使折成的正方体中相对的2个面的数之和相等。

12. 把一个棱长为的正方体的6个面展开(如图)。

(1)在展开图中标出剩下三个面的名称。

(2)这个正方体的棱长总和是(),表面积是(),体积是()。

13. 如图,这是一个正方体的展开图,如果将它组成原来的正方体,哪些点与点P重合。

14. (1)如图中涂色的四个正方形是个正方体展开图中的4个面(每个小方格1平方分米),请你画出展开图的另外的两个面并涂上阴影。

(2)如果要把12个上面这样的正方体装进一个长方体包装盒,这个长方体的长、宽、高分别是()分米、()分米,()分米时,所用的包装纸最少,是()平方分米。

正方体的展开图 (2)

正方体的展开图 (2)
其它的类型都不能围成正方体.
操作二、如下图排列的正方形能围成正方体吗?
U

L
说明:若出现 “U”,“L”,“田”等类 型,都不能围成正方体
探究二
找“正方体中两两相对 的面”
能折成正方体的平面图形中,有哪 些面是相对的?用你喜欢的方法来 判断.
我 爱 五 星 红 旗
能折成正方体的平面图形中,有哪 些面是相对的?用你喜欢的方法来 判断.
我 爱
五 星 红

能折成正方体的平面图形中,有哪 些面是相对的?用你喜欢的方法来 判断.
我 爱 五 星 红 旗
能折成正方体的平面图形中,有哪 些面是相对的?用你喜欢的方法来 判断.
我 爱
五 星 红 旗
能折成正方体的平面图形中,有哪 些面是相对的?用你喜欢的方法来 判断.
爱 我 五 星 旗
红口 诀ຫໍສະໝຸດ 2、不能围成正方形的图形有以下情况:
情况一、数量上不符合以上四种类型的都不能围成; 情况二、若出现“U”,“L”,“田”等类型,都不能围
成正方体.
课堂小结
3、寻找“正方体中相对的面”的方法: 口诀
布置作业:见试卷
正方体的展开图
学习目标
1、会判断一些平面图形折叠后能否围成正方体. 2、能在展开图中找到相对的面.
探究一
能否围成正方体
“一、四、一”型
“一、三、二”型
“二、二、二”型
“三、三”型
操作一、如下图排列的正方形能围成正方体吗?
说明:除了“一、四、一”,“一、三、二”,
“二、二、二”,“三、三”等四种类型,
面面相对有规律, 大家千万要牢记.
横行竖列隔相望, 实在不行推和搡.
“一、四、一”, “一、三、二”, “三、三” 等类型可直接用此 方法

立体图形的表面展开图例题与讲解

立体图形的表面展开图例题与讲解

立体图形的表面展开图例题与讲解(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是().解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C 也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是().A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是().A.4 B.6 C.7D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是().解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图().解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。

华师大七年级上43立体图形的展开图2同步练习含答案解析

华师大七年级上43立体图形的展开图2同步练习含答案解析

2019年华师大版七年级数学上册同步测试:4.3 立体图形的展开图(02)一、选择题(共21小题)1.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是()A.建B.设C.和D.谐2.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的3.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1 B.4 C.5 D.64.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是()A.美B.丽C.家D.园5.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南6.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛7.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()8.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种9.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合10.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美11.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国12.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦13.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁14.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()15.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()A. B.C.D.16.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦17.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝18.右图是正方体的平面展开图,每个面上标有一个汉字,与“考”字相对的字是()A.祝B.你C.成D.功19.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市20.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学21.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友二、填空题(共5小题)22.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).23.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是.24.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2019次后,骰子朝下一面的点数是.25.在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a= ,b= ,c= .26.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.2019年华师大版七年级数学上册同步测试:4.3 立体图形的展开图(02)参考答案与试题解析一、选择题(共21小题)1.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是()A.建B.设C.和D.谐【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“和”与“岳”是相对面,“建”与“阳”是相对面,“谐”与“设”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对.故选D.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1 B.4 C.5 D.6【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“4”是相对面,“3”与“5”是相对面,“1”与“6”是相对面.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是()A.美B.丽C.家D.园【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“共”与“园”是相对面,“建”与“丽”是相对面,“美”与“家”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的特点得出其中上面的和下面的是相对的2个面,即可得出正方体中与“建”字所在的面相对的面上标的字是“南”.【解答】解:由正方体的展开图特点可得:“建”和“南”相对;“设”和“丽”相对;“美”和“云”相对;故选D.【点评】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.6.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛【考点】专题:正方体相对两个面上的文字.【专题】常规题型.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“鱼”.故选:C.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间【考点】专题:正方体相对两个面上的文字.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.故选:A.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种【考点】专题:正方体相对两个面上的文字.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况.【解答】解:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选:C.【点评】此题考查了正方体相对两个面上的数字,解决本题的关键是明确1~6中偶数有2,4,6三个.9.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美【考点】专题:正方体相对两个面上的文字.【分析】根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.【解答】解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转城在下面,城与梦相对,故选:A.【点评】本题考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序确定每次翻转时下面是解题关键.11.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.故选:C.【点评】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“力”是相对面,“爱”与“辽”是相对面,“魅”与“宁”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3【考点】专题:正方体相对两个面上的文字.【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.故选B.【点评】本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.15.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()A. B.C.D.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、“油”与“子”是相对面,故本选项错误;B、“芦”与“子”是相对面,故本选项错误;C、“芦”与“子”是相对面,故本选项错误;D、“芦”与“学”是相对面,“山”与“子”想相对面,“加”与“油”是相对面,故本选项正确.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.17.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选:B.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.18.右图是正方体的平面展开图,每个面上标有一个汉字,与“考”字相对的字是()A.祝B.你C.成D.功【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“祝”字相对的字是“试”字,“考”字相对的字是“成”字,“你”字相对的字是“功”字.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.19.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“建”与“强”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题(共5小题)22.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.【点评】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是泉.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“力”与“城”是相对面,“香”与“泉”是相对面,“魅”与“都”是相对面.故答案为泉.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2019次后,骰子朝下一面的点数是3 .【考点】专题:正方体相对两个面上的文字;规律型:图形的变化类.【专题】规律型.【分析】观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.【解答】解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2019÷4=503…2,∴滚动第2019次后与第二次相同,∴朝下的点数为3,故答案为:3.【点评】本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.25.在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a= 6 ,b= 2 ,c= 4 .【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的展开图的特点,找到向对面,再由相对面上的数字之和相等,可得出a、b、c的值.【解答】解:1与a相对,5与b相对,3与c相对,∵1+a=5+b=3+c,六个面上的数字为分别1,2,3,4,5,6∴a=6,b=2,c=4;故答案为:6,2,4.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.26.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是(1)(3).【考点】展开图折叠成几何体.【专题】压轴题.【分析】由平面图形的折叠及三棱锥的展开图解题.【解答】解:只有图(1)、图(3)能够折叠围成一个三棱锥.故答案为:(1)(3).【点评】本题考查了展开图折叠成几何体的知识,属于基础题型.。

正方体找对面的题型一年级

正方体找对面的题型一年级

正方体找对面的题型一年级一、基础题型(1 - 10题)题1:- 题目:一个正方体展开图如下(简单的1 - 4 - 1型展开图,例如上面一行中间一个正方形,下面一行四个正方形),已知写着数字1的面朝上,数字3的面朝前,问数字1的对面是哪个数字?- 解析:对于正方体的展开图,相对的面是间隔出现的。

在这种1 - 4 - 1型展开图中,1和3中间隔了一个正方形,所以1的对面是3后面的那个面,也就是数字5。

题2:- 题目:正方体展开图(2 - 3 - 1型,上面一行两个正方形,中间一行三个正方形,下面一行一个正方形),数字2的面在左边,数字4的面在上面,问数字2的对面是哪个数字?- 解析:在2 - 3 - 1型展开图中,先看数字2所在的位置。

2的对面是与它不相邻且间隔的面。

数字2与数字4不相邻且间隔,所以2的对面是数字4对面的数字,也就是数字6。

题3:- 题目:正方体展开图(3 - 3型,上下两行各三个正方形),数字1的面在前面,数字3的面在上面,问数字1的对面是哪个数字?- 解析:在3 - 3型展开图里,数字1和数字3是相邻面。

从整体看,1的对面是与1间隔的面,所以1的对面是数字5。

题4:- 题目:有一个正方体,它的六个面上分别标有字母A、B、C、D、E、F。

正方体展开图如下(1 - 4 - 1型),字母A的面在前面,字母C的面在上面,问字母A的对面是哪个字母?- 解析:根据正方体展开图相对面间隔出现的规律,A与C相邻,A的对面应该是与A间隔的面,所以A的对面是字母F。

题5:- 题目:正方体展开图(2 - 3 - 1型),标有红色的面在右边,标有蓝色的面在上面,问红色面的对面是什么颜色的面?- 解析:在2 - 3 - 1型展开图中,红色面在右边,它的对面是与它间隔的面。

蓝色面在上面,红色面的对面就是蓝色面下面的面,假设为绿色面(题目未明确其他颜色的关系,这里假设一种颜色)。

题6:- 题目:一个正方体六个面分别画着苹果、香蕉、橘子、梨、桃、西瓜。

(完整版)长方体正方体展开图练习

(完整版)长方体正方体展开图练习

长方体正方体展开图练习
1、如右图。

这是一个( )体,有( )条棱,有( )个面,有()个顶点,棱长一共是(),表面积是( )。

2、这时一个()体。

它的上、下底面的形状是(),长和宽分别是()和(),它的左右形状是( ),边长是().
3、
4、右图是一个正方体的展开图。

5、下图是一个长方体的展开图,找出相对的两个面,并说一说它们是长方体的哪几个面?(单位:m)
相对的面是()号和()号,()号和()号以及( )号和()号。

其中( )号和()号是长方体的上、下面,( )号和()号是长方体的前,后面,()号和()号是长方体的左、右面。

6、把相对应的字母填在括号里。

7、工人师傅做一个正方体框架,用去36米角钢。

这个框架的边长是多少?如果要在这个框架上钉上木板,多少木板才够?
8、哪个展开图形能围成正方体?请在对应的括号里打勾.。

七年级上册数学正方体题型

七年级上册数学正方体题型

七年级上册数学正方体题型一、正方体的展开图相关(8题)1. 下列图形中,是正方体展开图的是()- 选项A:“田”字形。

- 选项B:“凹”字形。

- 选项C:1 - 4 - 1型的展开图(符合正方体展开图的一种常见类型)。

- 选项D:五个正方形连成一排。

解析:正方体展开图有11种基本情况,常见的有1 - 4 - 1型、2 - 3 - 1型、2 - 2 - 2型、3 - 3型。

“田”字形和“凹”字形不能折成正方体,五个正方形连成一排也不能折成正方体,而1 - 4 - 1型可以折成正方体,所以答案是C。

2. 一个正方体的展开图如图所示,相对面上的数字互为相反数,则x + y的值为()- 展开图中,数字3与x所在面相对,数字 - 2与y所在面相对。

解析:因为相对面上的数字互为相反数,所以x=-3,y = 2,则x + y=-3+2=-1。

3. 将一个正方体沿某些棱剪开,展成一个平面图形,至少需要剪几条棱?解析:正方体有12条棱,要将正方体展开成平面图形,需要将7条棱剪开,因为展开图中相邻的面之间有一条棱是剪开的,而正方体有6个面,展开后有5条棱是相连的,所以12 - 5=7条棱。

4. 如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1、2、3和- 3,要在其余正方形内分别填上 - 1、 - 2,使得按虚线折成正方体后,相对面上的两数互为相反数,则A处应填()- 从展开图可以看出,与标有数字1的面相对的面是A所在面。

解析:因为相对面上的两数互为相反数,1的相反数是 - 1,所以A处应填 - 1。

5. 一个正方体的展开图中,有四个正方形连成一排,那么另外两个正方形的位置可能有几种情况?解析:另外两个正方形的位置可能有以下三种情况:- 在这一排正方形的同侧(上下位置),形成2 - 4型展开图。

- 在这一排正方形的两侧(一上一下),形成3 - 3型展开图。

- 其中一个与这一排中的一个正方形相连,另一个在其相对位置,形成2 - 3 - 1型展开图。

正方体展开图巧记口诀及解释(2)(最新整理)

正方体展开图巧记口诀及解释(2)(最新整理)

6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。

同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:
正方体盒巧展开,六个面儿七刀裁。

十四条边布周围,十一类图记分明:
四方成线两相卫,六种图形巧组合;
跃马失蹄四分开;两两错开一阶梯。

对面相隔不相连,识图巧排“7”、“凹”、“田”。

现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:
工具/原料
剪刀,制作正方体
方法/步骤
1.1
四方成线两相卫,六种图形巧组合
2.2
跃马失蹄四分开
3.3
两两错开一阶梯
4.4
对面相隔不相连
5.5
识图巧排“7”、“凹”、“田”
END。

正方体的表面展开图(二)(含答案)

正方体的表面展开图(二)(含答案)

正方体的表面展开图(二)一、单选题(共12道,每道8分)1.下列图形中,不是正方体表面展开图的是( )A. B.C. D.答案:D解题思路:正方体有11种表面展开图,(1,4,1)型有6种,(2,3,1)型有3种,(2,2,2)型有1种,(3,3)型有1种.A中的是(1,4,1)型,B中的是(2,2,2)型,C中的是(3,3)型,正方体表面展开图不能出现凹字形,D选项不是正方体表面展开图,故选D.试题难度:三颗星知识点:正方体的表面展开图2.如图,从无阴影的正方形中选一个,与图中5个有阴影的正方形折成一个正方体,则不同的选法有( )A.3种B.4种C.5种D.6种答案:B解题思路:由正方体的11种表面展开图可知,有如下4种选法:故选B.试题难度:三颗星知识点:正方体的表面展开图3.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的表面展开图如图所示,那么在这个正方体中,和“创”相对的字是( )A.文B.明C.城D.市答案:B解题思路:这是一个正方体展开图,其中面“文”与面“城”相对,面“明”与面“创”相对,面“建”与面“市”相对,故选B.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面4.将“九年义务教育”六个字分别写在一个正方体的六个面上,这个正方体的表面展开图如图所示,那么在这个正方体中,和“九”相对的字是( )A.义B.务C.教D.育答案:A解题思路:这是(3,3)型正方体表面展开图,面“九”与面“义”相对,面“务”与面“育”相对,面“教”与面“年”相对,故选A.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面5.骰子是一种特殊的数字立方体,它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A. B.C. D.答案:C解题思路:正方体6个面中,每一个面和四个面相邻,和一个面相对.因为相对两面的点数之和总是7,所以1和6相对,2和5相对,3和4相对.A选项,1和3相对,故选项A错误;B选项,1和5相对,故选项B错误;D选项,1和5相对,故选项D错误.故选C.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面6.一个正方体的表面展开图如图所示,每一个面上都写有一个数,并且相对两个面上所写的两个数之和都相等,那么( )A.a=3,b=5B.a=5,b=7C.a=3,b=7D.a=5,b=6答案:C解题思路:这是(2,3,1)型正方体表面展开图,面“8”与面“a”相对,面“b”与面“4”相对,面“5”与面“6”相对,则相对两个面上所写的两个数字之和为5+6=11,所以8+a=11,4+b=11,则a=3,b=7,故选C.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面7.如图是一个表面写有数字的正方体,其表面展开图可能是( )A. B.C. D.答案:A解题思路:由正方体可以看出,4,8,6三个面相邻,相邻的面不可能相对.B选项:4与8相对,选项B错误;C选项:8与6相对,选项C错误;D选项:8与6相对,选项D错误.故选A.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面8.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的表面展开图可能是( )A. B.C. D.答案:C解题思路:正方体6个面中,每一个面和四个面相邻,和一个面相对.由题意知,“芦”和“学”相对,“加”和“油”相对,“山”和“子”相对.A选项,“加”和“油”相邻,故选项A错误;B选项,“山”和“子”相邻,故选项B错误;D选项,“加”和“油”相邻,“山”和“子”相邻,故选项D错误.故选C.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面9.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )A. B.C. D.答案:C解题思路:由题意,正方体表面的图案圆与正方形和五角星相邻,相邻的面不可能相对.A选项:正方形与五角星相对,A选项错误;B选项:正方形与五角星相对,B选项错误;C选项:把有正方形图案的当做上面,有圆图案的当做前面折起来,五角星在正方体的右面,符合题意;把D选项按照相同的方式折起来,五角星在正方体的左面,不符合题意,D选项错误.故选C.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面10.六个面分别标有A,B,C,D,E,F的正方体有如图所示的三种不同放置方式,则D和F 对面的字母分别是( )A.C和EB.C和BC.E和BD.E和C答案:C解题思路:正方体6个面中,每一个面和四个面相邻,和一个面相对,相邻的面不可能相对,可以通过相邻面确定相对面.先从出现次数最多的面A开始找起:A与B,D,E,F相邻,故A与C相对;B与A,C,D,E相邻,故B与F相对;则D与E相对,D和F对面的字母分别是E和B,故选C.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面11.已知一个正方体的6个面分别标有数字“2”,“3”,“4”,“5”,“6”,“7”,如图表示的是正方体的3种不同摆法,则当“2”在上面时,下面的数字是( )A.4B.5C.6D.7答案:C解题思路:正方体6个面中,每一个面和四个面相邻,和一个面相对,相邻的面不可能相对,可以通过相邻面确定相对面.先从出现次数最多的面3开始找起:3与7,6,5,2相邻,故3与4相对;7与3,4,6,2相邻,故7与5相对;则2与6相对,当“2”在上面时,下面的数字是6,故选C.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面12.下列各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样,它们是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)答案:C解题思路:既然折成正方体后,其中两个正方体各面图案完全一样,那么它们对应的平面图形的相对面必须完全一样.根据正方体11种展开图的相对面:(1)中面“☆”与面“×”相对,(2)中面“☆”与面“○”相对,(3)中面“☆”与面“×”相对,(4)中面“☆”与面“×”相对,因此排除(2);(1)中面“#”和面“△”相对,(3)中面“#”和面“○”相对,(4)中面“#”和面“○”相对,因此排除(1).只有(3)和(4)折成正方体后各面图案完全一样,故选C.试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面。

正方体展开图练习题

正方体展开图练习题

正方体展开图练习题一、选择题1. 正方体展开图共有多少种不同的展开方式?A. 8种B. 11种C. 12种D. 15种2. 以下哪种展开方式不是正方体的展开图?A. 1-4-1型B. 2-2-2型C. 3-3型D. 2-3-1型3. 在正方体展开图中,相邻的两个面在展开后的位置关系是什么?A. 相邻B. 对角C. 相对D. 相隔二、填空题4. 正方体的六个面在展开图中,每个面至少与________个面相邻。

5. 1-4-1型展开图中,共有________个正方形是相邻的。

三、判断题6. 正方体的每个顶点在展开图中都连接着三个面。

()7. 正方体的任意两个相对面在展开图中不可能相邻。

()四、简答题8. 请列举出正方体展开图的四种基本类型,并简要说明每种类型的展开特点。

五、作图题9. 根据题目所给的正方体展开图,请在答题纸上画出其对应的立体图。

六、计算题10. 假设有一个正方体,其每个面的面积为a²。

如果将其展开成一个平面图形,求展开图的总面积。

七、推理题11. 给定一个正方体展开图,其中有两个相邻的面被涂成了不同的颜色。

如果将这个展开图重新折叠成正方体,那么这两个面在立体图中的位置关系是什么?八、综合应用题12. 某工厂需要制作一个正方体的包装盒,包装盒的每个面都需要贴上不同的图案。

请根据正方体展开图的特点,设计一种展开图,使得每个面都能被均匀地贴上图案,并且相邻的两个面图案不重复。

九、创新题13. 假设你是一名设计师,需要设计一款以正方体为原型的拼图玩具。

请根据正方体展开图的特性,设计出一款至少有两种不同展开方式的拼图,并简要说明每种展开方式的特点。

十、论述题14. 论述正方体展开图在实际生活中的应用,以及它在解决空间问题时的优势。

通过这些练习题,学生可以更深入地理解正方体展开图的特点和应用,提高空间想象能力和逻辑推理能力。

苏教版数学六年级上册 1.2 长方体和正方体展开图试题(讲解+巩固精练)(含答案)

苏教版数学六年级上册 1.2 长方体和正方体展开图试题(讲解+巩固精练)(含答案)

课题名称 1.2长方体和正方体展开图年级六年级上第一单元课题目标通过观察、操作等活动认识长方体、正方体的侧面展开图。

强化对长方体面和棱特征的认识重难点长方体、正方体的侧面展开图知识再现订正与总结经典例题:基础练习1. 分别找一个长方体纸盒子和一个正方体纸盒子,并将它们展开来,观察长方体和正方体的展开图各有什么特点。

2.把下面的图形沿虚线折叠,哪些能折成一个封闭的长方体。

(在括号里画“√”。

)3.下面图形中,沿虚线折叠后能围成正方体的是( )。

4.下面哪个正方体是由示意图的纸板折成的?5. 下图是( )方体的展开图,长是( )cm,宽是( )cm,高是( )cm,前面的面积是( )cm2,左面的面积是( )cm2,下面的面积是( )cm2。

拓展延伸1.正方体展开图一共有( )种类型,共计( )种。

2.正方体展开图可分为( )型、( )型、( )型、( )型。

3.长方体展开图都是由( )对长方形组成的,每对长方形的大小( )。

4.长方体的展开图中同样大小的两个长方形中间( )只隔一个其他的长方形。

5.最长的这一行一定在中间。

最长的这一行可以是( )个,可以是( )个,也可以是( )个。

6.下面哪些图形沿虚线折叠后能围成一个长方体?能围成的画“√”,不能围成的画“×”7.下面哪些图形沿虚线折叠后能围成一个正方体?能围成的画“√”,不能围成的画“×”8.下图是一个正方体的展开图,其中与1号面相对的是()号面?与2号面相对的是()号面?与3号面相对的是()号面?先想一想,再做一做。

9.把下面的长方体展开图补充完整。

小升初数学典型题:正方体展开图练习题_题型归纳

小升初数学典型题:正方体展开图练习题_题型归纳

小升初数学典型题:正方体展开图练习题_题型归纳
数学是一个重要的基础课程,下面为大家分享了正方体展开图练习题,大家一定要经常用习题来锻炼自己的数学各种思维。

正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的。

事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:
1、141型
中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。

2、231型
中间一行3个作侧面,共3种基本图形。

3、222型
中间两个面,只有1种基本图形。

4、33型
中间没有面,两行只能有一个正方形相连,只有1种基本图形。

小编寄语:
我们所说的学习,是广义的学习——既学习知识,又学习技能;既学习历史,又学习现实;既学习自然科学,又学习人文科学;既向书本学习,又向实践学习;既讨教于专家,又问计于市场;既研究本企业的实践,又借鉴他人的经验。

学习是没有边界的。

正方体的11种展开图

正方体的11种展开图
A
B
变形:如图有一长方体房间,在房间 内一角A 处有一只小虫,它想到房间 的另一角B处去吃食物,它采取怎样 的行走路线最近?
A
B
通过观察我们可以看出: 图1是从背面看到的结果; 图2是从顶部看到的结果; 图3是从左侧正对长方体看到的结果; 图4是从正面看到的结果; 图5是从右侧正对正方体看到的结果. 这样,我们发现从不同的方向观察同一物体, 可能得到不同的图形. 其中我们重点研究三个方向上看到的图.即, 主视图:从正面看到的图, 左视图:从左面看到的图, 俯视图:从上面看到的图.
从上面看
从左面看
从正面看
主视图
左视图
俯视图
利用骰子,摆成下面的图形,分别从正面、左面、 上面观察这个图形,各能得到什么平面图形?
从正面看
从上面看
从左面看
这节课我们探索了......
这节课我体验到了...... 这节课我还想......
正方体展开图
将正方体剪开展成一个平面图形。
“一四一” 型
“二三一” 型
“三三” 型
“二二二” 型
判断下列图形能不能折成正方体?
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
பைடு நூலகம்
(12)
(13)
(14)
(15)
(16)
(17)
(18)
2.如图有一正方体房间,在房间内 的一角A 处有一只小虫,它想到房 间的另一角B处去吃食物,它采取怎 样的行走路线最近?

展开与折叠重难点题型

展开与折叠重难点题型

展开与折叠-重难点题型【题型1 正方体的表面展开图】【例1】(2020秋•太原期末)小颖在研究无盖的正方体盒子的展开图时,画出下面4个展开图,其中符合要求的共有()A.1个B.2个C.3个D.4个【变式1-1】(2021春•三元区校级月考)下列图形中,是正方体平面展开图的图形的个数是()A.4个B.3个C.2个D.1个【变式1-2】(2021•邢台期中)把如图所示的正方体展开,得到的平面展开图可以是)A.B.C.D.【变式1-3】(2020秋•香洲区期末)如图,选项中哪一个图形是如图正方体的展开图()A.B.C.D.【题型2 正方体展开图的相对面】【例2】(2021春•郫都区校级期中)病毒无情人有情,2020年初很多最美逆行者不顾自己安危奔赴疫情前线,我们内心因他们而充满希望.小明同学在一个正方体每个面上分别写一个汉字,组成“全力抗击疫情”.如图是该正方体的一种展开图,那么在原正方体上,与汉字“力”相对的面上所写汉字为()A.共B.同C.疫D.情【变式2-1】(2020秋•常州期末)图1是一个小正方体的展开图,小正方体从图2的所示位置依次翻到第1格,第2格,第3格,这时小正方体朝上一面的字是()A.常B.州C.越D.来【变式2-2】(2020秋•锦州期末)一枚六个面分别标有1﹣6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A.6B.2C.3D.1【变式2-3】(2020秋•温县期中)有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第70次后,骰子朝下一面的数字是()A.2B.3C.4D.5【题型3 正方体的折叠】【例3】(2020秋•海陵区期末)如图,纸板上有19个无阴影的小正方形,从中选涂1个,使它与图中5个有阴影的小正方形一起能折叠成一个正方体纸盒,一共有种选法.【变式3-1】(2020秋•南海区期末)将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).【变式3-2】(2020秋•兖州区期末)下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.【变式3-3】(2020秋•怀柔区期末)如图是正方体表面展开图,如果将其合成原来的正方体如图时,与点P重合的两个点应该是()A.S和Z B.T和Y C.T和V D.U和Y【题型4 柱体的展开与折叠】【例4】(2020•衡阳)下列不是三棱柱展开图的是()A.B.C.D.【变式4-1】(2020秋•锦州期末)下列图形经过折叠可以围成一个棱柱的是()A.B.C.D.【变式4-2】(2020秋•碑林区校级月考)如图①,是一个边长为10cm正方形,按要求解答下列问题:(1)如图②,若将该正方形沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面,余下部分按虚线折叠成一个无盖直四棱柱,最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积;(2)若该正方形是一个圆柱的侧面展开图,求该圆柱的体积.(结果保留π)【变式4-3】(2020秋•中牟县期中)聪聪在学习了“展开与折叠”这一课后,明白了很多几何体都能展开成平面图形,于是他在家用剪刀把一个长方体纸盒(如图(1))剪开了,可是他一不小心多剪了一条棱,把纸盒剪成了两部分,即图(2)中的①和②.根据你所学的知识,回答下列问题:(1)若这个长方体纸盒的长、宽、高分别是8cm,4cm,2cm,则该长方体纸盒的体积是多少?(2)聪聪一共剪开了条棱;(3)现在聪聪想将剪掉的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪掉的②粘贴到①中的什么位置?请你帮助他在①上补全一种情况.【题型5 圆柱的展开与折叠】【例5】(2020春•密山市期末)下面各图是圆柱的展开图的是()A.B.C.D.【变式5-1】(2020秋•秦淮区期末)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.【变式5-2】(2020秋•温县期中)(1)请写出对应几何体的名称:①;②;③.(2)图③中,侧面展开图的宽(较短边)为8cm,圆的半径为2cm,求图③所对应几何体的表面积.(结果保留π)【变式5-3】(2020秋•黄浦区期末)生活中的易拉罐、电池、圆形的笔筒等都是一种叫做圆柱体的立体图形(如图1所示),当把它的上底面、下底面和侧面展开后发现上底面和下底面是两个大小相同的圆,侧面是一个长方形(如图2所示(1)一个圆柱体的铝制易拉罐上、下两个底面的半径都是4cm,侧面高为15cm,制作这样一个易拉罐需要面积多大的铝材?(不计接缝).(2)如果一个圆柱体的铝制装饰品的高是5cm,而且侧面的面积等于上、下两个底面面积之和,那么底面的半径是cm.(3)一张正方形的铝材边长是40cm,可单独用于制作(2)题中铝制装饰品的侧面或单独用于制作底面,若要使制成的侧面和底面正好能成为一套完整的装饰品,那么制作侧面的铝材张数与制作底面的铝材张数之比为.【题型6 圆锥、棱锥的展开与折叠】【例6】(2021春•开福区期中)下面四个图形中,是三棱锥的平面展开图的是()A.B.C.D.【变式6-1】(2020秋•宁化县月考)以下几何体的表面展开的图形如图,则它是()A.棱柱B.球C.圆柱D.圆锥【变式6-2】(2020秋•广丰区期末)下面四个图形中不能围成下边三棱锥的是()A.B.C.D.【变式6-3】(2020秋•邗江区校级期末)已知某多面体的平面展开图如图所示,其中是棱锥的有()A.1个B.2个C.3个D.4个。

最新初中数学几何图形初步基础测试题含答案解析(2)

最新初中数学几何图形初步基础测试题含答案解析(2)

最新初中数学几何图形初步基础测试题含答案解析(2)一、选择题1.下列图形不是正方体展开图的是()A.B.C.D.【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A、B、C是正方体展开图,错误;D折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件2.下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A、是三棱锥的展开图,故不是;B、两底在同一侧,也不符合题意;C、是三棱柱的平面展开图;D、是四棱锥的展开图,故不是.故选C.【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.3.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )A .30°B .25°C .18°D .15° 【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D .【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.4.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)【答案】D【解析】【详解】解:作B 点关于y 轴对称点B′点,连接AB′,交y 轴于点C′,此时△ABC 的周长最小,∵点A 、B 的坐标分别为(1,4)和(3,0),∴B ′点坐标为:(-3,0),则OB′=3过点A 作AE 垂直x 轴,则AE=4,OE=1则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE ,∵C ′O ∥AE ,∴∠B ′C ′O=∠B ′AE ,∴∠B ′C ′O=∠EB ′A∴B ′O=C ′O=3,∴点C′的坐标是(0,3),此时△ABC 的周长最小.故选D .5.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【答案】C【解析】【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.【详解】解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小∵四边形ABCD 是正方形B D∴、关于AC对称∴PB PD=∴+=+=PB PE PD PE DEQ2,3==BE AE BE∴==6,8AE AB22DE∴=+=;6810+的最小值是10,故PB PE故选:C.【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.6.如图,O是直线AB上一点,OC平分∠DOB,∠COD=55°45′,则∠AOD=()A.68°30′B.69°30′C.68°38′D.69°38′【答案】A【解析】【分析】先根据平分,求出∠COB,再利用互补求∠AOD【详解】∵OC平分∠DOB,∠COD=55°45′∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′∴∠AOD=180-111°30′=68°30′故选:A【点睛】本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是607.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.8.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )A .4B .3C .3.5D .2【答案】B【解析】【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴AEB EBC ∠=∠∵BE 是ABC ∠的平分线∴ABE EBC ∠=∠∴AEB ABE ∠=∠∴4AB AE ==∴743DE AD AE =-=-=故答案为:B .【点睛】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.9.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( ) A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A 、B 、D 都可以确定点C 是线段AB 中点【详解】解:A 、AC =BC ,则点C 是线段AB 中点;B 、AB =2AC ,则点C 是线段AB 中点;C 、AC +BC =AB ,则C 可以是线段AB 上任意一点;D 、BC =12AB ,则点C 是线段AB 中点. 故选:C .【点睛】 本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】 先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A .【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.11.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°【答案】A【解析】 【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP ∥BC ,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF ﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A .【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,在ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径的O e 经过点D .若5BD =,3DC =,则AC 的长为( )A .6B 43C 532-D .8【答案】A【解析】【分析】 过点D 作DE AB ⊥于E ,可证ADE ADC △△≌,所以AE AC =,3DE DC ==.又5BD =,利用勾股定理可求得4BE =.设AC AE x ==.因为90C ∠=︒,再利用勾股定理列式求解即可.【详解】解:过点D 作DE AB ⊥于E ,∵90C ∠=︒,AD 是BAC ∠的平分线,∴ADE ADC △△≌,∴AE AC =,3DE DC ==.∵5BD =,∴4BE =,设AC AE x ==.因为90C ∠=︒,∴由勾股定理可得222BC AC AB +=,即2228(4)x x +=+,解得6x =,即6AC =.故选:A .【点睛】本题主要考查圆的相关知识.掌握角平分线的性质以及熟练应用勾股定理是解此题的关键.13.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )A .20°B .22°C .28°D .38°【答案】B【解析】【分析】 过C 作CD ∥直线m ,根据平行线的性质即可求出∠2的度数.【详解】解:过C 作CD ∥直线m ,∵∠ABC =30°,∠BAC =90°,∴∠ACB =60°,∵直线m ∥n ,∴CD ∥直线m ∥直线n ,∴∠1=∠ACD ,∠2=∠BCD ,∵∠1=38°,∴∠ACD =38°,∴∠2=∠BCD =60°﹣38°=22°,故选:B .【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.14.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.15.下列图形中,不是正方体平面展开图的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,17.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A .20°B .35°C .55°D .70°【答案】B【解析】【分析】 根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC , ∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 【答案】D【解析】 分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D .点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.下列图形中1∠与2∠不相等的是( )A.B.C.D.【答案】B【解析】【分析】根据对顶角,平行线,等角的余角相等等知识一一判断即可.【详解】解:A、根据对顶角相等可知,∠1=∠2,本选项不符合题意.B、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.C.根据平行线的性质可知:∠1=∠2,本选项不符合题意.D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.故选:B.【点睛】本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一帖丰富多彩的图形世界----正方体展开图相关题型常考题型1---正方体的展开图
分类型记忆:
1-4-1型共有6种;2-3-1型共有3种,3-3型共有1种,2-2-2型共有1种;
同学们除了展开图形的形状外还需记忆:
图中相同颜色部分表示相对的面(前面-后面、左面-右面、上面-下面)
关于哪个面与哪个面相对,我们一定要记牢了,因为在考察正方体的展开图的时候会经常考到。

如果实在记不得哪个面与哪个面相对,我们可以采用标六面的方法:
①先找小正方形比较密集部位的中心位置处的小正方形将其标记为下面,
②在此基础上,将展开图形还原成立体图形并将上、前、后、左、右给标到其他的小正方形上.
如此,我们就能轻而易举的知道相对的两个面是哪两个面。

如下图所示
将正方体按照标六面的方法正确标出六个面之后,下面的解题过程对我们来说就是小菜一碟了。

同学们可以试着用这个方法去做一下下面这写题
一、选择题
1、右图中是正方体的展开图的有()个
A、2个
B、3个
C、4个
D、5个
2、下列哪个正方体的展开图不可能如图所示图形()
A. B. C. D.
3、下列选项中是如图所示正方体的展开图的是()
A. B. C. D.
4、一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对
面所标的字是()
A. 实
B. 验
C. 欢
D. 迎
5、将左边的正方体展开能得到的图形是()
6、如图是一个正方体的展开图,和C面的对面是______面.
7、如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值
是 .
8、如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是 .
9、如图是一个正方体纸盒的展开图,当折叠成正方体纸盒时,A点与点重合.
10、如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对
的面上的数相等,则图中x的值为 .
11、如图是一个正方体纸盒的展开图,要使得它折成正方体后,
相对面上的两个数都互为相反数,则A ,B .
12、当下面这个图案被折起来组成一个正方体,数字_______会在
与数字2所在的平面相对的平面上
13、已知一不透明的正方体的六个面上分别写着1至6六个数字,
如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____。

14、正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可
以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的,下面的图形是由6个大小一样的正方形,拼接而成的,请问这些图形中哪些可以折成正方体并分别写出它们所属的类型。

(8分)。

相关文档
最新文档