桥梁横向分布系数计算
横向分布系数计算

其中, 数。
48E l3
为常
w1’
精品课件
由竖向静力平衡条件:
5
5
Ri i Ii 1
i1
i1
i
1
5
Ii
i1
P=1
w1’ w2’ R1’ R2’ R3’ R4’ R5’
R
i
Ii
5
Ii
i1
………………………………………(a)
精品课件
(2) 偏心力矩 M=e 作用
1
2
+1
图 双主梁桥
精品课件
人群
por
1
2
3
4
pr
汽车
a
Pq Pq
22
1
r
1号梁
1
2号梁
图 杠杆原理法计算横向分布系数
➢假定荷载横向分布影响线的 坐标为η ,车辆荷载轴重为 P ,轮重为 P/2,按最不利情 况布载,则分布到某主梁的最 大荷载为:
Pm ax P 212P
➢则汽车荷载横向分布系数为:
某梁上某截面的内力(弯矩、剪力)影响面:η=ηx, y
精品课件
梁桥由承重结构(主梁)及传力结构(横隔梁、 桥面板)两大部分组成。多片主梁依靠横隔梁和 桥面板连成空间整体结构。公路桥梁桥面较宽, 主梁的片数往往较多,当桥上的车辆处于横向不 同位置时,各主梁不同程度的要参与受力,精确 求解这种结构的受力和变形,需要借助空间计算 理论。但由于实际结构的复杂性,完全精确的计 算较难实现 ,目前通用的方法是引入横向分布 系数,将复杂的空间问题合理的简化为平面问题 来求解—空间理论的实用计算方法。
分担的荷载比值变化曲线,也称为该主梁的荷 载横向分布影响线。
桥梁横向分布系数计算

第二章 简支板、梁桥-3
41
刚性横梁法横向分布系数计算图示
汽车-20级 挂车-100
1.此桥在跨度内设有横隔梁,具有强大的 横向连结刚性,且承重结构的长宽比为
l 19.50 2.4>2 B 5 1.60 故可按刚性横梁法来绘制横向影响线并 计算横向分布系数。 2.各根主梁的横截面均相等,梁数n=5, 梁间距为1.60m
12
2.3.2.2 杠杆原理法
计算原理 忽略主梁之间横向结构的联系,假设桥面
板在主梁上断开,当作横向支承在主梁上 的简支梁或悬臂梁。(基本假定) 计算主梁的最大荷载用反力影响线,即为 计算m的横向影响线 根据各种活载的最不利位置计算相应的m
第二章 简支板、梁桥-3
13
按杠杆原理受力图式
故偏心力矩M=1.e作用下
Ri''
eai Ii
n
各主梁分配的荷载为:
ai2Ii
i 1
注意:
式中,e和ai位于同一侧时乘积取正号, 异侧取负号。
对1#边梁, R1''
ea1I1
n
ai2Ii
i 1
当荷载作用在1#边梁轴线上时,e=a1,
R'' 11
a12 I1
则:
5
ai2
a12
a
2 2
a32
a42
a52
=
i 1
(2 1.60)2+1.60 2+0+(-1.60)2+(-2 1.60)2=25.60m2
3.l号梁横向影响线的竖标值为:
11=
1 n
a12 1 (2 1.60)2 0.20 0.40 0.60
简支梁桥计算2(横向分布系数).

④对双车道或多车道桥梁,汽车加载时应以轴重(而不是轮 重)为单位,即一辆汽车横向的两个轮重应同时加载或同时 不加载。
(3)修正的刚性横梁法 在刚性横梁法中,假定横隔梁绝对刚性,并且忽略了 主梁的扭转效应,这样做导致边梁受力偏大。而实际结构 中,在偏心荷载作用下,主梁总会发生扭转。为了使荷载 横向分布计算更符合实际,又不失刚性横梁法在计算上的 优点,可以对刚性横梁法作一些修正,即将式(5-16)中的 第二项乘以一个小于1的抗扭修正系数,以考虑主梁的扭 转刚度,这就是修正的刚性横梁法。
i 1
2
15 R15
1 a1a5 n n 2 a i
i 1
在计算过程中,需要注意以下几点:
①当横截面沿桥纵轴线对称时,只需取一半主梁(包括位于 桥纵轴线上的主梁)作为分析对象; ②荷载沿横向的布置(车轮至路缘石的距离,各车横向间距 等)应满足有关规定; ③各类荷载沿横向的布置及取舍按最不利原则进行,即所求 出的值应为最大值;
用钢筋混凝土和预应力混凝土结构设计原理进行主梁各截面
的配筋设计,以及结构强度、刚度、稳定性和抗裂性的验算。 对小跨径简支梁,一般只需计算跨中截面最大弯矩和支点截
面以及跨中截面最大剪力;对于较大跨径的简支梁,通常还计
算跨径的1/4、I/8和3/8截面的内力;如果主梁顺桥跨方向截 面形状和尺寸有变化,如腹板厚度或梁高变化,还要计算变 截面处的弯矩和剪力。
'
Ii
I
i 1
n
i
当各主梁截面相等时,即 I1 I 2 I n I 1 ' Ri 则 n
II.偏心力矩的作用
在偏心力矩M=1· e 作用下,桥的横截面产生绕中心点 O的转角,因此各主梁的跨中挠度为:
桥梁上部计算教程★横向力分布系数计算 - 桥梁设计

★桥梁上部计算教程★横向力分布系数计算发布: 2008-6-13 23:01 | 作者: gexiin | 来源: 建筑cad导读大家在看此教程之前,请先学习/thread-54712-1-1.html看大家对横向力分布系数计算疑惑颇多,特在这里做一期横向力分布系数计算教程(本教程讲的比较粗浅,适用于新手)。
总的来说,横向力分布系数计算归结为两大类(对于新手能够遇到的):1、预制梁(板梁、T梁、箱梁)这一类也可分为简支梁和简支转连续2、现浇梁(主要是箱梁)首先我们来讲一下现浇箱梁(上次lee_2007兄弟问了,所以先讲这个吧)在计算之前,请大家先看一下截面这是一个单箱三室跨径27+34+27米的连续梁,梁高1.55米,桥宽12.95米!!支点采用计算方法为为偏压法(刚性横梁法)mi=P/n±P×e×ai/(∑ai x ai)跨中采用计算方法为修正偏压法(大家注意两者的公式,只不过多了一个β)mi=P/n±P×e×ai×β/(∑ai x ai)β---抗扭修正系数β=1/(1+L^2×G×∑It/(12×E×∑ai^2 Ii)其中:∑It---全截面抗扭惯距Ii ---主梁抗弯惯距Ii=K Ii` K为抗弯刚度修正系数,见后L---计算跨径G---剪切模量G=0.4E 旧规范为0.43EP---外荷载之合力e---P对桥轴线的偏心距ai--主梁I至桥轴线的距离在计算β值的时候,用到了上次课程/thread-54712-1-1.html我们讲到的计算截面几何性质中的抗弯惯矩和抗扭惯矩,可以采用midas计算抗弯和抗扭,也可以采用桥博计算抗弯,或者采用简化截面计算界面的抗扭,下面就介绍一下这种大箱梁是如何简化截面的:简化后箱梁高度按边肋中线处截面高度(1.55m)计算,悬臂比拟为等厚度板。
①矩形部分(不计中肋):计算公式:It1=4×b^2×h1^2/(2×h/t+b/t1+b/t2)其中:t,t1,t2为各板厚度h,b为板沿中心线长度h为上下板中心线距离It1=4×((8.096+7.281)/2)^2×1.34^2/(2×1.401/0.603+8.097/0.22+ 7.281/0.2)=5.454 m4②悬臂部分计算公式: It2=∑Cibiti3其中:ti,bi为单个矩形截面宽度、厚度Ci为矩形截面抗扭刚度系数,按下式计算:Ci=1/3×(1-0.63×ti/bi + 0.052×(ti/bi)^5)=1/3×(1-0.63×0.26/2.2+0.052×(0.26/2.2)^5)=0.309It2=2×0.309×2.2×0.26^3=0.0239 m4③截面总的抗扭惯距It= It1+ It2=5.454+0.0239=5.4779 m4大家可以用midas计算对比一下看看简化计算和实际能差多少??先计算一下全截面的抗弯和中性轴,下面拆分主梁需要用的到采用<<桥梁博士>>V2.9版中的截面设计模块计算全截面抗弯惯距,输出结果如下:<<桥梁博士>>---截面设计系统输出文档文件: D: \27+34+27.sds文档描述: 桥梁博士截面设计调试任务标识: 组合截面几何特征任务类型: 截面几何特征计算------------------------------------------------------------ 截面高度: 1.55 m------------------------------------------------------------ 计算结果:基准材料: JTJ023-85: 50号混凝土基准弹性模量: 3.5e+04 MPa换算面积: 7.37 m2换算惯矩: 2.24 m4中性轴高度: 0.913 m沿截面高度方向5 点换算静矩(自上而下):主截面:点号: 高度(m): 静矩(m××3):1 1.55 0.02 1.16 1.773 0.775 1.834 0.388 1.585 0.0 0.0------------------------------------------------------------计算成功完成结果:I全= 2.24 m4 中性轴高度H=0.913m下面来讲一下主梁拆分的原则:将截面划分为τ梁和I梁,保持将两截面中性轴与全截面中性轴位置一致。
桥梁荷载横向分布系数计算方法

桥梁荷载横向分布系数计算方法桥梁是交通系统中重要的基础设施,承载着大量的车辆和行人荷载。
桥梁荷载横向分布系数的计算对于桥梁设计和施工具有重要意义。
本文将详细介绍桥梁荷载横向分布系数的计算方法,包括计算原理、步骤和注意事项,并通过具体算例进行分析和说明。
桥梁荷载是指作用在桥梁上的各种力量,包括车辆荷载、人群荷载、风荷载等。
横向分布系数是用来描述桥梁荷载在桥面横向分布的系数,其大小与桥梁的形状、结构形式等因素有关。
桥梁荷载横向分布系数的计算是桥梁设计的重要环节,也是施工过程中的关键步骤。
计算桥梁荷载横向分布系数的方法可以分为理论计算和数值模拟两种。
理论计算方法包括集中力作用下的横向分布系数计算和均布力作用下的横向分布系数计算。
数值模拟方法则是利用计算机进行模拟分析,得到更精确的横向分布系数。
根据集中荷载作用下的弯矩和剪力,计算横向分布系数。
根据车道均布荷载的弯矩和剪力,计算横向分布系数。
数值模拟方法可以利用有限元软件进行模拟分析,得到更精确的横向分布系数。
具体步骤如下:通过对模型的应力、应变等进行分析,得出横向分布系数。
下面通过一个简单的算例来说明桥梁荷载横向分布系数的计算方法。
该桥梁为简支梁结构,跨度为20米,桥面宽度为10米。
车辆荷载为50吨的重车,速度为20公里/小时,作用在桥上长度为10米。
通过集中力作用下的横向分布系数计算方法,来计算该桥梁的横向分布系数。
计算桥梁单位长度的自重为5吨/米。
然后,确定车辆荷载的大小为50吨,位置为桥面中心线偏左1米处。
根据车辆荷载作用下的弯矩和剪力,可以得出横向分布系数为67。
根据横向分布系数的定义可知,该桥梁在车辆荷载作用下的横向分布系数为67。
桥梁荷载横向分布系数的计算是桥梁设计和施工中的重要环节,对于保证桥梁的安全性和正常使用具有重要意义。
本文详细介绍了桥梁荷载横向分布系数的计算方法,包括计算原理、步骤和注意事项,并通过具体算例进行了分析和说明。
随着计算机技术和数值模拟方法的发展,未来的研究方向将更加倾向于开发更加精确、便捷的计算方法和模型,以便更好地应用于实际工程中。
13桥梁荷载横向分布系数计算方法

1模态参数法
模态参数是指桥梁结构计算模态的同有频率、
振刑以及模态质量等参数。模态参数法与其他方法
不同之处在于荷载横向分布影响线是由这砦模态参 数计算出来的。应用此方法时,首先通过模态参数
计算模态柔度∽],此处模态柔度的物理意义为单他
荷载作用下,各片梁发乍的挠度;其次根据模态柔 度,提取各片梁在跨中位置的变形值,根据变形值和
万方数据
第1期
刘 华,等:桥梁荷载横向分布系数计算方法
63
型的计算方法有刚(铰)接梁法、GM法、修正偏压法 等,这些计算理论都有其独到之处和适用范围,同 时,其(杠杆原理法除外)理论根据都是以主梁挠度 横向分布规律来确定荷载横向分布。同样是依据于 这一理沦根据,模态参数法的主要工作就是确定外 荷载作用下横向各片梁之间挠度的比值关系,从而 计算出荷载横向分布系数[1。2J。
式中:9i为第i个模态振型;c。为模态系数,即第i 个模态振型对第J个柔度的贡献。
在时问t时的位移向量也可以通过模态振型表 示为L6’81
H(f)=ql(£)91+qz(f)92+…+qp(f)妒。一面·Q(£)(6) 式中:q,(£)为结构的广义坐标,即在时fnJ t时第i模
态对佗移的贡献系数;PXP阶模态振型矩阵咖的
400 ITIITI,桥面板厚度为6 mm,丰梁肋尺寸10 mm× 44 mm,横梁肋尺寸为10 mm×33 mm,见【冬I 3。有 端横梁,中问分3种情况:无内横梁,仪有1根跨巾 横梁,有3根内横梁在跨中央和四分点110J。
(a)荷载作用模式
旺二EI习习莎 (b)各梁的变形及荷载分配 (c)荷载横向分布影响线 圈2跨中荷载横向影响线 Fig.2 Middle section’s influencing line of transversal Ioad distribution
桥梁工程荷载横向分布计算简介

•由于跨中截面车轮加载值占总荷载的绝大多 数, 近似认为其它截面的横向分布系数与跨中 相同 •对于剪力
从影响线看跨中与支点均占较大比例 从影响面看近似影响面与实际情况相差较大
计算剪力时横向分布沿桥纵向的变化
与铰接板、梁的区别: 未知数增加一倍, 力法方程数增加一倍
5 .铰接板桥计算m举例:
如图所示,l=12.60m的铰接空心板桥横截面布置。 桥面净空为净-7+2x0.75m人行道。全桥由9块预应力混凝 土空心板组成,欲求1、3.5号板的公路-I级和人群荷载作用 的跨中横向分布系数?
分析: 荷载横向分布影响线竖标值与刚度参数γ ,板 块数n以及荷载作用位置有关。 5.8 I (b)2
4.目前常用的荷载横向分布计算方法: (1)梁格系模型
①杠杆原理法
②偏心压力法
③横向铰接梁(板)法
④ 横向刚接梁法 (2)平板模型——比拟正交异性板法(简称G—M法) 各计算方法的共同点: (1)横向分布计算得m (2)按单梁求主梁活载内力值
二、杠杆原理法 (一)计算原理 1.基本假定:
忽略主梁间横向结构的联系作用,假设桥面 板在主梁上断开,当作沿横向支承在主梁上的简 支梁或悬臂梁来考虑。
荷载横向分布计算
一、概述
荷载: 恒载: 均布荷载(比重×截面积)
活载: 荷载横向分布
1.活载作用下,梁式桥内力计算特点:
(1)单梁 (平面问题)
P
S=P·η1(x)
x
L/4
1
(2)梁式板桥或由多片主梁组成的梁桥(空间问题): S=P·η(x,y) 实际中广泛使用方法: 将空间问题转化成平面问题
S P (x, y) P 2 (y) 1(x)
为求1号梁的荷载 假设: a、P=1作用于1号梁梁轴, 跨中,偏心距为e; b、 各主梁惯性矩Ii不相等; c、横隔梁刚度无穷大。 则由刚体力学: 偏心力P=1 <====> 中心荷载 P=1+偏心力矩M=1·e
公路梁桥横向分布系数计算方法概述

公路梁桥横向分布系数计算方法概述摘要:就梁桥横向分布系数的概念进行了阐述,并对常用的几种公路梁桥横向分布系数计算方法进行了概述,目前常用的荷载横向分布计算方法有以下几种:(1)杠杆原理法;(2)横向铰接板(梁) 法;(3)横向刚接梁法;(4)偏心压力法;(5)修正偏心压力法;(6)比拟正交异性板法。
针对项目设计的不同阶段,给出了宽桥与窄桥的不同判断条件。
关键词:公路梁桥;荷载横向分布系数;计算方法Abstract: the transverse distribution of the girder bridge is the concept of coefficient is discussed, and the commonly used several highway bridge transverse distribution coefficient calculation method were reviewed in this paper, the common load transverse distribution calculation method have the following kinds: (1) the lever principle, the method of (2) lateral hinged panels (beam), the method of (3) lateral just answer beam method; (4) eccentric-pressed method; (5) modified eccentric-pressed method; (6) match orthotropic plate method. According to the different phases of the project design, given the wide bridge and narrow bridge judge different conditions.Keywords: highway bridge; Load transverse distribution coefficient; Calculation method0引言随着国民经济的迅速发展,对交通的需求日益提高,众多的高速公路及城市快速干道相继修建。
横向分布系数计算(多种方法计算)

实用文档标准文案横向分布系数的示例计算一座五梁式装配式钢筋混凝土简支梁桥的主梁和横隔梁截面如图,计算跨径L=19.5m ,主梁翼缘板刚性连接。
求各主梁对于车辆荷载和人群荷载的分布系数?杠杆原理法:解:1绘制1、2、3号梁的荷载横向影响线如图所示2再根据《公路桥涵设计通用规范》(JTG D60-2004) 规定,在横向影响线上确定荷载沿横向最不利布置位置。
如图所示: 对于1号梁: 车辆荷载:484.0967.02121=⨯==∑ηcq m 人群荷载:417.1==r cr m η 对于2号梁: 车辆荷载:5.012121=⨯==∑ηcq m 人群荷载:417.0==r cr m η 对于3号梁: 车辆荷载:5.012121=⨯==∑ηcq m 人群荷载:0==r cr m η4、5号梁与2、1号梁对称,故荷载的横向分布系数相同。
偏心压力法(一)假设:荷载位于1号梁 1长宽比为26.25.155.19>=⨯=b l ,故可按偏心压力法来绘制横向影响线并计算横向分布系数c m 。
本桥的各根主梁的横截面积均相等,梁数为5,梁的间距为1.5m ,则:5.220)5.11(2)5.12(2222524232221512=+⨯+⨯=++++=∑=a a a a a ai i2所以1号5号梁的影响线竖标值为:6.0122111=+=∑i a a n η 2.0122115-=-=∑i a a n η由11η和15η绘制荷载作用在1号梁上的影响线如上图所示,图中根据《公路桥涵设计通用规范》(JTG D60-2004)规定,在横向影响线上确定荷载沿横向最不利布置位置。
进而由11η和15η绘制的影响线计算0点得位置,设0点距离1号梁的距离为x ,则:4502.015046.0=⇒-⨯=x xx 0点已知,可求各类荷载相应于各个荷载位置的横向影响线竖标值3计算荷载的横向分布系数 车辆荷载:()533.0060.0180.0353.0593.02121=-++⨯==∑ηcq m 人群荷载:683.0==r cr m η (二)当荷载位于2号梁时 与荷载作用在1号梁的区别以下:4.0122112=+=∑i a a a n η实用文档标准文案0122552=-=∑ia a a n η 其他步骤同荷载作用在1号梁时的计算修正偏心压力法(一)假设:荷载位于1号梁 1计算I 和T I :2.3813018)2814(150)18150()2814(1301821)(2122221=⨯++⨯-+++⨯⨯=+-++⨯=ch bd c b d ch y8.912.3813012=-=-=y y y[][]43333313132106543)112.38)(18150(2.381508.911831))((31cm d y c b by cy I ⨯=---⨯+⨯⨯=---+⨯=对于翼板1.0073.01501111<==b t ,对于梁肋151.01191822==b t 查下表得所以:311=c ,301.02=c 433331027518119301.01115031cm t b c I i i i T ⨯=⨯⨯+⨯⨯==∑2计算抗扭修正系数β 与主梁根数有关的系数ε则n=5,ε=1.042 G=0.425E875.055.15.1910654310275425.0042.111)(112332=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯+=+=E E B l EI GI T εβ 3计算荷载横向影响线竖标值11η和15η55.0122111=+=∑i a a n βη 15.0122115-=-=∑ia a n βη 由11η和15η绘制荷载作用在1号梁上的影响线如上图所示,图中根据《公路桥涵设计通用规范》(JTG D60-2004)规定,在横向影响线上确定荷载沿横向最不利布置位置。
桥梁工程荷载横向分布计算简介

2、横向分布系数(m)的概念:
• 多片式梁桥,在横向分布影响线上用规范规定的车轮 横向间距按最不利位置加载
说明:1)近似计算方法,但对直线梁桥,误差不大
2)不同梁,不同荷载类型,不同荷载纵向位置, 不同横向连接刚度,m不同。
3、横向连结刚度对荷载横向分布的影响
结论:横向分布的规律与结构横向连结刚度关系密切,
根据表中的横向影响线坐 标值绘制影响线图
公路-I级
七、横向分布系数沿桥纵向的变化
•对于弯矩
由于跨中截面车轮加载值占总荷载的绝大多数,近 似认为其它截面的横向分布系数与跨中相同
•对于剪力
从影响线看跨中与支点均占较大比例 从影响面看近似影响面与实际情况相差较大
计算剪力时横向分布沿桥纵向的变化
横向分布系数
横向分布系数 :在横向分布影响线上加载
3. 铰接梁法
假定各主梁除刚体 位移外,还存在截 面本身的变形
与铰接板法的区别:变位系数中增加桥面板变形项
4.刚接梁法
假定各主梁间除传递剪力外,还传递弯矩
与铰接板、梁的区别: 未知数增加一倍,力法方程数增加一倍
5 .铰接板桥计算m举例:
如图所示,l=12.60m的铰接空心板桥横截面布置。 桥面净空为净-7+2x0.75m人行道。全桥由9块预应力混凝 土空心板组成,欲求1、3、5号板的公路-I级和人群荷载作用 的跨中横向分布系数?
值(ki)
1 ai ak 若各梁截面尺寸相同: ki Rki Rik n n 2 ai
i 1
(三) 计算举例
例2-5-3: 已知:l=19.50m,荷载位于跨中 试求:1#边梁,2#中梁的mcq,mcr
作业
已知:l=29.16m, 38.88m,荷载位于跨中时 试求:2#中梁的mcq,mcr
桥梁工程第12讲第五章横向分布系数计算gm法

03
GM法的应用和实例分析
GM法在桥梁工程中的应用
确定横向分布系数
通过GM法,可以计算出桥 梁各跨的横向分布系数,用 于评估桥梁在不同荷载作用 下的受力分布情况。
优化结构设计
利用GM法,可以对桥梁 结构进行优化设计,提高 桥梁的承载能力和稳定性。
指导施工监控
通过GM法的计算结果, 可以指导施工过程中的监 控和监测,确保施工质量 和安全。
加强实测数据积累
通过加强桥梁监测和数据收集,积累更多的实测 数据,为GM法的应用提供更可靠的数据支持。
3
开发智能算法
结合人工智能和大数据技术,开发智能算法,实 现GM法的自动化和智能化,提高计算效率和精 度。
ห้องสมุดไป่ตู้5
结论
总结
通过实例分析,横向分布系数计算GM法能够 反映桥梁的实际情况,为桥梁设计、施工和维
桥梁工程第12讲第 五章横向分布系数计
算GM法
目录
• 引言 • 横向分布系数的概念和计算方法 • GM法的应用和实例分析 • GM法的优缺点和改进方向 • 结论
01
引言
主题简介
01
横向分布系数计算是桥梁工程中 一个重要的计算环节,用于确定 桥梁横向分布的受力情况。
02
GM法(Galerkin Method)是一 种常用的横向分布系数计算方法, 通过建立数学模型和求解方程来得 到横向分布系数。
工程实际意义
结合工程实际,探讨GM法在桥梁工 程中的实际意义和应用前景,提出改 进和完善建议。
04
GM法的优缺点和改进方 向
GM法的优点
计算简便
GM法是一种基于数学理论的计算方法,其公式简单,计算过程相 对简便,适合用于大规模的工程计算。
桥梁博士操作-横向分布系数的计算【范本模板】

2015年大学生创新训练计划项目申请书桥梁博士第二次上机作业横向分布系数的计算组长:学院:年级专业:指导教师:组员:完成日期:桥梁博士第二次上机作业一、作业组成二、作业合作完成情况本次作业由3组组员共同完成,任务分配情况如下:张元松完成实例一(“杠杆法”求横向分布系数),并对计算过程进行截图。
郑 宇完成实例二(“刚性横梁法"求横向分布系数),并对计算过程进行截图. 计时雨完成实例三(“刚接板梁法”求横向分布系数),并对计算过程进行截图.孙 皓完成实例四(实例四、“铰接板梁法”求横向分布系数),对计算过程进行截图,并进行本次实验报告的撰写任务.三、上机作业内容1、任务分析与截面特性计算本次作业结合老师所给的双向四车道的高速公路分离式路基桥的设计图进行,首先对图纸进行分第二次作业组成实例一、“杠杆法”求横向分布系数实例三、“刚接板梁法”求横向分布系数实例二、“刚性横梁法”求横向分布系数实例四、“铰接板梁法”求横向分布系数析,确定荷载横向分布系数计算所对应的各个截面;然后求出所用到截面的界面特性(抗弯惯性矩和抗扭惯性矩);最后用“桥梁博士"的横向分布计算功能求出各主梁的横向分布系数,为接下来的简支T梁的配筋计算和结构安全性验算做好准备。
(1)通过CAD绘图的方式求出截面特性用CAD绘制出桥梁设计图中的跨中截面与支点截面如图1所示。
对两个截面分布使用“reg”命令→“massprop”命令,求出两个截面的截面特性如图2所示。
图1 CAD绘制的桥梁单元截面(a) CAD算出的跨中截面特性 (b) CAD算出的支点截面特性图2 CAD计算出的桥梁截面特性(2)通过“桥梁博士”计算出截面图形进行验算步骤一:打开桥博,点击“新建”出现对话框,如图3所示。
点击“桥梁博士截面设计文件",出现图4界面。
图3 “新建”对话框图4 “桥梁博士截面设计文件”界面步骤二:跨中截面特性验算在出现的设计文件界面中点击“截面描述"→“图形输入”并选择T形截面,在界面中输入数据如图5所示。
桥梁横向分布系数计算

Ri' Iii'
.
28
P=
载偏 分心 布荷 图载
1 对 各 主 梁 的 荷
由静力平衡条件得: n
n
Ri' i' Ii 1
故,
' i
1
n
i1
i1
Ii
i1
中心荷载P=1在
R
' i
Ii
n
各主梁间的荷载分布为: I i
i1
若各主梁的截面
均相同, 则:
R1' R2'
Rn'
1 n
2.偏心力矩M=1.e的作用
轴重的倍数。
.
8
不同横向刚度时主梁的变形和受力情况
中梁承受荷载P(m=1)
中梁承受荷载mp
中梁承受荷载
不同横向连结刚度对m的影响
主梁间无联系结构 —— m=1,整体性差,不经济
主梁间横隔梁刚度无穷大 ——各主梁均匀分担荷载
实际构造 ——刚隔梁并非无穷大,各主梁变形复杂,故,
横向连结刚度越大,荷载横向分布作用越显著
.
15
无横隔梁装配式箱梁桥的 主梁横向影响线
.
16
计按 算杠 横杆 向原 分理 布 系 数
a)
Por 12
Pr
人群
a
挂车
汽车
ηr 1号梁η
Aη 1
3
4
mog= 41∑ηg moq= 21∑ηq
mor=ηr
b)
2号梁η
1
例题
图示为一桥面净空为净—7附2×0.75m人 行道的钢筋混凝土T梁桥,共设五根主梁。 试求荷载位于支点处时1号梁和2号梁相 应于汽车—20级、挂车—100和人群荷载 的横向分布系数。
横向分布系数计算(多种方法计算)

2
150 (14 8) 18 130
38.2
2
y2 y y1 130 38.2 91.8
抗弯惯矩 I 为:
I
1
cy
3 2
by
3 1
(b
c)( y1
d )3
1 18 91.8 3 150 38.2 3 (150 18)( 38.2 11) 3
3
3
主梁的比拟单宽抗弯惯矩
J x I x 6543 103 43620cm4 / cm
P227 附录Ⅱ的精度也达不到小数点后两
位,所以仍用 θ =0.324 的 K1 和 K 0 计算:(见下表)
0.425E 275 103
2
19.5
1 1.042 E 6543 103 1.5 5
0.875
3 计算荷载横向影响线a12 ai2
0.55
1
15
n
a12 ai2
0.15
由 11 和 15 绘制荷载作用在 1 号梁上的影响线如上图所示,图中根据《公路桥涵设计
通用规范》 ( JTG D60-2004 )规定,在横向影响线上确定荷载沿横向最不利布置位置。
I y 3320 103
JY
a
485
( 3 )主梁和横隔梁的抗扭惯矩
6640cm4 / cm
对于 T 型翼板刚性连接的情况,应由式
2-5-74 来确定。
对于主梁梁肋:
主梁翼板的平均厚度:
h1 14 8 11cm 2
tb
18
0.151 ,由表 2-5-2 查得 c=0.300
130 11
t/b
1
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
杠杆原理法计算桥梁荷载横向分布系数课件

杠杆原理法的应用范围
01
杠杆原理法适用于多跨连续梁桥 和连续刚构桥的荷载横向分布计 算。
02
该方法适用于等跨和不等跨的桥 梁,特别适用于等跨的桥梁。
杠杆原理法的计算步骤
01
确定各跨梁的计算跨径 和梁高。
02
根据桥梁的结构形式和 尺寸,将桥梁简化为一 系列的简支梁。
03
利用杠杆原理,计算各 跨梁的荷载横向分布系 数。
桥梁优化设计
利用杠杆原理法,可以计算出桥梁在 不同荷载作用下的横向分布系数,为 桥梁设计提供重要的数据支持。
杠杆原理法可以帮助设计人员对桥梁 进行优化设计,提高桥梁的使用性能 和寿命。
桥梁承载能力评估
通过杠杆原理法,可以对桥梁的承载 能力进行评估,确保桥梁在规定荷载 下的安全性和稳定性。
在桥梁设计中的注意事项
桥梁加固
当桥梁存在承载能力不足的问题时,可以通过对薄弱部位的加固处理, 提高其横向分布系数,从而提高整个桥梁的承载能力。
03
杠杆原理法计算桥梁荷载横向 分布系数
计算步骤
步骤一
确定计算跨径
步骤二
确定荷载类型
计算步骤
明确作用在桥梁上的荷载类型,如车辆、人群、风载等。 步骤三:建立杠杆模型
根据桥梁的结构形式,建立简化的杠杆模型,将实际结构简化为若干个杠杆单元。
与其他方法的计算精度比较
01
02
03
杠杆原法
在等跨径桥梁中,计算精 度较高,误差较小。
影响力系数法
在变跨径桥梁和桥面宽度 较大的桥梁中,计算精度 较高,误差较小。
弹性地基梁法
在桥面较宽、荷载较大的 桥梁中,计算精度较高, 误差较小。
05
杠杆原理法在桥梁设计中的应 用
浅析桥梁设计中的横向分布系数计算

浅析桥梁设计中的横向分布系数计算摘要:鉴于桥梁设计过程中荷载横向分布系数计算误差普遍存在的情况,本文通过简要介绍了桥梁荷载的横向分布系数计算的原理,对板桥梁进行了理论分析,阐述了采用空间数值方法进行荷载横向分布系数计算的方法及应用,简单介绍了运用空间数值方法借助ANSYS等大型开放有限元软件进行横向分布系数计算的方法。
关键词:桥梁设计;横向分布系数;计算方法;参数探讨Abstract: in view of the bridge design process of load transverse distribution coefficient error of the prevailing situation, this paper briefly introduces the bridge load transverse distribution coefficient calculation, the bridges are analyzed, discussed the spatial numerical method for load transverse distribution coefficient calculation method and application, simple application spatial numerical methods by means of ANSYS and other large open finite element software for calculating transverse load distribution method.Key words: Design of the bridge; transverse distribution coefficient; calculation method; parameter study引言作为公路桥梁设计重要组成内容的横向分布系数,其计算一直采用近似的方法,得到的计算结果同实际值之间有着一定误差存在。
桥梁工程课程设计--荷载横向分布系数计算

解得:
零点位置已知后,就可求出各类荷载相应于各个荷载位置的横向影响线竖标值 和 。
设行人道缘石至1号梁轴线的距离为 ,则:
于是,1号梁的荷载横向分布系数可以计算如下(以 分别表示影响线零点至汽车车轮和人群荷载集度的横坐标距离):
车辆荷载:
人群荷载值为:
由 和 绘制1号梁横向影响线,如下图所示,图中按《公路桥涵设计通用规范》(JTG D60-2004)规定确定了汽车荷载的最不利荷载位置。
进而由 和 计算横向影响线的零点位置,在本梁中,零点至2号梁的距离
零点位置已知后,就可求出各类荷载相应于各个荷载位置的横向影响线竖标值 和 。
2
跨中
0.900
0.520
支点
0.500
0
3
跨中
0.900
0.520
支点
0.500
0
4
跨中
0.749
0.783
支点
0.550
1.500
荷载横向分布系数:
(1)用杠杆法计算 :
首先绘制1号梁和2号梁的荷载横向影响线,如上图所示。
再根据《公路桥涵设计通用规范》(JTGD60-2004)规定,在横向影响线上确定荷载沿横向最不利的布置位置。例如,对于车辆荷载,规定的车轮横向轮距为1.80m,两列汽车车轮的横向最小间距为1.30m,车轮距离人行道缘石最少为0.50m。求出相应于荷载位置的影响线竖标值后,就可得到横向所有荷载分布给1号梁的最大荷载值:
车辆荷载:
人群荷载:
式中, 相应为汽车荷载轴重和每延米跨长的人群荷载集度; 为对应于汽车车轮和人群荷载集度的影响线竖标。由此可得1号梁在车辆荷载和人群荷载作用下的最不利荷载横向分布系数分别为: 。
刚性横梁法计算桥梁荷载横向分布系数

关于荷载横向分布系数的一些结论:
1.梁桥实用空间理论的计算,实际上是应用荷载横向分布,将 空间问题转化为平面问题.
2.荷载横向分布,其实质是内力的横向分布. 3.严格地说,同一内力沿跨径方向在不同的截面横向分布系
数不同,不同内力在同一截面的横向分布系数也不同.在计 算中,主梁各截面弯矩的横向分布系数均采用全跨一的跨 中截面横向分布系数.但剪力必须考虑不同截面横向分布 系数的变化. 4.试验证明,按挠度、弯矩及主梁反力求得的横向分布系数 相差很小.报告结论中用实测挠度、应变求得的横向分布 系数来验证理论计算值.
Ri RiRi
Ii
n
P
Iiai
n
P( e10)
Ii
Iiai2
i1
i1
式10是在不等间距不等刚度的结构中推导出来的,但大多数的梁
桥还是做成等间距等刚度的,从式10中很容易得到这种梁桥的主
梁荷载分配表达式:
Ri RiRi
P n
Pe
n
a( i 11)
ai2
i1
图2-4-25表示等间距b1布置的主梁,刚度相等,用刚性横梁 连成整体.当P作用在左侧边梁,即e=2.5b1时,求分配给各片 主梁的荷载.
从力矩的平衡条件可知:
n
n
Ri ai ai2Ii Pe(8)
i1
i1
从式7得出
R
i
a iI i
将β代入式8得:
n
ai2Ii
i1
aiIi
Ri
Pe得Ri
PneaiI( i 9) aiIi
i1
3.偏心荷载P对各梁产生的总的作用力,即各片主梁所分配 到的荷载,等于上述1和2两种情况的叠加,即:
刚性横梁法计算桥梁荷载横向分布系数

可以结合实际工程情况,对刚性横梁法进行改进和调整,以更好地满 足实际需求。
此外,还可以将刚性横梁法与其他数值分析方法进行比较和结合,以 实现优势互补,提高整体计算效果。
感谢观看
THANKS
优点
计算简单
刚性横梁法是一种简化的计算方 法,其计算过程相对简单,易于 理解和实现。
适用性强
该方法适用于多种类型的桥梁, 特别是主梁间距较小、横截面形 式一致的桥梁。
精度满足要求
对于许多实际工程,刚性横梁法 的计算精度已经足够满足需求, 能够提供较为准确的横向分布系 数。
缺点
1 2
假设限制
刚性横梁法基于一系列假设,如横梁的刚性、横 梁之间的无转角等,这些假设可能与实际情况存 在偏差。
刚度计算
根据桥梁的结构形式和材 料特性,通过计算或试验 确定横梁的弹性模量和截 面惯性矩。
刚度分类
根据刚度大小,可分为刚 性横梁和柔性横梁,刚性 横梁在受力时变形较小, 而柔性横梁则变形较大。
计算横向分布影响线
影响线定义
横向分布影响线是指在桥 梁上施加单位力时,各横 梁上反力分布的图形。
影响线计算
桥梁荷载横向分布系数的定义
01
桥梁荷载横向分布系数是指桥梁 承受的荷载在各横向分布位置的 分布情况,是衡量桥梁承载能力 和稳定性的重要指标。
02
横向分布系数的计算方法有多种 ,其中刚性横梁法是一种常用的 方法,适用于等跨径的桥梁。
02
刚性横梁法的基本原理
刚性横梁法的概念
刚性横梁法是一种计算桥梁荷载横向 分布系数的简化方法,基于刚性横梁 的假设,将多跨连续梁等效为一系列 独立的简支梁或固支梁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关系式:
Ii Rik = Rki Ik
第二章 简支板、梁桥-3 36
求P=1作用在1号梁上,边梁的荷载:
R11 =
I1
n i =1 i
∑I ∑a I
i =1
+
a I
n
2 1 1 2 i i
R51 =
I1
n i =1 i
∑I ∑a I
i =1
−
a I
n
2 1 1 2 i i
鉴于Ri1图形呈直线分布,实际上只要计 算两根边梁的荷载值即可。
偏
P= 1 荷
由静力平衡条件得: n 故,
αω i' =
1
Ri' = αω i' ∑ I i = 1 ∑
i =1 i =1
n
∑I
i =1
n
i
中心荷载P=1在 R = n 各主梁间的荷载分布为: ∑ Ii
' i i =1
Ii
若各主梁的截面 1 均相同, 则: ' ' ' R1 = R2 = L = Rn = n
第二章 简支板、梁桥-3
20
汽车-20级
max A1q = ∑ Pq 2 ⋅η q
∑η =
2
q
0.875 ⋅ Pq = ⋅ Pq = 0.438 Pq 2
挂车-100
max A1g = ∑ Pg 4 ⋅η g
∑η =
4
g
0.563 ⋅ Pg = Pg = 0.141Pg 4
人群荷载
max A1r = η r ⋅ Pr ⋅ 0.75 = 1.422 p or
11
铰接板(梁)法——把相邻板(梁)之间视为 铰接,只传递剪力。 刚接梁法——把相邻主梁之间视为刚性连接, 即传递剪力和弯矩。 比拟正交异性板法——将主梁和横隔梁的刚 度换算成两向刚度不同的比拟弹性平板来求 解,并由实用的曲线图表进行荷载横向分布 计算。
第二章 简支板、梁桥-3 12
2.3.2.2 杠杆原理法
41
刚性横梁法横向分布系数计算图示
汽车-20级
挂车-100
1.此桥在跨度内设有横隔梁,具有强大的 横向连结刚性,且承重结构的长宽比为
l 19.50 = = 2.4>2 B 5 × 1.60
故可按刚性横梁法来绘制横向影响线并 计算横向分布系数。 2.各根主梁的横截面均相等,梁数n=5, 梁间距为1.60m
1 0.60 (4.60 + 2.80 + 1.50 − 0.30) = 0.538 = ⋅ 2 4.80
a12 ai2 ∑
i =1 n
o o
R11’’———— 第二个脚标表示荷载作用位置, 第一个脚标表示由于该荷载引起反力的 梁号。
第二章 简支板、梁桥-3
35
3.偏心荷载P=1对各主梁的总作用
设荷载位于k号梁上e=ak,则任意I号主 梁荷载分布的一般公式为:
Rik = Ii
∑ Ii
i =1
n
+
ai ak I i ai2 I i ∑
第二章 简支板、梁桥-3
23
梁桥挠曲变形(刚性横梁)
P d
1 2 3
d
4 5
EIH
1
B/2
∞
2
3
4 5 B/2
分析结论 在中间横隔梁刚度相当大的窄桥上, 在沿横向偏心布置的活载作用下,总是 靠近活载一侧的边梁受载最大。
第二章 简支板、梁桥-3
25
考察对象 跨中有单位荷载P=1作用在1#边梁 上(偏心距为e)时的荷载分布情况 计算方法 偏心荷载可以用作用于桥轴线的中心 荷载P=1和偏心力矩M=1.e 来替代
15
无横隔梁装配式箱梁桥的 主梁横向影响线
第二章 简支板、梁桥-3
16
a)
计 算 杠 横 向 分 布 系 数 理 原 杆
按
Pr
Por 1 人群 a η r A η b) 2 挂车 汽车 η 1号梁 1 2号梁η 3 4
1 η mog= 4 ∑ g 1 moq= 2 ∑ q η
η mor= r
1
例题
2 2 2 2 则:∑ ai2 = a12 + a 2 + a3 + a 4 + a5 = i =1
2 2 2 (2 × 1.60)+1.60 2 +0+(-1.60)+(-2 × 1.60)=25.60m 2
5
3.l号梁横向影响线的竖标值为:
a12 1 1 (2 × 1.60) 2 η11= + n = + = 0.20 + 0.40 = 0.60 25.60 n 5 ai2 ∑
§2.3 简支梁桥内力计算
2.3.1 主梁内力计算 2.3.2 荷载横向分布计算 2.3.3 结构挠度与预拱度计算 2.3.4 斜交板桥的受力性能
第二章 简支板、梁桥-3
1
2.3.2 荷载横向分布计算
2.3.2.1 2.3.2.2 2.3.2.3 2.3.2.4 2.3.2.5 2.3.2.6 2.3.2.7 荷载横向分布计算原理 杠杆原理法 刚性横梁法 修正刚性横梁法 铰接板(梁)法 刚接梁法 比拟正交异性板法
荷载作用下的内力计算
η
1
η
1
荷载横向分布计算原理
复杂的空间问题 → 简单的平面问题 影响面 → 两个单值函数的乘积
S = P ⋅η ( x, y ) ≈ P ⋅η2 ( y ) ⋅η1 ( x)
第二章 简支板、梁桥-3
5
η1(x)——单梁某一截面的内力影响线 η2(y)——单位荷载沿横向作用在不同位置时, 对某梁所分配的荷载比值变化曲线(荷载横向 分布影响线) P.η2(y)——荷载作用于某点时沿横向分布给某 梁的荷载
△=(7.00-4 × 1.60) 2 = 0.3m /
•
7.1号梁的活载横向分布系数可计算如下 汽车荷载
1 1 mcq = ∑ η q = ⋅ (η q1 + η q 2 + η q 3 + η q 4 ) 2 2
1 η11 = ⋅ ( x q1 + x q 2 + x q 3 + x q 4 ) 2 x
2.偏心力矩M=1.e的作用
桥的横截面产生绕中心点的转角, 各主梁产生的竖向挠度为: i'' = ai tgϕ ω 根据主梁的荷载挠度关系: 则: R '' = αtgϕa I i i i
R = αI iω
'' i
'' i
第二章 简支板、梁桥-3
31
载 心 荷 载
偏
P= 1 荷
∑ ∑ ∑ ∑
根据力矩平衡 条件可得: 则:
图示为一桥面净空为净—7附2×0.75m人 行道的钢筋混凝土T梁桥,共设五根主梁。 试求荷载位于支点处时1号梁和2号梁相 应于汽车—20级、挂车—100和人群荷载 的横向分布系数。
第二章 简支板、梁桥-3
18
a) 75
700
75
分 布 系 数 例 计 题 荷 载 横 向 算 法 理 原
杆
⑤
②
③
④
①
i =1 n
各主梁分配的荷载为:
注意: 式中,e和ai位于同一侧时乘积取正号, 异侧取负号。 对1#边梁, R '' = ea1 I1
1
ai2 I i ∑
i =1
n
当荷载作用在1#边梁轴线上时,e=a1,
'' R11 =
a12 I1 ai2 I i ∑
i =1 n
如果各主梁得截面相同,则
'' R11 =
105 160 180 90
160 130 90 90
160 180
160
105
Por 50
100
汽车-20级 挂车-100
0.875 0.563
1.422
1.000
b)
180 90 90
1.000
汽车-20级 挂车-100
90
c)
0.437 0.437
当荷载位于支点处时,应按杠杆原理法计算荷 载横向分布系数。 绘制1号梁和2号梁的荷载横向影响线 根据《公路桥规》规定,在横向影响线上确定 荷载沿横向最不利的布置位置。 求出相应于荷载位置的影响线竖标值后.就可 得到横向所有荷载分布给1号梁的最大荷载值。
第二章 简支板、梁桥-3
6
车轮荷载在桥上的横向分布
a) b)
荷载横向分布系数 m
如果某梁的结构一定,轮重在桥上 的位置也确定,则分布给某根梁的荷载 也是定值。在桥梁设计中,常用一个表 征荷载分布程度的系数m与轴重的乘积来 表示该定值。m 即为荷载横向分布系数, 它表示某根梁所承担的最大荷载是各个 轴重的倍数。
第二章 简支板、梁桥-3 8
不同横向刚度时主梁的变形和受力情况
中梁承受荷载P(m=1)
中梁承受荷载mp
中梁承受荷载
不同横向连结刚度对m的影响
主梁间无联系结构 —— m=1,整体性差,不经济 主梁间横隔梁刚度无穷大 ——各主梁均匀分担荷载 —— 实际构造 ——刚隔梁并非无穷大,各主梁变形复杂,故, 横向连结刚度越大,荷载横向分布作用越显著
第二章 简支板、梁桥-3
10
常用几种荷载横向分布计算方法
杠杆原理法——把横向结构(桥面板和横 隔梁)视作在主梁上断开而简支在其上的简 支梁。 刚性横梁法——把横隔梁视作刚度极大的梁, 也称偏心压力法。当计及主梁抗扭刚度影响 时,此法又称为修正刚性横梁法(修正偏心 压力法)。
第二章 简支板、梁桥-3
第二章 简支板、梁桥-3 26
载 心 荷 载